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Abstract. 
We describe the design of a system consisting of several state-of-the-art real-time audio and video processing components enabling multimodal stream manipulation (e.g., automatic online editing for multiparty videoconferencing applications) in open, unconstrained environments. The underlying algorithms are designed to allow multiple people to enter, interact, and leave the observable scene with no constraints. They comprise continuous localisation of audio objects and its application for spatial audio object coding, detection, and tracking of faces, estimation of head poses and visual focus of attention, detection and localisation of verbal and paralinguistic events, and the association and fusion of these different events. Combined all together, they represent multimodal streams with audio objects and semantic video objects and provide semantic information for stream manipulation systems (like a virtual director). Various experiments have been performed to evaluate the performance of the system. The obtained results demonstrate the effectiveness of the proposed design, the various algorithms, and the benefit of fusing different modalities in this scenario.


1. Introduction
Together Anywhere, Together Anytime (THETA2) project aims at understanding how technology can help to nurture family-to-family relationships to overcome distance and time barriers. This is something the current technology does not address well. Modern media and communications are designed for individuals, as phones, computers, and electronic devices tend to be user centric and provide individual experiences.
Technological goal of TA2 is to build a system enabling natural remote interaction by exploiting sets of individual state-of-the-art “low-level-processing” audio-visual algorithms combined on a higher level. This paper focuses on the description and evaluation of these algorithms and their combination to be eventually used in conjunction with higher-level stream manipulation and interpretation systems, for example, an orchestrated videoconferencing system [1] that automatically selects relevant portions of the data (i.e., using a so-called virtual director). The aim of the proposed system is to separate semantic objects in the low-level signals (like voices, faces) to be able to determine their number and location, and, finally, determine, for instance, who speaks and when. The underlying algorithms comprise continuous localisation of audio objects and its application for spatial audio object coding [2], detection, and tracking of faces, estimation of head poses and visual focus of attention, detection and localisation of verbal and paralinguistic events, and the association and fusion of these different events, which are performed on a per room basis. To quantitatively evaluate the individual algorithms as well as the whole real-time/low delay system, experiments have been carried out on two datasets containing high-definition audio and video data recorded in an unconstrained videoconferencing-like environment.
1.1. Related Work
There is a comprehensive literature on algorithms for multiple face detection and tracking, speaker localisation and diarisation, multimodal fusion techniques, and tracking systems. Most of these existing systems are designed for rather constrained environments, like meeting rooms [3], can only work offline (on prerecorded data), or they use a different technical setup (e.g., collocated sensors).
Most existing work focuses predominantly on a single modality (audio or video). For multiple face tracking, many approaches have been presented in the literature and they mainly deal with improving the overall tracking performance by proposing new features or new multicue fusion mechanisms, and results are demonstrated mostly on short sequences or on videos containing only two persons. Particle filters have proven to be an effective and efficient approach for visual object tracking. For instance, one such algorithm for multitarget tracking has been proposed by Khan et al. [4] and is based on reversible-jump Markov chain Monte Carlo (RJ-MCMC) sampling. But to be effective, it requires appropriate global scene likelihood models involving a fixed number of observations (independent from the number of objects) and these are difficult to build in multiface tracking applications.
On the audio analysis side, there are diarisation systems that identify the speech segments corresponding to each speaker (“who spoke when?”) and estimate the number of speakers. Conventional speaker diarisation systems [5] use an ergodic Hidden Markov Model (HMM), where the speakers are represented with different HMM states. Good results were achieved by the systems using combination of mel-frequency cepstral coefficients (MFCCs) and time difference of arrival (TDOA) features with arrays composed of a different number of microphones, while the performance of the TDOA features applied separately was poor [6]. TDOA features can be used without prior knowledge of geometry of the microphone array. If the geometry of the microphone array is known in advance, TDOA features can be replaced by the speaker locations, which can be used alone [7], or as complementary features to conventional MFCCs. Typically, speaker localisation can either be done in the audio modality, video modality, or both. The first one implies using a microphone array, while the second one is based on motion detection or person detection. Multimodal localisation allows results to be less affected by noise and reverberation in the audio modality, although it increases significantly the computational complexity.
Finally, the fusion of audio and video cues can be performed at different levels, based on the type of input information available. It can be done at sensor level, feature level, score level, rank level, or decision level. The first two levels can be considered as preclassification, while the others can be considered as postclassification [8]. The feature-level multimodal approach is usually represented by transforming the data in such a way that a correlation between the audio and a specific location in the video is found [9]. In our work, the score-level fusion is used and is based on a technique relying on information derived from spatially separated sensors [10]. Other score-level multimodal techniques rely on the estimation of the mutual information between the average acoustic energy and the pixel value [11], probability densities estimation [12], or a trained joint probability density function [13].
1.2. Challenges and Motivation
The examined TA2 scenario presents several scientific and implementation-related challenges: audio-visual streams recorded at high resolution (i.e., audio channels captured using a microphone array sampled at 48 kHz allowing to represent any kind of acoustic event without perceptual quality loss; video streaming captured with a high-definition camera) and semantic information need to be computed in real time with low delay from spatially separated sensors within a room (as opposed to other systems, such as [14], relying on collocated sensors). Furthermore, the considered environment is open and rather unconstrained. Video processing algorithms hence must take into account a varying number of persons whose positions are not pre-defined in the room. In audio, any type of generated acoustic event (e.g., overlapping speech, music, distortions due to the room reverberation captured by distant microphones, or background noise) can appear. This poses real challenges for the audio processing components, especially together with an open dictionary as a natural choice towards the automatic recognition of unconstrained speech. Finally, the association and fusion of extracted acoustic and visual events is not a trivial task, because at each time instants there might be some events that are more reliable than others. The combined model has to be able to estimate a confidence of the different modalities, weight them accordingly, and reliably associate them to the detected persons.
The proposed audio-visual system builds on existing state-of-the-art individual audio and video preprocessing blocks which have been developed over a long time using the author’s know-how at their institutes. Nevertheless, this paper describes an integration and extension of these individual blocks to eventually perform real-time analysis of complex audio-visual signals/events recorded within high resolution and with distributed sensors. To our knowledge, such a system does exist neither in a commercial sphere nor in research domain.
In the following, we will first briefly present the overall architecture of the system (Section 2). In Section 3, we will describe the intelligent audio capturing. Section 4 outlines the individual algorithms used for semantic information extraction. Section 5 describes evaluation experiments performed on individual blocks as well as on the whole system. We will also briefly analyse the computational costs of the whole system. Section 6 summarises the achieved results and concludes the paper.
2. Architecture
The proposed system processes the audio and video inputs from spatially separated sensors (see Figure 1), located within a room. By placing the sensors at their individually optimal locations (video input is placed further for better scene coverage, while audio inputs are placed closer to participants to allow better intelligibility and localisation), we clearly obtain a better performance of audio object separation and low-level semantic information.



Figure 1: TA2 setup, view from top [36]. The audio and video sensors are spatially separated within a room: the microphone array is located above the table next to participants, while the camera is collocated with the wall screen for teleconferencing.


The system architecture can be grouped into four parts (see Figure 2). The main components of the system are an audio communication engine (ACE, Section 3), a long-term multiple face tracking and person identification (parts of video cue detection engine (VCDE), Section 4.1), head pose and visual focus of attention estimation (parts of VCDE, Section 4.2), visual speaker and speech detection from head motion (part of VCDE, Section 4.3), audio spatial localisation (part of audio cue detection engine (ACDE), Section 4.4), voice activity detection and keyword spotting (parts of ACDE, Section 4.5), and multimodal calibration, association, and fusion (unified cue detection engine (UCDE), Section 4.6). The output of the system consists of audio objects, semantic video objects, and semantic events and states.



Figure 2: Block diagram of the intelligent audio capturing and semantic information extraction modules. The components are grouped into four parts: audio communication engine (ACE), audio cue detection engine (ACDE), video cue detection engine (VCDE), and unified cue detection engine (UCDE).


3. Intelligent Audio Capture
The intelligent audio capture aims at identifying and extracting the sound sources from microphone recordings and transforming them into individual audio objects. The object-based representation of a recorded sound scene offers great flexibility in terms of sound enhancement, transmission, and reproduction. The main parts of the intelligent audio capturing are depicted in Figure 2 (ACE block) and discussed in detail in the following sections. The system is based on a parametric representation of the recorded spatial sound using the directional audio coding (DirAC) framework [15]. The parametric representation enables an efficient and robust localisation and extraction of the sound sources in a room, which can then be transformed into an object based representation such as MPEG Spatial Audio Object Coding (SAOC) [2].
3.1. Parametric Spatial Sound Representation
The intelligent audio capturing is based on a sound field model which is especially suitable for speech recordings in a reverberant environment. Let us consider a sound field in the short-time frequency domain where the sound pressure 
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The recorded spatial sound is described via a parametric representation in terms of 
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							The diffuseness becomes zero when only the direct sound is present, one when the sound field is purely diffuse and 0.5 when both fields possess equal power. When the diffuseness is known, the power of the direct sound can be determined from the total sound power using (2), (3), and (4), that is, 
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Clearly, the sound field model in (1) requires that only one sound source is active per time-frequency bin 
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3.2. Continuous Localisation System
The ACE block scheme in Figure 2 depicts the main parts of the sound source localisation system which are explained more in detail in the following sections. Inputs to the system are the signals of a microphone array being transformed into the time-frequency domain using a filter bank. More precisely, we consider a 1024-point short-time fourier transform (STFT) with 50% overlap at a sampling frequency of 
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Figure 3(a) depicts an exemplary LT-SPD for the case that a sound source (speech source) is active from approximately −80° in a reverberant environment. The higher values in the LT-SPD result from DOA estimates 
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(a)



(b)
Figure 3: Exemplary LT-SPD when a speaker is active at −80°. (a) Unprocessed LT-SPD. (b) LT-SPD after removing the diffuse sound power. 
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(b)
Figure 4: Modified k-means clustering algorithm. (a) Initial step with 
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. The colored shades represent the areas in which the local COGs are determined. (b) Result after the first assignment step.


3.3. Spatial Audio Object Coding
The basic principle behind spatial audio object coding (SAOC) [2] is to represent complex audio scenes by a number of discrete audio object signals. Depending on the application, these audio objects typically comprise single instrumental or vocal tracks (for interactive remixing) or individual speech signals representing the participants in a teleconference. At the receiving side of the SAOC system, the user is allowed to freely mix the objects according to his/her liking in an interactive way; that is, the level and the position of each audio object may be controlled by the user. Supported playback formats include mono-, stereo, and multi-channel (e.g., ITU 5.1) configurations. In order to save bandwidth, the audio objects are transmitted by means of only one or two downmix audio signals accompanied by parametric side information.
Figure 5 shows the basic structure of the SAOC encoder, the decoder, and the interactive rendering unit. The encoder accepts the individual object signals as input, produces a backward compatible downmix signal, and is responsible for extracting perceptually motivated signal parameters such as object level difference (OLD) and interobject cross Coherence (IOC) in a time/frequency representation [2]. The audio object signals are combined into a mono- or stereo- downmix signal. The parameters describing the downmix process are denoted as downmix gains and transmitted as part of the SAOC side information along with other information such as OLDs and IOCs. This processing results in a compact description of a complex audio scene consisting of a multitude of audio objects, whereas the data rate needed for representing several individual audio objects is significantly reduced down to that required for only one or two downmix channels.



Figure 5: Basic structure of SAOC encoding and decoding. The encoder takes separated audio object signals as input; the decoder allows for interactive rendering of the loudspeaker signals.


If the objects consist of multiple talkers in the same room, a monodownmix signal 
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 can simply be recorded by an omnidirectional microphone. However, each talker’s signal has to be separated from the acoustic mixture in order to assign it to an object. This task of acoustic source separation can be efficiently performed in the parameter domain of DirAC, for example, by assigning an instance for directional filtering [19] to each of the 
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Directional filtering is based on a short-time spectral attenuation technique and is performed in the spectral domain by a zero-phase gain function, which depends on the estimated instantaneous DOA 
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. A so-called directional pattern describes the conversion of the time- and frequency-dependent DOA into a transfer function for each individual time and frequency tile. The directional pattern can be chosen according to the desired application. Directional transfer values close to or equal to one are set for the desired, that is, a source’s direction, whereas low transfer values are used for any other direction. In order to separate several talkers from a mixture of sources, several directional filters can be run in parallel. If a given sound scene has to be divided into 
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We assume that the original source signals are extracted without loss of energy; that is, we assume that all of the aforementioned downmix gains are one. If there is a diffuse sound, which is not assigned to a localised source and, therefore, not to an audio object, then these sources are represented by a so-called residual object, which is represented by individual OLDs and IOCs.
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Figure 6: Signal processing architecture with DirAC encoding, source localisation, multiobject directional filtering and encoding of the directional filtering, gain functions into SAOC objects. One of the omnidirectional microphone signals is assigned as the downmix signal of SAOC.


4. Semantic Information Extraction
 The semantic information is necessary for higher-level stream manipulation and automatic editing, for example, to cut a close-up shot of the person who is currently speaking or to focus on a group of two persons having a dialogue. The corresponding semantic information extraction is performed by several components.
The aim of the face tracking component is to determine at each point in time how many persons are present in the visual scene and where they are in the image. In regard to this higher-level task, the given type of environment, and the required robustness and efficiency of the algorithm, we propose here to use a method to detect and track the faces of persons rather than their full bodies.
The scenario of interest raises a number of challenges for online multiple face tracking:(1)faces may not be detected for longer periods of time when persons focus on the table or touch screen in front of them (e.g., when playing a distributed game);(2)when more than two persons are present, they tend to occlude each other more often, leading thus to more frequent track interruptions;(3)the lighting conditions and scene dynamics are less controlled in a living room environment (than, e.g., in a meeting room);(4)the assignment of consistent Ids to persons is important for further reasoning and automatic stream editing;(5)the processing has to be in real time and with a low delay.
The proposed algorithm is an extension of [21] and copes with the previously  mentioned challenges in various ways, which will be demonstrated experimentally. Our contributions in this regard are the following: (1)a state-of-the-art online multiple face tracker in terms of precision and recall over time,(2)a probabilistic framework for track creation and removal that takes into account long-term observations to cope with false positive and false negative detections [21],(3)a robust and efficient person reidentification method.In the following, we will briefly describe the main components of the face tracking system.
4.1. Long-Term Multiple Face Tracking and Person Identification
The proposed tracking algorithm relies on a face detector [22] with models for frontal and profile views. For efficiency reasons, the detector is applied only every 10 frames (i.e., around once per second at a processing speed of around 10 fps). Also, to improve execution speed and reduce false detections, the detector is only scanning image regions with skin-like colours using the discrete model from [23] as a prior and adapting it over time by using the face bounding boxes from the tracker output.
As face detections are intermittent and sometimes rather rare, a tracking algorithm is required. Its goal is to associate detections with tracked objects, to associate tracked objects with persons (person IDs), and to estimate the number and position of visible faces at each point in time. We tackle the tracking problem using a recursive Bayesian framework, where, at each time 
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 is a normalisation constant. This estimation is implemented using a particle filter with a Markov chain Monte Carlo (MCMC) sampling scheme [4]. The essential components of the particle filter are described in the following (for more details about the MCMC implementation refer to [21]).
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 of visible faces are described by a first-order autoregressive model for the translation components and a first-order model with steady-state for the scale and eccentricity parameters.
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 Observation Likelihood. As a tradeoff between robustness and computational complexity, we employ relatively simple but effective observation likelihood for tracking based on colour distributions. The observation likelihood 
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 Target Creation and Removal. Target candidates are potentially added and removed at each tracking iteration. Traditionally, face detectors have been used to initialise new, targets and targets are removed when the respective likelihood drops. However, face detectors can produce false detections, and, in our scenario, faces may remain undetected for a longer time due to nonfrontal head poses over extended periods. Therefore, we use long-term observations and a probabilistic framework [21] including two Hidden Markov Models (HMM), one helping to decide about track creation and one to decide about removal.
Target Creation. The first HMM estimates the probability of a hidden, binary variable 
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Target Removal. Decisions on track removal are performed in a similar way, using a second type of HMM. Here, instead of a pixelwise estimation as for creation, the probability of a hidden binary variable 
	
		
			

				𝑘
			

			
				𝑖
				,
				𝑡
			

		
	
 is computed for each tracked target, where 
	
		
			

				𝑘
			

			
				𝑖
				,
				𝑡
			

			
				=
				1
			

		
	
 signifies that tracking for target 
	
		
			

				𝑖
			

		
	
 at time 
	
		
			

				𝑡
			

		
	
 is correct, and 
	
		
			

				𝑘
			

			
				𝑖
				,
				𝑡
			

			
				=
				0
			

		
	
 means that a tracking failure occurred. The decision about removing a target is based on the ratio of posterior probabilities 
	
		
			
				𝑝
				(
				𝑘
			

			
				𝑖
				,
				𝑡
			

			
				=
				𝐾
				∣
				𝑂
			

			
				𝑘
				1
				∶
				𝑡
			

			

				)
			

		
	
, where 
	
		
			
				𝐾
				=
				{
				0
				,
				1
				}
			

		
	
, in analogy to (18), and these posterior probabilities are estimated recursively as in (17). Here, the transition matrix is defined as 
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 and for each target; these observations are the face detections associated with the target, the history of previous face positions, the likelihood of the mean target state, the variance of the target state’s position, measures that indicate jumps and drops of the state distribution variance, and a measure that indicates abrupt likelihood drops. The likelihood functions 
	
		
			
				𝑝
				(
				𝑜
			

			
				𝑘
				𝑡
				,
				𝑖
			

			
				∣
				𝑘
			

			

				𝑡
			

			

				)
			

		
	
 are defined and trained in the same way as for the observations 
	
		
			

				𝑜
			

			
				𝑐
				𝑡
				,
				𝑖
			

		
	
 for target creation.

	
		
			
				(
				5
				)
			

		
	
 Person Reidentification. Whenever the track of a person is lost and reinitialised later or when a person leaves the scene and then comes back, we would like to assign the same identifier (ID) to that person. This is not done inside the tracking algorithm but on a higher level, taking into account longer-term visual appearance observations. More specifically, the person model 
	
		
			

				𝑃
			

			
				𝑗
				,
				𝑡
			

		
	
 of a person 
	
		
			

				𝑗
			

		
	
 at time 
	
		
			

				𝑡
			

		
	
 is composed of two colour histograms: a face colour histogram 
	
		
			

				ℎ
			

			
				𝑓
				𝑗
				,
				𝑡
			

		
	
 and a shirt colour histogram 
	
		
			

				ℎ
			

			
				𝑠
				𝑗
				,
				𝑡
			

		
	
, as well as a long-term history of previous face positions in the image. The structure of the histogram models is the same as the one used for the observation likelihood in the tracking algorithm as described in Section 4.1, that is, two different HSV quantisation levels and decoupled colour and grey-scale bins.
If a target is added to the tracker and there is no existing person model that is unassociated, then a new person model is initialised immediately and associated to the target. Otherwise, the face and shirt colour histograms 
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. This distribution is updated linearly (and normalised) at each time step and for each image position according to the history of tracked target positions. It also contains a small uniform part to allow for reidentification or lost faces that changed their position.
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4.2. Head Pose Estimation and Visual Focus of Attention
Based on the output of the face tracker, the head pose (i.e., rotation in 3 dimensions) of an individual is estimated. The purpose of computing head pose is the estimation of a person’s visual focus of attention, which within the context of this work is constrained to being one of  the videoconferencing screen, the touch sensitive table, any other person in the room, or “unknown.”
Head pose is computed using visual features derived from the 2-dimensional image of a tracked person’s head. The features used here are gradient histograms and colour segmentation histograms. The colour segmentation features are estimated from an adaptive Gaussian skin colour model which is used to classify each pixel around the head region as either skin or background, as in [24].
To compensate for the variability in the output of the face tracker, the 2-dimensional face location is reestimated by the head pose tracker. This serves to normalise the bounding box around the face as well as possible while simultaneously using the visual features mentioned previously  to estimate pose. This joint estimation of head location and pose improves the overall pose accuracy.
Given the estimated belief (probability distribution) over head pose, the visual focus of attention target is estimated. The range of angles that correspond to each target is modelled using a Gaussian likelihood. The parameters of this Gaussian function (especially the means) are derived from the known spatial locations of the targets within the room. The posterior belief over each target is computed with Bayes’ rule using the method of [25].
4.3. Visual Speech and Speaker Detection from Head Motion
Another informative cue is head motion, which will be used in this work to improve the performance of voice activity (i.e., speech) detection. Many existing works proposed to use visual features for speaker detection in videos or other audio-related tasks (e.g., [26–28]). Most of these works attempt to detect people’s lip motion. Naturally, this is indeed likely to be an informative visual cue for determining if a person is speaking or not. However, there are several drawbacks with this approach.(i)Lip motion estimation requires a relatively precise localisation of the mouth region. This is a challenging task when lighting conditions are not controlled, when head pose varies largely, when the (face) image resolution is low, and under motion blur. In some scenarios, the mouth region might not even be visible because of an occlusion (e.g., by the hands) or extreme head pose (e.g., looking down).(ii)The robust and precise detection of lips in an image is computationally complex in a multiperson, real-time scenario.
To overcome these drawbacks, we make use of the fact that when people speak, they move or behave in a different way. Generally speaking, people who speak move more. Therefore, a relatively simple and efficient visual cue based on the amount of head motion can be used. Here, we leverage the fact that face tracking (described in Section 4.1) provides face regions of the visible persons. From these regions, it is straightforward to efficiently and reliably extract the overall head motion. A more complex model based on full body movements or hand gestures could be considered in the future. However, this could possibly increase the delay for voice activity detection and induce further challenges; for example, in the given scenario, people also move their hands while manipulating the touch screen.
In order to incorporate visual observations over a more extended period of time, that is, not frame-by-frame, we propose a simple Hidden Markov Model (HMM) that estimates the probability of a hidden, binary variable 
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Figure 7 illustrates this model. We deliberately modelled 
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 for each person independently because we do not want to impose any constraints regarding the interaction of persons at this stage but rather at the audio-visual processing level. The observation 
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Figure 7: The HMM used for each person to estimate voice activity from visual cues. The hidden, binary variable 
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 indicates if the person is speaking or not. The probability of  
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Figure 8: Sigmoid functions defining the observation likelihood of head motion for 
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The observation likelihood 
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 are determined from separate training data (illustrated in Figure 8). Finally, the posterior probabilities 
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 constitute the visual part of the features that is used in multimodal classification experiments. Note that, for simplicity and general applicability, we currently do not train this model for specific persons, and we do not adapt it over time. This could improve the overall results but might also lead to overfitting and drift.
In addition to the speech detection from head motion, the visual-based speaker detection is obtained from the detected speech segments by assigning the relevant person IDs to them.
4.4. Discrete Direction of Arrival Estimation
The instantaneous spatial fingerprints are defined as bit patterns [7] of overlapping sector-based acoustic activity measures, where each sector is represented by one bit of information. The corresponding instances in time refer to processing frames of 32–128 ms length.
Each sector is defined as a 36° wide and 60° high (from the horizontal plane) connected volume of physical space around the microphone array. The sectors are taken in the horizontal plane in steps of 6°. This results in a total of 60 sectors. Wider sectors in smaller steps allow avoiding jittering of acoustic directions and smooth acoustic tracking of dynamic sources.
The sector activity measure is defined as integrated within the sector point-based steered response power with phAse transform weighting (SRP-PHAT). SRP-PHAT [29] in turn can be seen as the sum of generalized cross correlations with phase transform weighting (GCC-PHAT  [30]) over all microphone pairs. Further, a sparsity assumption is applied for each frequency bin via minimisation of phase error and the sector activity measures are normalised by the volume of the sector.
Each sector activity measure is thresholded to keep a binary decision, which gives 60 bits of data per each instance in time for a 360° spatial representation. This information is stored as one 64 bit integer value, called the spatial fingerprint.
Finally, this spatial fingerprint is multiplied by the predefined “zone of interest” mask. This multiplication results in directional filtering of the predefined areas of interest, elimination of unnecessary postcalculations, and outlier removal. It can be very helpful in the case of interconnected environments, where audio-visual channels are without an echo suppression mechanism.
 The spatiotemporal fingerprint representation is defined as an array of temporally connected spatial fingerprints taken in steps of 16–64 ms. This results in a 2D bit pattern (Figure 9) with a total of 62.5 columns per second and the low bit rate of 500 bytes/second (62.5 long integer values of 64 bits each). The spatiotemporal fingerprints are defined as subsets of the spatiotemporal fingerprint representation (the length depends on the application and can vary from 32 ms to several seconds).



Figure 9: Spatiotemporal fingerprint processing. Each column of bits (zeros and ones) represents a spatial fingerprint, a union of several consequent columns represents a spatiotemporal fingerprint. Ones correspond to voice activity; zeros correspond to silence. Horizontal bit position defines instant in time. Vertical bit position defines azimuth with respect to  microphone array.


The intersection fingerprint is defined as an intersection in the time domain of all elements within a spatiotemporal fingerprint. Similarly, the union fingerprint is defined as a union in the time domain of all elements within a spatiotemporal fingerprint. The resulting intersection and union fingerprints are normalised at each time instance by keeping single middle “one” out of a group of  “ones” per active source.
The intersection fingerprints are used for continuous tracking of acoustic sources by prolonging acoustic trajectories within voice activity segments. The corresponding spatial locations of the active sources are taken from bit positions inside the confirmed intersection fingerprint.
4.5. Voice Activity Detection and Keyword Spotting
Voice activity detection (VAD) covers both verbal and paralinguistic activities and is implemented as a gate. Downstream from the gate, the ASR is unaware that VAD is happening. It just receives segmented data in the same manner as if it was read from a sequence of presegmented utterances. Upstream from the gate, however, the data is actually one continuous stream. The gate segments the input stream in accordance to directional and voice activity/silence information. This can be achieved with an algorithm based on silence models  [31] or trained multilayer perceptrons (MLP) using traditional ASR features. However, the current implementation uses adaptively thresholded energy coefficients and directions of arrival to p