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Abstract. 
Using the idea of the new sort of fuzzy subnear-ring of a near-ring, fuzzy subgroups, and their generalizations defined by various researchers, we try to introduce the notion of (
	
		
			
				𝜖
				,
				𝜖
				∨
				𝑞
			

		
	
)-fuzzy ideals of 
	
		
			

				𝑁
			

		
	
-groups. These fuzzy ideals are characterized by their level ideals, and some other related properties are investigated.


1. Introduction and Basic Definitions
The concept of a fuzzy set was introduced by Zadeh [1] in 1965, utilizing what Rosenfeld [2] defined as fuzzy subgroups. This was studied further in detail by different researchers in various algebraic systems. The concept of a fuzzy ideal of a ring was introduced by Liu [3]. The notion of fuzzy subnear-ring and fuzzy ideals was introduced by Abou-Zaid [4]. Then in many papers, fuzzy ideals of near-rings were discussed for example, see [5–11]. In [12], the idea of fuzzy point and its belongingness to and quasi coincidence with a fuzzy set were used to define 
	
		
			
				(
				𝛼
				,
				𝛽
				)
			

		
	
-fuzzy subgroup, where 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝛽
			

		
	
 take one of the values from 
	
		
			
				{
				𝜖
				,
				𝑞
				,
				𝜖
				∧
				𝑞
				,
				𝜖
				∨
				𝑞
				}
			

		
	
, 
	
		
			
				𝛼
				≠
				𝜖
				∧
				𝑞
			

		
	
. A fuzzy subgroup in the sense of Rosenfeld is in fact an 
	
		
			
				(
				𝜖
				,
				𝜖
				)
			

		
	
-fuzzy subgroup. Thus, the concept of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup was introduced and discussed thoroughly in [7]. Bhakat and Das [13] introduced the concept of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subrings and ideals of a ring. Davvaz [14, 15], Narayanan and Manikantan [16], and Zhan and Davvaz [17] studied a new sort of fuzzy subnear-ring (ideal and prime ideal) called 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subnear-ring (ideal and prime ideal) and gave characterizations in terms of the level ideals. In [18, 19], the idea of fuzzy ideals of 
	
		
			

				𝑁
			

		
	
-groups was defined, and various properties such as fundamental theorem of fuzzy ideals and fuzzy congruence were studied, respectively. In the present paper, we extend the idea of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideals of near-rings to the case of 
	
		
			

				𝑁
			

		
	
-groups and introduce the idea of fuzzy cosets with some results.
We first recall some basic concepts for the sake of completeness. 
 By a near-ring we mean a nonempty set 
	
		
			

				𝑁
			

		
	
 with two binary operations “+” and “
	
		
			

				⋅
			

		
	
” satisfying the following axioms:(i)
	
		
			
				(
				𝑁
				,
				+
				)
			

		
	
 is a group,(ii)
	
		
			
				(
				𝑁
				,
				⋅
				)
			

		
	
 is a semigroup, (iii)
	
		
			
				(
				𝑥
				+
				𝑦
				)
				⋅
				𝑧
				=
				𝑥
				⋅
				𝑧
				+
				𝑦
				⋅
				𝑧
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑁
			

		
	
.It is in fact a right near-ring because it satisfies the right distributive law. We will use the word “near-ring” to mean “right near-ring.” 
	
		
			

				𝑁
			

		
	
 is said to be zero symmetric if 
	
		
			
				0
				⋅
				𝑥
				=
				𝑥
				⋅
				0
				=
				0
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑁
			

		
	
. We denote 
	
		
			
				𝑥
				⋅
				𝑦
			

		
	
 by 
	
		
			
				𝑥
				𝑦
			

		
	
.
Note that the missing left distributive law, 
	
		
			
				𝑥
				⋅
				(
				𝑦
				+
				𝑧
				)
				=
				𝑥
				⋅
				𝑦
				+
				𝑥
				⋅
				𝑧
			

		
	
, has to do with linearity if 
	
		
			

				𝑥
			

		
	
 is considered as a function.
Example 1. Let 
	
		
			

				𝒢
			

		
	
 be a group, and let 
	
		
			
				𝑀
				(
				𝒢
				)
			

		
	
 be the set of all mappings from 
	
		
			

				𝒢
			

		
	
 into 
	
		
			

				𝒢
			

		
	
. We define + and 
	
		
			

				⋅
			

		
	
 on 
	
		
			
				𝑀
				(
				𝒢
				)
			

		
	
 by 
							
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				(
				𝑓
				+
				𝑔
				)
				(
				𝑥
				)
				∶
				=
				𝑓
				(
				𝑥
				)
				+
				𝑔
				(
				𝑥
				)
				,
				(
				𝑓
				⋅
				𝑔
				)
				(
				𝑥
				)
				∶
				=
				𝑓
				(
				𝑔
				(
				𝑥
				)
				)
				.
			

		
	

						Then, 
	
		
			
				(
				𝑀
				(
				𝒢
				)
				,
				+
				,
				⋅
				)
			

		
	
 is a near-ring.
Just in the same way as 
	
		
			

				𝑅
			

		
	
-modules or vector spaces are used in ring theory, 
	
		
			

				𝑁
			

		
	
-groups are used in near-ring theory.
 By an 
	
		
			

				𝑁
			

		
	
-group we mean a nonempty set 
	
		
			

				𝐺
			

		
	
 together with a map 
	
		
			
				Φ
				∶
				𝑁
				×
				𝐺
				→
				𝐺
			

		
	
 written as 
	
		
			
				Φ
				(
				𝑛
				,
				𝑔
				)
				=
				𝑛
				𝑔
			

		
	
 satisfying the following conditions:(i)
	
		
			
				(
				𝐺
				,
				+
				)
			

		
	
 is a group (not necessarily abelian), (ii)
	
		
			
				(
				𝑛
			

			

				1
			

			
				+
				𝑛
			

			

				2
			

			
				)
				𝑔
				=
				𝑛
			

			

				1
			

			
				𝑔
				+
				𝑛
			

			

				2
			

			

				𝑔
			

		
	
, (iii)
	
		
			
				(
				𝑛
			

			

				1
			

			

				𝑛
			

			

				2
			

			
				)
				𝑔
				=
				𝑛
			

			

				1
			

			
				(
				𝑛
			

			

				2
			

			
				𝑔
				)
			

		
	
 for all 
	
		
			

				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
.
Example 2. Let 
	
		
			

				𝑁
			

		
	
 be a subnear-ring of 
	
		
			
				𝑀
				(
				𝒢
				)
			

		
	
. Then, 
	
		
			

				𝒢
			

		
	
 is an 
	
		
			

				𝑁
			

		
	
-group via function application as operation.
Example 3. The additive group 
	
		
			
				(
				𝑁
				,
				+
				)
			

		
	
 of a near-ring 
	
		
			
				(
				𝑁
				,
				+
				,
				⋅
				)
			

		
	
 is an 
	
		
			

				𝑁
			

		
	
-group via the near-ring multiplication.
An ideal 
	
		
			

				𝐼
			

		
	
 of 
	
		
			

				𝑁
			

		
	
-group 
	
		
			

				𝐺
			

		
	
 is an additive normal subgroup of 
	
		
			

				𝐺
			

		
	
 such that 
	
		
			
				𝑁
				𝐼
				⊆
				𝐼
			

		
	
 and 
	
		
			
				𝑛
				(
				𝑔
				+
				ℎ
				)
				−
				𝑛
				𝑔
				∈
				𝐼
			

		
	
 for all 
	
		
			
				ℎ
				∈
				𝐼
			

		
	
, 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
. A mapping between two 
	
		
			

				𝑁
			

		
	
-groups 
	
		
			

				𝐺
			

		
	
 and 
	
		
			

				𝐺
			

			

				
			

		
	
 is called an 
	
		
			

				𝑁
			

		
	
-homomorphism if 
	
		
			
				𝑓
				(
				𝑔
				+
				ℎ
				)
				=
				𝑓
				(
				𝑔
				)
				+
				𝑓
				(
				ℎ
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝑛
				𝑔
				)
				=
				𝑛
				𝑓
				(
				𝑔
				)
			

		
	
 for all 
	
		
			
				𝑔
				,
				ℎ
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.
Throughout this study, we use 
	
		
			

				𝑁
			

		
	
 to denote a zero-symmetric near-ring and 
	
		
			

				𝐺
			

		
	
 to denote an 
	
		
			

				𝑁
			

		
	
-group.
For any fuzzy subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
, 
	
		
			
				𝐼
				𝑚
				𝐴
				=
				{
				𝐴
				(
				𝑥
				)
				∣
				𝑥
				∈
				𝐺
				}
			

		
	
 denotes the image of 
	
		
			

				𝐴
			

		
	
. For any subset 
	
		
			

				𝐼
			

		
	
 of 
	
		
			

				𝐺
			

		
	
, 
	
		
			

				𝜒
			

			

				𝐼
			

		
	
 denotes the characteristic function of 
	
		
			

				𝐼
			

		
	
.
Definition 4 (see [2]). A fuzzy subset 
	
		
			

				𝐴
			

		
	
 of a group 
	
		
			

				𝐺
			

		
	
 is called a fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
 if it satisfies the following conditions:  (i)
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
, (ii)
	
		
			
				𝐴
				(
				−
				𝑥
				)
				≥
				𝐴
				(
				𝑥
				)
			

		
	
,  for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
.
Definition 5. For a fuzzy subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
, 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				]
			

		
	
, the subset 
	
		
			

				𝐴
			

			

				𝑡
			

			
				=
				{
				𝑥
				∈
				𝐺
				∣
				𝐴
				(
				𝑥
				)
				≥
				𝑡
				}
			

		
	
 is called a level subset of 
	
		
			

				𝐺
			

		
	
 determined by 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝑡
			

		
	
.
The set 
	
		
			
				{
				𝑥
				∈
				𝐺
				∣
				𝐴
				(
				𝑥
				)
				>
				0
				}
			

		
	
 is called the support of 
	
		
			

				𝐴
			

		
	
 and is denoted by 
	
		
			
				S
				u
				p
				p
			

			

				𝐴
			

		
	
. A fuzzy subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 of the form 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝐴
				(
				𝑦
				)
				=
				𝑡
				(
				≠
				0
				)
			

			
				i
				f
			

			
				0
				𝑦
				=
				𝑥
				,
			

			
				i
				f
			

			
				𝑦
				≠
				𝑥
			

		
	

					is said to be a fuzzy point denoted by 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
. Here 
	
		
			

				𝑥
			

		
	
 is called the support point, and 
	
		
			

				𝑡
			

		
	
 is called its  value. A fuzzy point 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
 is said to belong to (resp., quasi coincident with) a fuzzy set 
	
		
			

				𝐴
			

		
	
 written as 
	
		
			

				𝑥
			

			

				𝑡
			

			
				𝜖
				𝐴
			

		
	
 (resp., 
	
		
			

				𝑥
			

			

				𝑡
			

			
				𝑞
				𝐴
			

		
	
) if 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				𝑡
			

		
	
 (resp., 
	
		
			
				𝐴
				(
				𝑥
				)
				+
				𝑡
				>
				1
			

		
	
). If 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
 or 
	
		
			

				𝑥
			

			

				𝑡
			

			
				𝑞
				𝐴
			

		
	
, then we write 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
. The symbols 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				𝑞
				𝐴
				,
				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				∨
				𝑞
				𝐴
			

		
	
 mean that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑡
			

			
				𝑞
				𝐴
				,
				𝑥
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
 do not hold, respectively.
Definition 6 (see [7, 12]). A fuzzy subset of a group 
	
		
			

				𝐺
			

		
	
 is said to be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
 if for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
 and 
	
		
			
				𝑡
				,
				𝑟
				∈
				(
				0
				,
				1
				]
			

		
	
,  (i)
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
				⇒
				(
				𝑥
				+
				𝑦
				)
			

			
				m
				i
				n
				{
				𝑡
				,
				𝑟
				}
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
, (ii)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				−
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
. 
Remark 7 (see [7]). The conditions (i) and (ii) of Definition 6 are respectively equivalent to(i)
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
, (ii)
	
		
			
				𝐴
				(
				−
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
,  for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
.
Remark 8. For any 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 such that 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				0
				.
				5
			

		
	
 for some 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
, then 
	
		
			
				𝐴
				(
				0
				)
				≥
				0
				.
				5
			

		
	
 and if 
	
		
			
				𝐴
				(
				0
				)
				<
				0
				.
				5
			

		
	
, then 
	
		
			
				𝐴
				(
				𝑥
				)
				<
				0
				.
				5
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
. So, 
	
		
			

				𝐴
			

		
	
 is just the usual fuzzy subgroup in the sense of Rosenfeld.
Remark 9. It is noted that if 
	
		
			

				𝐴
			

		
	
 is a fuzzy subgroup then it is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
. However the converse may not be true.
Here onwards we assume that 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup in the nontrivial sense for which case we have 
	
		
			
				𝐴
				(
				0
				)
				≥
				0
				.
				5
			

		
	
.
Definition 10 (see [7]). An 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup of a group 
	
		
			

				𝐺
			

		
	
 is said to be 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy normal subgroup if for any 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
 and 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				]
			

		
	
,
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⟹
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
				.
			

		
	

Remark 11 (see [7]). The condition of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy normal subgroup is given in the equivalent forms as(i)
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
,(ii)
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑦
				+
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
,(iii)
	
		
			
				𝐴
				(
				[
				𝑥
				,
				𝑦
				]
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
.Here 
	
		
			
				[
				𝑥
				,
				𝑦
				]
			

		
	
 denotes the commutator of 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
 in 
	
		
			

				𝐺
			

		
	
. 
In the light of this fact, the condition of Definition 10 can be replaced by any one of the above conditions in Remark 8.
Definition 12 (see [18]). Let 
	
		
			

				𝐴
			

		
	
 be a fuzzy subset of an 
	
		
			

				𝑁
			

		
	
-group 
	
		
			

				𝐺
			

		
	
. It is called a fuzzy 
	
		
			

				𝑁
			

		
	
-subgroup of 
	
		
			

				𝐺
			

		
	
 if it satisfies the following conditions:  (i)
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
, (ii)
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				𝐴
				(
				𝑥
				)
			

		
	
,  for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.
Remark 13. If 
	
		
			

				𝐺
			

		
	
 is a unitary 
	
		
			

				𝑁
			

		
	
-group, the above conditions are equivalent to conditions 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				𝐴
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.
Definition 14 (see [18, 19]). A nonempty fuzzy subset 
	
		
			

				𝐴
			

		
	
 of an 
	
		
			

				𝑁
			

		
	
-group 
	
		
			

				𝐺
			

		
	
 is called a fuzzy ideal if it satisfies the following conditions:(i)
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
, (ii)
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				𝐴
				(
				𝑥
				)
			

		
	
, (iii)
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				𝐴
				(
				𝑥
				)
			

		
	
, (iv)
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑦
				)
				−
				𝑛
				𝑥
				)
				≥
				𝐴
				(
				𝑦
				)
			

		
	
,  for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.
Definition 15 (see [14]). A fuzzy set 
	
		
			

				𝐴
			

		
	
 of a near-ring 
	
		
			

				𝑁
			

		
	
 is called an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subnear-ring of 
	
		
			

				𝑁
			

		
	
 if for all 
	
		
			
				𝑡
				,
				𝑟
				∈
				(
				0
				,
				1
				]
			

		
	
, and 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑁
			

		
	
(i) (a) 
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
				⇒
				(
				𝑥
				+
				𝑦
				)
			

			
				m
				i
				n
				{
				𝑡
				,
				𝑟
				}
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
,  (b) 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				−
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
,(ii)
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
				⇒
				(
				𝑥
				𝑦
				)
			

			
				m
				i
				n
				{
				𝑡
				,
				𝑟
				}
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
. 
	
		
			

				𝐴
			

		
	
 is called an  
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝑁
			

		
	
 if it is 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subnear-ring of 
	
		
			

				𝑁
			

		
	
 and(iii)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				∈
				∨
				𝑞
				𝐴
			

		
	
, (iv)
	
		
			

				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
				,
				𝑥
				∈
				𝑁
				⇒
				(
				𝑦
				𝑥
				)
			

			

				𝑟
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
, (v)
	
		
			

				𝑎
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				𝑦
				(
				𝑥
				+
				𝑎
				)
				−
				𝑦
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
, for all 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑎
				∈
				𝑁
			

		
	
.
2. Generalized Fuzzy Ideals
In this section, we give the definition of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup and ideal of an 
	
		
			

				𝑁
			

		
	
-group 
	
		
			

				𝐺
			

		
	
 based on Definitions 14 and 15.
Definition 16. A fuzzy subset 
	
		
			

				𝐴
			

		
	
 of an 
	
		
			

				𝑁
			

		
	
-group 
	
		
			

				𝐺
			

		
	
 is said to be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
 if 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑡
				,
				𝑟
				∈
				(
				0
				,
				1
				]
			

		
	
,(i)
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
				⇒
				(
				𝑥
				+
				𝑦
				)
			

			
				m
				i
				n
				{
				𝑡
				,
				𝑟
				}
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
, (ii)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				−
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
, (iii)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
				⇒
				(
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
.
Lemma 17.  Let 
	
		
			

				𝐴
			

		
	
 be a fuzzy subset of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				𝑡
				,
				𝑟
				∈
				(
				0
				,
				1
				]
			

		
	
. Then, (i)
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
				⇒
				(
				𝑥
				+
				𝑦
				)
			

			
				m
				i
				n
				{
				𝑡
				,
				𝑟
				}
			

			
				𝜖
				∨
				𝑞
				𝐴
				⇔
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
, (ii)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				−
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
				⇔
				𝐴
				(
				−
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, for all 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
, (iii)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				𝜖
				∨
				𝑞
				𝐴
				⇔
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, for all 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
. 
Proof. (i) Let 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
. Consider the case (a): 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
				<
				0
				.
				5
			

		
	
.Assume that 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
. Choose 
	
		
			

				𝑡
			

		
	
 such that 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				<
				𝑡
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
 which implies that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
 but 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑡
			

			
				
			
			
				∈
				∨
				𝑞
				𝐴
			

		
	
 [as 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				+
				𝑡
				<
				1
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				<
				𝑡
			

		
	
]. Consider the case (b): 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
				≥
				0
				.
				5
			

		
	
. Assume that 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
			

		
	
. Choose 
	
		
			

				𝑡
			

		
	
 such that 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				<
				𝑡
				<
				0
				.
				5
			

		
	
 so that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑦
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
 but 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑡
			

			
				
			
			
				∈
				∨
				𝑞
				𝐴
			

		
	
.Conversely, let 
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
				⇒
				𝐴
				(
				𝑥
				)
				≥
				𝑡
				,
				𝐴
				(
				𝑦
				)
				≥
				𝑟
			

		
	
. Then, 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				𝑟
				,
				0
				.
				5
				}
			

		
	
. Thus 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝑡
				,
				𝑟
				}
			

		
	
 if either 
	
		
			

				𝑡
			

		
	
 or 
	
		
			
				𝑟
				≤
				0
				.
				5
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				0
				.
				5
			

		
	
 if both 
	
		
			

				𝑡
			

		
	
 and 
	
		
			
				𝑟
				>
				0
				.
				5
			

		
	
 which means 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			
				m
				i
				n
				{
				𝑡
				,
				𝑟
				}
			

			
				𝜖
				∨
				𝑞
				𝐴
			

		
	
.(ii) Let 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
, 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≤
				0
				.
				5
			

		
	
. Suppose 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≤
				0
				.
				5
			

		
	
. Choose 
	
		
			

				𝑟
			

		
	
 such that 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				<
				𝑟
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≤
				0
				.
				5
			

		
	
. Then, 
	
		
			

				𝑥
			

			

				𝑟
			

			
				∈
				𝐴
			

		
	
 but 
	
		
			
				(
				−
				𝑥
				)
			

			

				𝑟
			

			
				
			
			
				∈
				∨
				𝑞
				𝐴
			

		
	
 which contradicts the hypothesis. So, 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
.Conversely, let 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
. Then, 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				𝑡
			

		
	
. But we have 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				⇒
				𝐴
				(
				−
				𝑥
				)
				≥
				𝑡
			

		
	
 or 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				≥
				0
				.
				5
			

		
	
 according as 
	
		
			
				𝑡
				≤
				0
				.
				5
			

		
	
 or 
	
		
			
				𝑡
				>
				0
				.
				5
				⇒
				(
				−
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
. (iii) Let 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
 and 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≤
				0
				.
				5
			

		
	
. Suppose 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≤
				0
				.
				5
			

		
	
. Choose 
	
		
			

				𝑟
			

		
	
 such that 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				<
				𝑟
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≤
				0
				.
				5
			

		
	
. Then, 
	
		
			
				𝐴
				(
				𝑥
				)
				>
				𝑟
			

		
	
 that is, 
	
		
			

				𝑥
			

			

				𝑟
			

			
				∈
				𝐴
			

		
	
, but 
	
		
			
				(
				𝑛
				𝑥
				)
			

			

				𝑟
			

			
				
			
			
				∈
				∨
				𝑞
				𝐴
			

		
	
 as 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				<
				𝑟
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				+
				𝑟
				≤
				1
			

		
	
.Conversely let 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
; then 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				𝑡
			

		
	
. But 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				⇒
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				𝑡
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				0
				.
				5
			

		
	
 according as 
	
		
			
				𝑡
				≤
				0
				.
				5
			

		
	
 or 
	
		
			
				𝑟
				>
				0
				.
				5
				⇒
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				𝑡
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				+
				𝑡
				>
				1
				⇒
				(
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				∈
				∨
				𝑞
				𝐴
			

		
	
.
Theorem 18.  Let 
	
		
			

				𝐴
			

		
	
 be a fuzzy subset of 
	
		
			

				𝐺
			

		
	
. Then, 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
 if and only if the following conditions are satisfied:  (i)
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
, (ii)
	
		
			
				𝐴
				(
				−
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, (iii)
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
,  for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.
Proof. It follows from the previous lemma.
Definition 19. A fuzzy subset 
	
		
			

				𝐴
			

		
	
 of an 
	
		
			

				𝑁
			

		
	
-group 
	
		
			

				𝐺
			

		
	
 is said to be 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
 if it is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup and satisfies the following conditions:(i)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			

				𝑡
			

			
				∈
				𝑣
				𝑞
				𝐴
			

		
	
, (ii)
	
		
			

				𝑎
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				∈
				𝑣
				𝑞
				𝐴
			

		
	
,  for any 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				,
				𝑎
				∈
				𝐺
			

		
	
.
Lemma 20.  Let 
	
		
			

				𝐴
			

		
	
 be a fuzzy subset of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				𝑡
				,
				𝑟
				∈
				(
				0
				,
				1
				]
			

		
	
. Then, (i)
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			

				𝑡
			

			
				∈
				𝑣
				𝑞
				𝐴
				⇔
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, (ii)
	
		
			

				𝑎
			

			

				𝑡
			

			
				∈
				𝐴
				⇒
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				∈
				𝑣
				𝑞
				𝐴
				⇔
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
. 								
Proof. (i) Assume that 
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
. Choose 
	
		
			

				𝑡
			

		
	
 such that 
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				<
				𝑡
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
. But 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≤
				𝐴
				(
				𝑥
				)
			

		
	
 or 
	
		
			
				0
				.
				5
			

		
	
 according as 
	
		
			
				𝐴
				(
				𝑥
				)
				<
				0
				.
				5
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				0
				.
				5
			

		
	
. So, 
	
		
			
				𝐴
				(
				𝑥
				)
				>
				𝑡
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				0
				.
				5
				⇒
				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
 or 
	
		
			

				𝑥
			

			
				0
				.
				5
			

			
				∈
				𝐴
			

		
	
. But 
	
		
			
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
				𝑞
				𝐴
			

		
	
 or 
	
		
			
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			
				0
				.
				5
			

			
				
			
			
				∈
				𝑣
				𝑞
				𝐴
			

		
	
, respectively, which contradicts the hypothesis.Conversely, assume that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
, then 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				𝑡
			

		
	
. For any 
	
		
			
				𝑦
				∈
				𝐺
			

		
	
, we have 
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				⇒
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				𝑡
			

		
	
 or 
	
		
			
				0
				.
				5
			

		
	
 according as 
	
		
			
				𝑡
				<
				0
				.
				5
			

		
	
 or 
	
		
			
				𝑡
				≥
				0
				.
				5
				⇒
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				+
				𝑡
				>
				1
			

		
	
. So, 
	
		
			
				⇒
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			

				𝑡
			

			
				∈
				𝑣
				𝑞
				𝐴
			

		
	
.(ii) Assume that 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑎
				)
				,
				0
				.
				5
				}
				=
				𝐴
				(
				𝑎
				)
			

		
	
 or 
	
		
			
				0
				.
				5
			

		
	
 for some 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				,
				𝑎
				∈
				𝐺
			

		
	
. According as 
	
		
			
				𝐴
				(
				𝑎
				)
				<
				0
				.
				5
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑎
				)
				≥
				0
				.
				5
			

		
	
. Choose 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				]
			

		
	
 such that 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				<
				𝑡
				<
				m
				i
				n
				{
				𝐴
				(
				𝑎
				)
				,
				0
				.
				5
				}
				≤
				0
				.
				5
			

		
	
. In either case, 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				<
				𝑡
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				+
				𝑡
				<
				1
			

		
	
. So, 
	
		
			
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
				𝑞
				𝐴
			

		
	
, a contradiction. Conversely, assume that 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑎
				)
				,
				0
				.
				5
				}
			

		
	
 for all 
	
		
			
				𝑎
				,
				𝑥
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
. Let 
	
		
			

				𝑎
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
. Then, 
	
		
			
				𝐴
				(
				𝑎
				)
				≥
				𝑡
			

		
	
. So, 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				≤
				0
				.
				5
				=
				𝑡
			

		
	
 or 
	
		
			
				0
				.
				5
			

		
	
 according as 
	
		
			
				𝑡
				≤
				0
				.
				5
			

		
	
 or 
	
		
			
				𝑡
				>
				0
				.
				5
			

		
	
. So, 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				∈
				𝑣
				𝑞
				𝐴
			

		
	
.
Theorem 21.  Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
 fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
. Then, 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
 if and only if  (i)
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, (ii)
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑎
				)
				,
				0
				.
				5
				}
			

		
	
, for all 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				,
				𝑎
				∈
				𝐺
			

		
	
.
Proof. It is immediate from Lemma 20.
By definition, a fuzzy ideal of 
	
		
			

				𝐺
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
. But the converse is not true in general as shown by the following example.
Example 22. Consider 
	
		
			
				𝐺
				=
				𝕊
			

			

				3
			

			
				=
				{
				𝑖
				,
				𝜌
			

			

				1
			

			
				,
				𝜌
			

			

				2
			

			
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			

				3
			

			

				}
			

		
	
 (written additively) to be a 
	
		
			

				ℤ
			

		
	
-group. Define a fuzzy subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 as 
	
		
			
				𝐴
				(
				𝑖
				)
				=
				1
			

		
	
, 
	
		
			
				𝐴
				(
				𝜌
			

			

				1
			

			
				)
				=
				𝐴
				(
				𝜌
			

			

				2
			

			
				)
				=
				𝐴
				(
				𝜏
			

			

				2
			

			
				)
				=
				𝐴
				(
				𝜏
			

			

				3
			

			
				)
				=
				0
				.
				6
			

		
	
, 
	
		
			
				𝐴
				(
				𝜏
			

			

				1
			

			
				)
				=
				0
				.
				8
			

		
	
 which is not fuzzy ideal as 
	
		
			
				𝐴
				[
				2
				(
				𝜏
			

			

				1
			

			
				+
				𝜏
			

			

				2
			

			
				)
				−
				2
				𝜏
			

			

				2
			

			
				]
				=
				𝐴
				(
				𝜌
			

			

				1
			

			
				)
				=
				𝐴
				(
				𝜌
			

			

				2
			

			
				)
				=
				0
				.
				6
				<
				𝐴
				(
				𝜏
			

			

				1
			

			

				)
			

		
	
; it contradicts the condition (iv) of Definition 14. As 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
			

		
	
, 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
			

		
	
, 
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑛
				(
				𝑥
				+
				𝑎
				)
				−
				𝑛
				𝑥
				)
				=
				0
				.
				6
			

		
	
 or 
	
		
			
				0
				.
				8
				≥
				m
				i
				n
				{
				0
				.
				5
				,
				0
				.
				6
			

		
	
 or 
	
		
			
				0
				.
				8
				}
				=
				0
				.
				5
			

		
	
, thus, the notion of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal is a successful generalization of fuzzy ideals of 
	
		
			

				𝐺
			

		
	
 as introduced in [18].
Theorem 23.  Let 
	
		
			
				{
				𝐴
			

			

				𝑖
			

			
				,
				𝑖
				∈
				𝐽
				}
			

		
	
 be any family of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideals of 
	
		
			

				𝐺
			

		
	
. Then, 
	
		
			
				⋂
				𝐴
				𝐴
				=
			

			

				𝑖
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
.
Proof. It is straightforward.
Theorem 24.  A nonempty subset 
	
		
			

				𝐼
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
 if and only if 
	
		
			

				𝜒
			

			

				𝐼
			

		
	
 is an 
	
		
			
				(
				∈
				,
				∈
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
.
Proof. If 
	
		
			

				𝐼
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
, it is clear from [18, Proposition 2.11] that 
	
		
			

				𝜒
			

			

				𝐼
			

		
	
 is fuzzy ideal of 
	
		
			

				𝐺
			

		
	
. Since every fuzzy ideal is 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal, 
	
		
			

				𝜒
			

			

				𝐼
			

		
	
 is 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
.Conversely, let 
	
		
			

				𝜒
			

			

				𝐼
			

		
	
 be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
. Let 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐼
			

		
	
, 
	
		
			

				𝜒
			

			

				𝐼
			

			
				(
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝜒
			

			

				𝐼
			

			
				(
				𝑥
				)
				,
				𝜒
			

			

				𝐼
			

			
				(
				𝑦
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
			

		
	
. So, 
	
		
			

				𝜒
			

			

				𝐼
			

			
				(
				𝑥
				−
				𝑦
				)
				=
				1
				⇒
				𝑥
				−
				𝑦
				∈
				𝐼
			

		
	
. Let 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				∈
				𝐼
			

		
	
, 
	
		
			

				𝜒
			

			

				𝐼
			

			
				(
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝜒
			

			

				𝐼
			

			
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
				⇒
				𝜒
			

			

				𝐼
			

			
				(
				𝑛
				𝑥
				)
				=
				1
				⇒
				𝑛
				𝑥
				∈
				𝐼
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑥
				∈
				𝐼
			

		
	
, 
	
		
			

				𝜒
			

			

				𝐼
			

			
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝜒
			

			

				𝐼
			

			
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
				⇒
				𝜒
			

			

				𝐼
			

			
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				=
				1
				⇒
				𝑦
				+
				𝑥
				−
				𝑦
				∈
				𝐼
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				∈
				𝐼
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			

				𝜒
			

			

				𝐼
			

			
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
				≥
				m
				i
				n
				{
				𝜒
			

			

				𝐼
			

			
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
				⇒
				𝜒
			

			

				𝐼
			

			
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
				=
				1
				⇒
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				∈
				𝐼
			

		
	
. Then, 
	
		
			

				𝐼
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
.
Theorem 25.  A fuzzy subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy (subgroup) ideal of 
	
		
			

				𝐺
			

		
	
 if and only if the level subset 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 is a (subgroup) ideal for 
	
		
			
				0
				<
				𝑡
				≤
				0
				.
				5
			

		
	
.
Proof. We prove the result for 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal 
	
		
			

				𝑆
			

		
	
. Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
. Let 
	
		
			
				𝑡
				≤
				0
				.
				5
			

		
	
, 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑖
				∈
				𝐴
			

			

				𝑡
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.  (i)
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				=
				𝑡
				⇒
				𝑥
				−
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
, (ii)
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑎
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				=
				𝑡
				⇒
				𝑛
				𝑥
				∈
				𝐴
			

			

				𝑡
			

		
	
, (iii)
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				=
				𝑡
				⇒
				𝑦
				+
				𝑥
				−
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐺
			

		
	
(iv)
	
		
			
				𝐴
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝑡
				,
				0
				.
				5
				}
				=
				𝑡
				⇒
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
. Hence, 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
. Again, let 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 be an ideal of 
	
		
			

				𝐺
			

		
	
 for all 
	
		
			
				𝑡
				≤
				0
				.
				5
			

		
	
. If possible, let there exist 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
 such that 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				<
				𝑡
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
. Let 
	
		
			

				𝑡
			

		
	
 be such that 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				<
				𝑡
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
				⇒
				𝑥
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
 and 
	
		
			
				𝑥
				−
				𝑦
				∉
				𝐴
			

			

				𝑡
			

		
	
, a contradiction. So, 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
, for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
. For 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
 let 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
. If possible let 
	
		
			

				𝑡
			

		
	
 be such that 
	
		
			
				𝐴
				(
				𝑛
				𝑥
				)
				<
				𝑡
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
. This implies 
	
		
			
				𝑥
				∈
				𝐴
			

			

				𝑡
			

		
	
, but 
	
		
			
				𝑛
				𝑥
				∉
				𝐴
			

			

				𝑡
			

		
	
, a contradiction. Similarly, we can prove that 
	
		
			
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, 
	
		
			
				𝐴
				[
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				]
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.
Remark 26. For 
	
		
			
				𝑡
				∈
				(
				0
				.
				5
				,
				1
				)
			

		
	
, 
	
		
			

				𝐴
			

		
	
 may be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
, but 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 may not be an ideal of 
	
		
			

				𝐺
			

		
	
. Let 
	
		
			
				𝑡
				=
				0
				.
				8
			

		
	
 in Example 22. Then, 
	
		
			

				𝐴
			

			

				𝑡
			

			
				=
				{
				𝑖
				,
				𝜏
			

			

				1
			

			

				}
			

		
	
. 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 is not an ideal of 
	
		
			

				𝕊
			

			

				3
			

		
	
 as it is not a normal subgroup of 
	
		
			

				𝕊
			

			

				3
			

		
	
.
We are looking for a corresponding result when 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
 for all 
	
		
			
				𝑡
				∈
				(
				0
				.
				5
				,
				1
				]
			

		
	
.
Theorem 27.  Let 
	
		
			

				𝐴
			

		
	
 be a fuzzy subset of an 
	
		
			

				𝑁
			

		
	
-group 
	
		
			

				𝐺
			

		
	
. Then, 
	
		
			

				𝐴
			

			

				𝑡
			

			
				≠
				𝜙
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
 for all 
	
		
			
				𝑡
				∈
				(
				0
				.
				5
				,
				1
				]
			

		
	
 if and only if 
	
		
			

				𝐴
			

		
	
 satisfies the following conditions:  (i)
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
, (ii)
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑛
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				𝐴
				(
				𝑥
				)
			

		
	
, (iii)
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				𝐴
				(
				𝑥
				)
			

		
	
,
								(iv)
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				𝐴
				(
				𝑥
				)
			

		
	
,  for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
.
Proof. Suppose that 
	
		
			

				𝐴
			

			

				𝑡
			

			
				≠
				𝜙
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
 for all 
	
		
			
				𝑡
				∈
				(
				0
				.
				5
				,
				1
				]
			

		
	
. In order to prove (i), suppose that for some 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
. Let 
	
		
			
				𝑡
				=
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
. So, 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
 and 
	
		
			
				𝑡
				∈
				(
				0
				.
				5
				,
				1
				]
			

		
	
. Since 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 is an ideal, 
	
		
			
				𝑥
				−
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
. So, 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				𝑡
				>
				m
				a
				x
				{
				𝐴
				(
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
, a contradiction. In order to prove (ii), suppose that 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
 and 
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑛
				𝑥
				)
				,
				0
				.
				5
				}
				<
				𝐴
				(
				𝑥
				)
				=
				𝑡
			

		
	
 (say). Then, 
	
		
			
				𝑥
				∈
				𝐴
			

			

				𝑡
			

			
				⇒
				𝑛
				𝑥
				∈
				𝐴
			

			

				𝑡
			

			
				⇒
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				𝑡
				>
				m
				a
				x
				{
				𝐴
				(
				𝑛
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
, a contradiction. Similarly, we can prove (iii) and (iv).Conversely, suppose that conditions (i) to (iv) hold. We show that 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
 for all 
	
		
			
				𝑡
				∈
				(
				0
				.
				5
				,
				1
				]
			

		
	
. Let 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
. Then, 
	
		
			
				0
				.
				5
				<
				𝑡
				≤
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
				≤
				m
				a
				x
				{
				𝐴
				(
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				=
				𝐴
				(
				𝑥
				−
				𝑦
				)
			

		
	
. So, 
	
		
			
				𝑥
				−
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
. Let 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				∈
				𝐴
			

			

				𝑡
			

		
	
. Then, 
	
		
			
				0
				.
				5
				<
				𝑡
				≤
				𝐴
				(
				𝑥
				)
				≤
				m
				a
				x
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				𝐴
				(
				𝑥
				)
			

		
	
 so 
	
		
			
				𝑛
				𝑥
				∈
				𝐴
			

			

				𝑡
			

		
	
. For 
	
		
			
				𝑥
				∈
				𝐴
			

			

				𝑡
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				0
				.
				5
				<
				𝑡
				≤
				𝐴
				(
				𝑥
				)
				≤
				m
				a
				x
				{
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				=
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				⇒
				𝑦
				+
				𝑥
				−
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
. Also, if 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, 
	
		
			
				𝑥
				∈
				𝐴
			

			

				𝑡
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				0
				.
				5
				<
				𝑡
				≤
				𝐴
				(
				𝑥
				)
				≤
				m
				a
				x
				{
				𝐴
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
				,
				0
				.
				5
				}
				=
				𝐴
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
			

		
	
. Hence, 
	
		
			
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				∈
				𝐴
			

			

				𝑡
			

		
	
. Then, 
	
		
			

				𝐴
			

			

				𝑡
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
.
A definition for the previous kind of fuzzy subset was given for the case of near-rings in [17]. Now, we give the definition for 
	
		
			

				𝑁
			

		
	
-groups.
Definition 28. A fuzzy subset of 
	
		
			

				𝐺
			

		
	
 is called an 
	
		
			

				(
			

			
				
			
			
				𝜖
				,
			

			
				
			
			
				𝜖
				∨
			

			
				
			
			
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
 if for all 
	
		
			
				𝑡
				,
				𝑟
				∈
				(
				0
				,
				1
				]
			

		
	
 and for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
,(i) (a) 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			
				m
				i
				n
				(
				𝑡
				,
				𝑟
				)
			

			
				
			
			
				∈
				𝐴
			

		
	
 implies 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑟
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
,  (b) 
	
		
			
				(
				−
				𝑥
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
 implies 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
,(ii)
	
		
			
				(
				𝑛
				𝑥
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
 implies 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
. Moreover, 
	
		
			

				𝐴
			

		
	
 is called an  
	
		
			

				(
			

			
				
			
			
				𝜖
				,
			

			
				
			
			
				𝜖
				∨
			

			
				
			
			
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
 if 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				(
			

			
				
			
			
				𝜖
				,
			

			
				
			
			
				𝜖
				∨
			

			
				
			
			
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
 and(iii)
	
		
			
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
 implies 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
, (iv)
	
		
			
				(
				𝑛
				(
				𝑥
				+
				𝑦
				)
				−
				𝑛
				𝑦
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
 implies 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
. 
Theorem 29.  A fuzzy subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is an 
	
		
			

				(
			

			
				
			
			
				𝜖
				,
			

			
				
			
			
				𝜖
				∨
			

			
				
			
			
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
 if and only if (1)
	
		
			

				(
			

			

				a
			

			
				)
				m
				a
				x
				{
				𝐴
				(
				𝑥
				+
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
,  
	
		
			

				(
			

			

				b
			

			
				)
				m
				a
				x
				{
				𝐴
				(
				−
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				𝐴
				(
				𝑥
				)
			

		
	
,(2)
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				𝐴
				(
				𝑥
				)
			

		
	
,(3)
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑛
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				𝐴
				(
				𝑥
				)
			

		
	
,(4)
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
				,
				0
				.
				5
				}
				≥
				𝐴
				(
				𝑥
				)
			

		
	
. 
Proof. 
	
		
			

				(
			

			

				i
			

			

				)
			

			

				a
			

			
				⇔
				(
				1
				)
			

			

				a
			

		
	
. Let 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
 be such that 
	
		
			
				m
				a
				x
				{
				𝐴
				(
				𝑥
				+
				𝑦
				)
				,
				0
				.
				5
				}
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
. Let 
	
		
			
				𝑡
				=
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
; then 
	
		
			
				0
				.
				5
				<
				𝑡
				≤
				1
			

		
	
, 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
. So we must have 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
. But 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
. Here 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑡
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 then 
	
		
			
				𝑡
				≤
				𝐴
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑥
				)
				+
				𝑡
				≤
				1
			

		
	
 or 
	
		
			
				𝑡
				≤
				𝐴
				(
				𝑦
				)
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑦
				)
				+
				𝑡
				≤
				1
			

		
	
 then 
	
		
			
				𝑡
				≤
				0
				.
				5
			

		
	
, a contradiction.Conversely, let 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			
				m
				i
				n
				(
				𝑡
				,
				𝑟
				)
			

			
				
			
			
				∈
				𝐴
			

		
	
. Then, 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				<
				m
				i
				n
				(
				𝑡
				,
				𝑟
				)
			

		
	
. If 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
, then 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
				<
				m
				i
				n
				(
				𝑡
				,
				𝑟
				)
			

		
	
. Hence, either 
	
		
			
				𝐴
				(
				𝑥
				)
				<
				𝑡
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑦
				)
				<
				𝑟
			

		
	
 which implies 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑟
			

			
				
			
			
				∈
				𝐴
			

		
	
. Thus, 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑟
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
.Again if 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑦
				)
				<
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
			

		
	
, then by 
	
		
			
				(
				1
				)
			

			

				a
			

		
	

	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				0
				.
				5
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				}
				>
				𝐴
				(
				𝑥
				+
				𝑦
				)
				.
			

		
	

						Suppose that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑟
			

			
				∈
				𝐴
			

		
	
 then 
	
		
			
				𝑡
				≤
				𝐴
				(
				𝑥
				)
				≤
				0
				.
				5
			

		
	
 or 
	
		
			
				𝑟
				≤
				𝐴
				(
				𝑦
				)
				≤
				0
				.
				5
			

		
	
. It follows that either 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑡
			

			
				
			
			
				𝑞
				𝐴
			

		
	
, and thus 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 or 
	
		
			

				𝑦
			

			

				𝑟
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
.
	
		
			

				(
			

			

				i
			

			

				)
			

			

				b
			

			
				⇔
				(
				1
				)
			

			

				b
			

		
	
: Suppose that there exists 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
 such that 
	
		
			
				m
				a
				x
				{
				𝐴
				(
				−
				𝑥
				)
				,
				0
				.
				5
				}
				<
				𝐴
				(
				𝑥
				)
			

		
	
. If 
	
		
			
				𝐴
				(
				𝑥
				)
				=
				𝑡
			

		
	
 then 
	
		
			
				0
				.
				5
				<
				𝑡
				≤
				1
			

		
	
 and 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				<
				𝑡
			

		
	
 so that 
	
		
			
				(
				−
				𝑥
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
. But then we must have either 
	
		
			
				(
				𝑥
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
 or 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				𝑞
				𝐴
			

		
	
. Also we have 
	
		
			
				(
				𝑥
				)
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
. So, 
	
		
			
				𝐴
				(
				𝑥
				)
				+
				1
				≤
				1
			

		
	
 which means that 
	
		
			
				𝑡
				≤
				0
				.
				5
			

		
	
, a contradiction.Conversely, suppose that 
	
		
			
				(
				𝑥
				)
			

			

				𝑡
			

			
				
			
			
				∈
				𝐴
			

		
	
 then 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				<
				𝑡
			

		
	
. If 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				≥
				𝐴
				(
				𝑥
				)
			

		
	
, then 
	
		
			
				𝐴
				(
				𝑥
				)
				<
				𝑡
			

		
	
 which gives 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
. Again if 
	
		
			
				𝐴
				(
				−
				𝑥
				)
				<
				𝐴
				(
				𝑥
				)
			

		
	
 by 
	
		
			
				(
				1
				)
			

			

				b
			

		
	
 we have 
	
		
			
				0
				.
				5
				≥
				𝐴
				(
				𝑥
				)
			

		
	
. Putting 
	
		
			
				(
				𝑥
				)
			

			

				𝑡
			

			
				∈
				𝐴
			

		
	
, then 
	
		
			
				𝑡
				≤
				𝐴
				(
				𝑥
				)
				≤
				0
				.
				5
			

		
	
 so that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				𝑞
				𝐴
			

		
	
 which means that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				
			
			
				∈
				𝑣
			

			
				
			
			
				𝑞
				𝐴
			

		
	
. Similarly, we can prove the remaining parts.
Theorem 30.  A fuzzy subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is an 
	
		
			

				(
			

			
				
			
			
				𝜖
				,
			

			
				
			
			
				𝜖
				𝑣
			

			
				
			
			
				𝑞
				)
			

		
	
-fuzzy ideal if and only if 
	
		
			

				𝐴
			

			

				𝑡
			

			
				(
				≠
				𝜙
				)
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
 for all 
	
		
			
				𝑡
				∈
				(
				0
				.
				5
				,
				1
				]
			

		
	
.
3. Fuzzy Cosets and Isomorphism Theorem
In this section, we first study the properties of 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideals under a homomorphism. Then, we introduce the fuzzy cosets and prove the fundamental isomorphism theorem on 
	
		
			

				𝑁
			

		
	
-groups with respect to the structure induced by these fuzzy cosets.
Theorem 31.  Let 
	
		
			

				𝐺
			

		
	
 and 
	
		
			

				𝐺
			

			

				
			

		
	
 be two 
	
		
			

				𝑁
			

		
	
-groups, and let 
	
		
			
				𝑓
				∶
				𝐺
				→
				𝐺
			

			

				
			

		
	
 be an 
	
		
			

				𝑁
			

		
	
-homomorphism. If 
	
		
			

				𝑓
			

		
	
 is surjective and 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
, then so is 
	
		
			
				𝑓
				(
				𝐴
				)
			

		
	
. If 
	
		
			

				𝐵
			

		
	
 is a 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

			

				
			

		
	
, then 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝐵
				)
			

		
	
 is a fuzzy ideal of 
	
		
			

				𝐺
			

		
	
.
Proof. We assume that 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
. For any 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

			

				
			

		
	
; it follows that 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝑓
				(
				𝐴
				)
				(
				𝑥
				+
				𝑦
				)
				=
				s
				u
				p
			

			
				𝑥
				+
				𝑦
				=
				𝑓
				(
				𝑧
				)
			

			
				{
				𝐴
				(
				𝑧
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑢
				)
				=
				𝑥
				,
				𝑓
				(
				𝑣
				)
				=
				𝑦
			

			
				{
				𝐴
				(
				𝑢
				+
				𝑣
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑢
				)
				=
				𝑥
				,
				𝑓
				(
				𝑣
				)
				=
				𝑦
			

			
				
				{
				m
				i
				n
				{
				𝐴
				(
				𝑢
				)
				,
				𝐴
				(
				𝑣
				)
				,
				0
				.
				5
				}
				}
				=
				m
				i
				n
				s
				u
				p
			

			
				𝑓
				(
				𝑢
				)
				=
				𝑥
			

			
				{
				𝐴
				(
				𝑢
				)
				}
				,
				s
				u
				p
			

			
				𝑓
				(
				𝑣
				)
				=
				𝑦
			

			
				
				{
				𝐴
				(
				𝑣
				)
				}
				,
				0
				.
				5
				=
				m
				i
				n
				{
				𝑓
				(
				𝐴
				)
				(
				𝑥
				)
				,
				𝑓
				(
				𝐴
				)
				(
				𝑦
				)
				,
				0
				.
				5
				}
				.
			

		
	

						Also, 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝑓
				(
				𝐴
				)
				(
				−
				𝑥
				)
				=
				s
				u
				p
			

			
				𝑓
				(
				𝑧
				)
				=
				−
				𝑥
			

			
				{
				𝐴
				(
				𝑧
				)
				}
				=
				s
				u
				p
			

			
				𝑓
				(
				−
				𝑧
				)
				=
				𝑥
			

			
				{
				𝐴
				(
				𝑧
				)
				}
				=
				s
				u
				p
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑥
			

			
				{
				𝐴
				(
				−
				𝑧
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑥
			

			
				
				{
				m
				i
				n
				{
				𝐴
				(
				𝑢
				)
				,
				0
				.
				5
				}
				}
				=
				m
				i
				n
				s
				u
				p
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑥
			

			
				
				{
				𝐴
				(
				𝑧
				)
				}
				,
				0
				.
				5
				=
				m
				i
				n
				{
				𝑓
				(
				𝐴
				)
				(
				𝑥
				)
				,
				0
				.
				5
				}
				.
			

		
	

						Again, 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				𝐴
				)
				(
				𝑛
				𝑥
				)
				=
				s
				u
				p
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑛
				𝑥
			

			
				{
				𝐴
				(
				𝑧
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑢
				)
				=
				𝑥
			

			
				{
				𝐴
				(
				𝑛
				𝑢
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑢
				)
				=
				𝑥
			

			
				
				{
				m
				i
				n
				{
				𝐴
				(
				𝑢
				)
				,
				0
				.
				5
				}
				}
				=
				m
				i
				n
				s
				u
				p
			

			
				𝑓
				(
				𝑢
				)
				=
				𝑥
			

			
				{
				
				𝐴
				(
				𝑢
				)
				}
				,
				0
				.
				5
				=
				m
				i
				n
				{
				𝑓
				(
				𝐴
				)
				(
				𝑥
				)
				,
				0
				.
				5
				}
				,
				𝑓
				(
				𝐴
				)
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				=
				s
				u
				p
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑦
				+
				𝑥
				−
				𝑦
			

			
				{
				𝐴
				(
				𝑧
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑣
				)
				=
				𝑥
				,
				𝑓
				(
				𝑢
				)
				=
				𝑦
			

			
				{
				𝐴
				(
				𝑢
				+
				𝑣
				−
				𝑢
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑣
				)
				=
				𝑥
			

			
				
				{
				m
				i
				n
				{
				𝐴
				(
				𝑣
				)
				,
				0
				.
				5
				}
				}
				=
				m
				i
				n
				s
				u
				p
			

			
				𝑓
				(
				𝑣
				)
				=
				𝑥
			

			
				
				{
				𝐴
				(
				𝑣
				)
				}
				,
				0
				.
				5
				=
				m
				i
				n
				{
				𝑓
				(
				𝐴
				)
				(
				𝑥
				)
				,
				0
				.
				5
				}
				,
				𝑓
				(
				𝐴
				)
				(
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				)
				=
				s
				u
				p
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
			

			
				{
				𝐴
				(
				𝑧
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑣
				)
				=
				𝑥
				,
				𝑓
				(
				𝑢
				)
				=
				𝑦
			

			
				{
				𝐴
				(
				𝑛
				(
				𝑢
				+
				𝑣
				)
				−
				𝑛
				𝑢
				)
				}
				≥
				s
				u
				p
			

			
				𝑓
				(
				𝑣
				)
				=
				𝑥
				,
				𝑓
				(
				𝑢
				)
				=
				𝑦
			

			
				{
				m
				i
				n
				{
				𝐴
				(
				𝑢
				)
				,
				0
				.
				5
				}
				}
				=
				m
				i
				n
				{
				𝑓
				(
				𝐴
				)
				(
				𝑥
				)
				,
				0
				.
				5
				}
				.
			

		
	

						Therefore, 
	
		
			
				𝑓
				(
				𝐴
				)
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
. Similarly, we can show that 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝐴
				)
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
.
Definition 32. Let 
	
		
			

				𝐴
			

		
	
 be 
	
		
			
				(
				∈
				,
				∈
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
. For any 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
, let 
	
		
			

				𝐴
			

			

				𝑥
			

		
	
 be defined by 
	
		
			

				𝐴
			

			

				𝑥
			

			
				(
				𝑔
				)
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
 for all 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
. This fuzzy subset 
	
		
			

				𝐴
			

			

				𝑥
			

		
	
 is called the 
	
		
			
				(
				∈
				,
				∈
				∨
				𝑞
				)
			

		
	
-fuzzy left coset of 
	
		
			

				𝐺
			

		
	
 determined by 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝑥
			

		
	
.
Remark 33. Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy subgroup of 
	
		
			

				𝐺
			

		
	
. Then, 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy normal if and only if 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
				𝐴
				(
				−
				𝑥
				+
				𝑔
				)
				,
				0
				.
				5
				}
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑔
				∈
				𝐺
			

		
	
. If 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal, we simply denote fuzzy coset by 
	
		
			

				𝐴
			

			

				𝑥
			

		
	
.
Lemma 34.  Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
. Then, 
	
		
			

				𝐴
			

			

				𝑥
			

			
				=
				𝐴
			

			

				𝑦
			

		
	
 if an only if 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				0
				.
				5
			

		
	
.
Proof. Assume that 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				0
				.
				5
			

		
	
 and 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
. 
	
		
			

				𝐴
			

			

				𝑥
			

			
				(
				𝑔
				)
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
 
	
		
			
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑦
				)
				,
				𝐴
				(
				𝑦
				−
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑦
				)
				,
				𝐴
				(
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑦
				)
				,
				0
				.
				5
				}
				=
				𝐴
			

			

				𝑦
			

			
				(
				𝑔
				)
			

		
	
 which implies that 
	
		
			

				𝐴
			

			

				𝑥
			

			
				≥
				𝐴
			

			

				𝑦
			

		
	
. Similarly, we can verify that 
	
		
			

				𝐴
			

			

				𝑥
			

			
				≤
				𝐴
			

			

				𝑦
			

		
	
. Conversely we assume that 
	
		
			

				𝐴
			

			

				𝑥
			

			
				=
				𝐴
			

			

				𝑦
			

		
	
. Then, 
	
		
			

				𝐴
			

			

				𝑦
			

			
				(
				𝑥
				)
				=
				𝐴
			

			

				𝑥
			

			
				(
				𝑥
				)
				⇒
				m
				i
				n
				{
				𝐴
				(
				𝑥
				−
				𝑦
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
				⇒
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				0
				.
				5
			

		
	
.
Proposition 35.  Every fuzzy coset 
	
		
			

				𝐴
			

			

				𝑥
			

		
	
 is constant on every coset of 
	
		
			

				𝐺
			

			

				0
			

			
				=
				{
				𝑥
				∈
				𝐺
				∣
				𝐴
				(
				𝑥
				)
				=
				𝐴
				(
				0
				)
				}
			

		
	
.
Proof. Let 
	
		
			
				𝑦
				+
				𝑦
			

			

				0
			

			
				∈
				𝑦
				+
				𝐺
			

			

				0
			

		
	
. Now, we have 
	
		
			

				𝐴
			

			

				𝑥
			

			
				(
				𝑦
				+
				𝑦
			

			

				0
			

			
				)
				=
				m
				i
				n
				{
				𝐴
				(
				𝑦
				+
				𝑦
			

			

				0
			

			
				−
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
 
	
		
			
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑦
				−
				𝑥
				)
				,
				𝐴
				(
				𝑥
				+
				𝑦
			

			

				0
			

			
				−
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑦
				−
				𝑥
				)
				,
				𝐴
				(
				𝑦
			

			

				0
			

			
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
				𝐴
				(
				𝑦
				−
				𝑥
				)
				,
				0
				.
				5
				}
				=
				𝐴
			

			

				𝑥
			

			
				(
				𝑦
				)
			

		
	
. Also 
	
		
			

				𝐴
			

			

				𝑥
			

			
				(
				𝑦
				)
				=
				m
				i
				n
				{
				𝐴
				(
				𝑦
				−
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				−
				𝑥
				+
				𝑦
				+
				𝑦
			

			

				0
			

			
				−
				𝑦
			

			

				0
			

			
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				−
				𝑥
				+
				𝑦
				+
				𝑦
			

			

				0
			

			
				)
				,
				𝐴
				(
				−
				𝑦
			

			

				0
			

			
				)
				,
				0
				.
				5
				}
			

		
	
 
	
		
			
				=
				m
				i
				n
				{
				𝐴
				(
				−
				𝑥
				+
				𝑦
				+
				𝑦
			

			

				0
			

			
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑦
				+
				𝑦
			

			

				0
			

			
				−
				𝑥
				)
				,
				0
				.
				5
				}
				=
				𝐴
			

			

				𝑥
			

			
				(
				𝑦
				+
				𝑦
			

			

				0
			

			

				)
			

		
	
. Thus 
	
		
			

				𝐴
			

			

				𝑥
			

			
				(
				𝑦
				+
				𝑦
			

			

				0
			

			
				)
				=
				𝐴
			

			

				𝑥
			

			
				(
				𝑦
				)
			

		
	
 for all 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝐺
			

			

				0
			

		
	
.
Theorem 36.  For any 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝐺
			

		
	
, 
	
		
			

				𝐺
			

			

				𝐴
			

		
	
 the set of all fuzzy cosets of 
	
		
			

				𝐴
			

		
	
 in 
	
		
			

				𝐺
			

		
	
 is an 
	
		
			

				𝑁
			

		
	
-group under the addition and scalar multiplication defined by 
	
		
			

				𝐴
			

			

				𝑥
			

			
				+
				𝐴
			

			

				𝑦
			

			
				=
				𝐴
			

			
				𝑥
				+
				𝑦
			

		
	
, 
	
		
			
				𝑛
				(
				𝐴
			

			

				𝑥
			

			
				)
				=
				𝐴
			

			
				𝑛
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
. The function 
	
		
			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑥
			

			
				)
				∶
				𝐺
			

			

				𝐴
			

			
				→
				[
				0
				,
				1
				]
			

		
	
 defined by 
	
		
			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑥
			

			
				)
				=
				𝐴
				(
				𝑥
				)
			

		
	
 for all 
	
		
			

				𝐴
			

			

				𝑥
			

			
				∈
				𝐺
			

			

				𝐴
			

		
	
 is 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

			

				𝐴
			

		
	
.
Proof. First, we show that the compositions are well defined. Let 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑐
				,
				𝑑
				∈
				𝐺
			

		
	
, 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
 such that 
	
		
			

				𝐴
			

			

				𝑥
			

			
				=
				𝐴
			

			

				𝑦
			

		
	
 and 
	
		
			

				𝐴
			

			

				𝑐
			

			
				=
				𝐴
			

			

				𝑑
			

		
	
. Then, 
	
		
			
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				0
				.
				5
			

		
	
, 
	
		
			
				𝐴
				(
				𝑐
				−
				𝑑
				)
				≥
				0
				.
				5
			

		
	
. Now, we have 
	
		
			
				m
				i
				n
				{
				𝐴
				(
				𝑥
				+
				𝑐
				−
				𝑑
				−
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
 
	
		
			
				≥
				m
				i
				n
				{
				𝐴
				(
				−
				𝑦
				+
				𝑥
				+
				𝑐
				−
				𝑑
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
			

		
	
 which implies that 
	
		
			
				𝐴
				(
				𝑥
				+
				𝑐
				−
				𝑑
				−
				𝑦
				)
				≥
				0
				.
				5
			

		
	
. So, by Lemma 34, we have 
	
		
			

				𝐴
			

			
				𝑥
				+
				𝑐
			

			
				=
				𝐴
			

			
				𝑦
				+
				𝑑
			

		
	
. Again 
	
		
			

				𝐴
			

			
				𝑛
				𝑥
			

			
				(
				𝑔
				)
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑛
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑛
				𝑦
				)
				,
				𝐴
				(
				𝑛
				𝑥
				−
				𝑛
				𝑦
				)
				,
				0
				.
				5
				}
			

		
	
 
	
		
			
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑛
				𝑦
				)
				,
				𝐴
				[
				𝑛
				(
				𝑦
				−
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				]
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑛
				𝑦
				)
				,
				𝐴
				(
				−
				𝑦
				+
				𝑥
				)
				,
				0
				.
				5
				}
				=
				𝐴
			

			
				𝑛
				𝑦
			

			
				(
				𝑔
				)
			

		
	
. Similarly, we show that 
	
		
			

				𝐴
			

			
				𝑛
				𝑦
			

			
				(
				𝑔
				)
				≥
				𝐴
			

			
				𝑛
				𝑥
			

			
				(
				𝑔
				)
			

		
	
. Thus, for 
	
		
			

				𝐴
			

			
				𝑛
				𝑦
			

			
				(
				𝑔
				)
				=
				𝐴
			

			
				𝑛
				𝑥
			

			
				(
				𝑔
				)
			

		
	
 for all 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
. Hence the compositions are well defined. It is now easy to verify that 
	
		
			

				𝐺
			

			

				𝐴
			

		
	
 is an 
	
		
			

				𝑁
			

		
	
-group with null element 
	
		
			

				𝐴
			

			

				0
			

		
	
 and negative element 
	
		
			

				𝐴
			

			
				−
				𝑥
			

		
	
. Next, we check that 
	
		
			
				
			
			

				𝐴
			

		
	
 is 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

			

				𝐴
			

		
	
. Let 
	
		
			

				𝐴
			

			

				𝑥
			

			
				,
				𝐴
			

			

				𝑦
			

			
				∈
				𝐺
			

			

				𝐴
			

		
	
. We have(i)
	
		
			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑥
			

			
				−
				𝐴
			

			

				𝑦
			

			
				)
				=
			

			
				
			
			
				𝐴
				(
				𝐴
			

			
				𝑥
				−
				𝑦
			

			
				)
				=
				𝐴
				(
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				𝐴
				(
				𝑦
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
			

			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑥
			

			
				)
				,
			

			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑦
			

			
				)
				,
				0
				.
				5
				}
			

		
	
,
								(ii)
	
		
			
				
			
			
				𝐴
				(
				𝐴
			

			
				𝑛
				𝑥
			

			
				)
				=
				𝐴
				(
				𝑛
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
			

			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑥
			

			
				)
				,
				0
				.
				5
				}
			

		
	
, (iii)
	
		
			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑦
			

			
				+
				𝐴
			

			

				𝑥
			

			
				−
				𝐴
				𝑦
				)
				=
			

			
				
			
			
				𝐴
				(
				𝐴
			

			
				𝑦
				+
				𝑥
				−
				𝑦
			

			
				)
				=
				𝐴
				(
				𝑦
				+
				𝑥
				−
				𝑦
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
			

			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑥
			

			
				)
				,
				0
				.
				5
				}
			

		
	
, (iv)
	
		
			
				
			
			
				𝐴
				[
				𝑛
				(
				𝐴
			

			

				𝑦
			

			
				+
				𝐴
			

			

				𝑥
			

			
				)
				−
				𝑛
				𝐴
			

			

				𝑦
			

			
				]
				=
			

			
				
			
			
				𝐴
				[
				𝐴
			

			
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
			

			
				]
				=
				𝐴
				[
				𝑛
				(
				𝑦
				+
				𝑥
				)
				−
				𝑛
				𝑦
				]
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
			

			
				
			
			
				𝐴
				(
				𝐴
			

			

				𝑥
			

			
				)
				,
				0
				.
				5
				}
			

		
	
.Hence, the proof is completed.
Lemma 37.  Let 
	
		
			
				𝐻
				=
				{
				𝑥
				∈
				𝐺
				∣
				𝐴
			

			

				𝑥
			

			
				≥
				𝐴
			

			

				0
			

			

				}
			

		
	
, 
	
		
			
				𝐾
				=
				{
				𝑥
				∈
				𝐺
				∣
				𝐴
			

			

				𝑥
			

			
				=
				𝐴
			

			

				0
			

			

				}
			

		
	
. Then, 
	
		
			
				𝐾
				=
				𝐻
				=
				𝐴
			

			
				0
				.
				5
			

		
	
.
Proof. Let 
	
		
			
				𝑥
				∈
				𝐻
			

		
	
. Then, for all 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
, 
	
		
			

				𝐴
			

			

				𝑥
			

			
				(
				𝑔
				)
				≥
				𝐴
			

			

				0
			

			
				(
				𝑔
				)
				⇒
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				)
				,
				0
				.
				5
				}
			

		
	
 
	
		
			
				⇒
				m
				i
				n
				{
				𝐴
				(
				−
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				0
				)
				,
				0
				.
				5
				}
				=
				0
				.
				5
				⇒
				𝐴
				(
				𝑥
				)
				≥
				0
				.
				5
			

		
	
. Also, for 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
, 
	
		
			

				𝐴
			

			

				0
			

			
				(
				𝑔
				)
			

		
	
 
	
		
			
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				+
				𝑥
				)
				,
				0
				.
				5
				}
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				)
				,
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				)
				,
				0
				.
				5
				}
				=
				𝐴
			

			

				𝑥
			

			
				(
				𝑔
				)
			

		
	
 
	
		
			
				⇒
				𝐴
			

			

				0
			

			
				≥
				𝐴
			

			

				𝑥
			

		
	
. So, 
	
		
			
				𝐻
				=
				𝐾
			

		
	
. As we have seen, if 
	
		
			
				𝑥
				∈
				𝐻
			

		
	
 then 
	
		
			
				𝐴
				(
				𝑥
				)
				≥
				0
				.
				5
				⇒
				𝑥
				∈
				𝐴
			

			
				0
				.
				5
			

		
	
. Conversely, if 
	
		
			
				𝑥
				∈
				𝐴
			

			
				0
				.
				5
			

		
	
, for any 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
, 
	
		
			
				𝐴
				(
				𝑔
				−
				𝑥
				)
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				)
				,
				𝐴
				(
				𝑥
				)
				,
				0
				.
				5
				}
				=
				m
				i
				n
				{
				𝐴
				(
				𝑔
				)
				,
				0
				.
				5
				}
				⇒
				m
				i
				n
				{
				𝐴
				(
				𝑔
				−
				𝑥
				)
				,
				0
				.
				5
				}
			

		
	
 
	
		
			
				≥
				m
				i
				n
				{
				𝐴
				(
				𝑔
				)
				,
				0
				.
				5
				}
				⇒
				𝐴
			

			

				𝑥
			

			
				≥
				𝐴
			

			

				0
			

		
	
. Thus, 
	
		
			
				𝐻
				=
				𝐴
			

			
				0
				.
				5
			

		
	
, which means that 
	
		
			

				𝐻
			

		
	
 is an ideal of 
	
		
			

				𝐺
			

		
	
.
Theorem 38.  If 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
, then the map 
	
		
			
				𝑓
				∶
				𝐺
				→
				𝐺
			

			

				𝐴
			

		
	
 given by 
	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝐴
			

			

				𝑥
			

		
	
 is an 
	
		
			

				𝑁
			

		
	
-homomorphism with kernel 
	
		
			
				𝑓
				=
				𝐴
			

			
				0
				.
				5
			

		
	
 and so 
	
		
			
				𝐺
				/
				𝐴
			

			
				0
				.
				5
			

		
	
 is isomorphic to 
	
		
			

				𝐺
			

			

				𝐴
			

		
	
.
Proof. It is clear that 
	
		
			

				𝑓
			

		
	
 is an onto 
	
		
			

				𝑁
			

		
	
-homomorphism from 
	
		
			

				𝐺
			

		
	
 to 
	
		
			

				𝐺
			

			

				𝐴
			

		
	
 with kernel 
	
		
			
				𝑓
				=
				{
				𝑥
				∈
				𝐺
				∣
				𝑓
				(
				𝑥
				)
				=
				𝑓
				(
				0
				)
				}
				=
				{
				𝑥
				∈
				𝐺
				∣
				𝐴
			

			

				𝑥
			

			
				=
				𝐴
			

			

				0
			

			
				}
				=
				𝐴
			

			
				0
				.
				5
			

		
	
.
Corollary 39.  Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
, and let 
	
		
			
				
			
			

				𝐵
			

		
	
 be an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

			

				𝐴
			

		
	
. Then, 
	
		
			
				𝐵
				∶
				𝐺
				→
				[
				0
				,
				1
				]
			

		
	
 defined by 
	
		
			
				𝐵
				(
				𝑥
				)
				=
			

			
				
			
			
				𝐵
				(
				𝐴
			

			

				𝑥
			

			

				)
			

		
	
 is an 
	
		
			
				(
				𝜖
				,
				𝜖
				∨
				𝑞
				)
			

		
	
-fuzzy ideal of 
	
		
			

				𝐺
			

		
	
 containing 
	
		
			

				𝐴
			

		
	
.
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