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Abstract. 
Temperature and velocity fluctuations measured in Van Mijen Fjord in Svalbard and interpreted as the fluctuations induced by internal waves revealed the existence of short-period internal waves with an amplitude of approximately 1 m and a period of approximately 5–10 min that correlate with the ice cover fluctuations of the same period with an amplitude of a few millimeters.


1. Introduction
 We analyze the measurements of temperature, velocity, and pressure at the bottom to study the influence of internal waves on the ice cover. The “rigid lid” approximation is almost always used in the theoretical study of internal waves under the ice cover or even without it. This approximation filters off the surface mode and adequately describes the properties of both the internal waves in ice-free conditions and long internal waves under the ice cover [1, 2]. In the “rigid lid” approximation, the vertical velocity at the surface is assumed to be equal to zero; therefore, due to the kinematic condition, the internal waves cannot cause any vertical displacements of the ice cover. Such conclusion is, however, inconsistent with the experimental data obtained for relatively deep parts of the Arctic Ocean [3–6] and also contradicts the theoretical results [7, 8], according to which internal waves may be reflected in the fluctuations of the ice cover at frequencies comparable with the Brunt-Väisälä frequency. Scientists from the Shirshov Institute of Oceanology (Russian Academy of Sciences) and The University Centre in Svalbard (UNIS) carried out marine studies in the shallow Van Mijen Fjord in Svalbard to perform experimental tests of the theoretical conclusion concerning the possible influence of short internal waves on the fluctuations of the compact ice cover.
2. Brief Theory of Internal Waves under an  Ice Cover
In the theoretical approach, the ice cover of the ocean surface can be considered as a thin elastic plate floating on the sea surface. The theoretical description of the ice cover fluctuations should take into account the elastic properties of the ice plate, the compression forces, and the ice inertia. If the processes inside the ice cover are ignored the main equations and boundary conditions of the ice cover should be similar to the equations and conditions in the situation when the sea surface is free of ice. 
The only exception is the dynamic condition that may be expressed under the constant ice thickness h in the following form [7–11]:
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Here, 
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 is the pressure, 
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 the ice surface deflection, 
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 the acceleration due to gravity, 
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 the seawater density at the boundary with the ice, 
	
		
			

				𝑡
			

		
	
 the time, 
	
		
			

				Δ
			

		
	
 the horizontal Laplace operator, and
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐵
				=
				𝐸
				ℎ
			

			

				3
			

			
				
			
			
				
				1
				2
				1
				−
				𝑠
			

			

				2
			

			
				
				𝜌
			

			

				0
			

			
				,
				𝑄
				=
				𝐾
				ℎ
			

			
				
			
			

				𝜌
			

			

				0
			

			
				𝜌
				,
				𝑀
				=
			

			

				𝐼
			

			

				ℎ
			

			
				
			
			

				𝜌
			

			

				0
			

			

				.
			

		
	

Here, 
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 is the cylindrical rigidity of the ice, the 
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 Young’s modulus, 
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 the Poisson’s ratio, K the ice compression coefficient, 
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 const the ice density, and 
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 const the ice thickness.
In (1), the summands proportional to 
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, and 
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 result from the respective elastic ice properties, the inertial forces, and the compression forces, which influence the ice cover. The characteristic values (2) for the ice are as follows [12, 13]: 
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 observed during the experiment, we obtain the following estimates for the coefficients: 
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We designate the characteristic horizontal scale of the wave motions as 
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. Comparing the summand in (1), which describes the contribution of the pressure determined by the elastic properties of the ice cover (summand proportional to the cylindrical ice rigidity B) into 
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We assume that the properties of the waves under the elastic plate characterized by the lengths 
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, are close to these parameters of the waves in the liquid with a free surface, and the ice cover insignificantly influences the wave motions in the sea. At the same time, for short waves with lengths 
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Let us compare the gravity potential 
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If the ice thickness is
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Since inequality 
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Usually we can neglect the role of the inertia forces in the case of compact ice cover. However, we note that due to (1) an increase in the wavelength is accompanied by an unlimited growth of the pressure at the lower ice boundary. In order to exclude its unlimited growth, the ice deflection should tend to zero with the simultaneous wavelength reduction. We also note that all the estimates were obtained under the assumption that the motions in the horizontal plane are uniform. Near the lateral boundaries and in the case of sharp bottom topography gradients, these estimates should be revised.
The previous qualitative results are valid for the waves of any type under compact ice cover, while the quantitative data are now obtained for the flexure-gravity waves [7], edge waves near the straight coast above the sloping bottom [11], waves spreading along the ice field edge [14, 15], and internal waves [7, 8]. We emphasize three issues, which are important for the description of internal waves when the water stratification in the basin allows the Brunt-Väisälä frequency 
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(3)One can show for internal waves propagating in the lateral direction that the amplitude of the ice deflection 
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, the following relationship exists between the ice deflection and the pressure at the bottom: 
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