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By using a limited-area model (LAM) in combination with the scale-selective data assimilation (SSDA) approach, wind energy
resources in the contiguousUnited States (CONUS)were downscaled from IPCCCCSM3 globalmodel projections for both current
and future climate conditions. An assessment of climate change impacts on wind energy resources in the CONUS region was then
conducted. Based on the downscaling results, when projecting into future climate under IPCC’s A1B scenario, the average annual
wind speed experiences an overall shift across the CONUS region. From the current climate to the 2040s, the average annual wind
speed is expected to increase from 0.1 to 0.2m s−1 over the Great Plains, Northern Great Lakes Region, and Southwestern United
States located southwest of the RockyMountains. When projecting into the 2090s from current climate, there is an overall increase
in the Great Plains Region and Southwestern United States located southwest of the Rockies with a mean wind speed increase
between 0 and 0.1m s−1, while, the Northern Great Lakes Region experiences an even greater increase from current climate to
2090s than over the first few decades with an increase of mean wind speed from 0.1 to 0.4m s−1.

1. Introduction

The specific purpose of this study is to investigate the
impacts of climate change on wind energy resources over
the continental United States (CONUS). Climate change is
constantly altering wind patterns across the globe. Wind is
an extremely valuable renewable energy source that needs
to receive significantly greater attention as earth’s climate
continues to change.The focus of this study will be to project
where the best possible wind energy sources will be located
throughout the CONUS, in order to get the maximum
possible usage of wind energy in the future.

Under current climate, according to the National Renew-
able Energy Laboratory of the US Department of Energy,
the superb or best places/location in the CONUS region
for wind resource potential is found just offshore along the
west coast by Northern California and Southern Oregon.
Also, the midwestern states, Montana, Wyoming, Colorado,

and New Mexico, all contain superb wind energy resource
potential.The outstanding or second-to-best locations across
the CONUS region for wind resource potential are found
along the east coast extending fromMaine to South Carolina,
within the Great Lakes Region, and along areas of the west
coast just offshore Washington State, Northern Oregon, and
mid- and Southern California. The third best locations to
build wind turbines would be along the east coast extending
northward from Georgia to Maine, the southeastern tip of
Texas, the Great Lakes Region, and just offshore Southern
California and Washington State. And parts of the Midwest
would also be considered a third best location for wind
resources. Based on observations from surface stations and
soundings in the US for year 2000, Archer and Jacobson [1, 2]
analyzed the spatial distribution of the US wind classes at a
height of 80meters.Their results show that one of the greatest
promising continental locations for wind power was found to
be located in what is referred to as the “central belt” of the US.
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The central belt includes the states of Oklahoma, Nebraska,
Kansas, South Dakota, and North Dakota. The southern and
eastern coasts also provide goodpotential, especially offshore.
The average wind power class of the Great Lakes Region is 6,
which is a wind potential shared between both Canada and
the US. Also, according to Li et al. [3], the Great Lakes Region
is currently an excellent candidate for the development of
wind energy since there are large unobstructed and open
areas available for construction.

Although the assessment of wind energy resource distri-
bution has already been intensely conducted under current
climate, it is important to conduct further research on the
variability of wind resources in climate that is continuously
changing. In addition, it is imperative to understand how
wind resources will change and evolve in the future climate
setting, since wind energy is a massively growing industry
with constant pressure to meet state and federal mandates for
increased use of renewable energy supplies [4]. It needs to be
noted that although a particular location may presently be a
good candidate for a wind farm, it may not be in the future
due to climate change. Therefore, it is necessary to forecast
where the best wind resources will be not only in the present
climate but also in the future climate, in order to obtain the
best possible future usage. Finally, it is vital to understand
how climate change may affect wind energy sources across
the US under future climate scenarios.

The Intergovernmental Panel for Climate Change (IPCC)
Fourth Assessment Report (AR4) leaves no doubt that the
increase in greenhouse gas emissions will lead to signifi-
cant environmental changes in all regions of the globe [5].
However, the degree of uncertainty of the projected climate
change increases from global scale to regional scale. Most
of the AOGCMs do not have high enough resolution to see
the regional and small-scale topographic features. To project
the large-scale climate changes onto regional scales, several
climate change downscaling techniques, including statistical
(or empirical) downscaling and dynamical downscaling, have
been developed in recent years [6–8].

Statistical downscaling methods exploit existing statisti-
cal relationships between large-scale climate processes and
their regional manifestations. These relationships are typi-
cally derived frompresent-day observations and it is assumed
that these relationships remain stationary in time. The same
relationships that are derived from present-day observations
are assumed to be valid under greenhouse warming condi-
tions. Dynamical downscaling uses high resolution regional
models which are forced by global models with coarse
resolution under both current climate and projected future
climate scenarios.Thedynamicalmodel combines the coarse-
scale boundary forcing with internal dynamics in a physically
consistent way. In dynamical downscaling, regional models
are nested in global models by specifying lateral boundary
conditions through a traditional “sponge zone” technique
using a relaxation procedure [9]. However, this conventional
nesting-down method inevitably distorts the information
transmitted from the global model to the regional model.
Large-scale features are more accurately simulated in the
global model, while small-scale ones are better captured in
high resolution regional models.

Several alternate approaches in addition to the conven-
tional nesting technique were developed in downscaling
regional modeling studies. The “perturbation method” was
used in nesting the NCEP regional spectral model within
a global spectral model, through which the perturbation
obtained from the regional model is added to the large-scale
base state from the global model to compose the full field in
the regional model (e.g., [10]). A similar “spectral nudging”
approach [11, 12] was utilized to provide large-scale forcing
in the regional model domain interior to ensure that the
large-scale circulation in the regional models was consistent
with that from the global analyses or forecasts. More recently,
Peng et al. [13] introduced a scale-selective data assimilation
(SSDA) approach in downscaling from global models to
regional models by driving the regional model from the
regional model domain interior as well as by specifying the
lateral and lower boundary conditions. The SSDA dynamical
downscaling approach has been demonstrated to improve
seasonal climate hindcasting for the North Atlantic Basin
and Eastern United States [13] as well as to improve tropical
cyclone simulation and forecasting [14, 15].

The objective of this study is to dynamically downscale
the impacts of climate change on wind energy resources over
theCONUSby using the SSDAapproach.Wind energy under
both current and future climate scenarios will be downscaled
for theCONUS region.Assessment of climate change impacts
on wind energy resources over the CONUS region will then
be conducted. This will help detect the best locations to
place wind turbines under both current and future climate
situations, while utilizing wind energy efficiently under the
circumstance of a continuously changing climate. A detailed
description regarding the SSDA approach, model, data, and
method used in this study is given in Section 2. Wind energy
resource downscaling under current climate is presented
in Section 3. In Section 4, wind energy downscaling results
under future climate scenarios are provided. Also, compar-
isons among wind energy resources under current and future
climate scenarios are conducted to assess climate change
impacts onwind energy resources. Summary and conclusions
are given in Section 5.

2. Model, Data, and Method

The LAM utilized in this study is the Weather Research
and Forecasting (WRF) model [16, 17] version 3.2 with the
Advanced Research WRF (ARW) core. It features a fully
compressible, Eulerian and nonhydrostatic control equation
set. The model uses the Arakawa-C grid and the terrain-
following, hydrostatic-pressure vertical coordinate system.
The time integration scheme is the third-order Runge-
Kutta scheme. And for the spatial discretization there are
second through sixth order advection schemes available in
the model. WRF incorporates various physical processes
including microphysics, cumulus parameterization, plane-
tary boundary layer (PBL), surface layer, land surface, and
longwave and shortwave radiations.

The SSDAapproach developed byPeng et al. [13], Xie et al.
[14], and Liu andXie [15] is employed as the dynamical down-
scaling technique. The SSDA system consists of the WRF
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model, a three-dimensional variational data assimilation
(3DVAR) technique [18] from WRF model data assimilation
(WRFDA) system, and a low-pass filter to separate the large-
and small-scale components for both global and regional
model forecasts. WRF-3DVAR from WRFDA is based on
an incremental variational data assimilation technique which
is used to assimilate the large-scale information from the
global model into the regional model. Discrete fast Fourier
transform (FFT) together with a detrending program dealing
with aperiodic lateral boundary is used to separate large- and
small-scale information for both the global and the regional
models. In Peng et al. [13], the SSDA approach was applied
in a seasonal climate hindcasting for the North Atlantic
basin and Eastern United States, in which comparisons
against global and regional analysis data have shown that the
SSDA approach can benefit from the merits of both global
models in representing large-scale environmental flows and
regionalmodels in describing small-scale characteristics with
high resolution, resulting in improvements in the overall
regional model simulations. Besides, in the applications in
tropical cyclone hindcasting and forecasting [14, 15], the
SSDA approach has also been proved to effectively improve
tropical cyclone track and intensity forecasting. More details
about the SSDA system are referred to by Liu and Xie [15].

The model domain for the LAM used in this study is
centered at (38.0∘N, 98.0∘W), covering the CONUS region.
It contains 163 × 109 grid meshes with a grid spacing
of 36 km in the Lambert conformal map projection. The
LAM has 30 sigma levels in the vertical direction with
the model top at 50 hPa. The integration time step is 120
seconds. The following physics schemes are chosen: the
WSM5 microphysics scheme [19], the Kain-Fritsch cumulus
scheme [20], the Yonsei University (YSU) PBL scheme [21],
the Noah Land Surface Model [22], and the CAM (NCAR
Community Atmosphere Model) longwave and shortwave
radiation schemes [23].

The LAM is driven by the globalmodel results from IPCC
CCSM3 with the lateral boundary conditions being updated
every 6 hours. In addition, large-scale wind components
above the 13th sigma level (about 850 hPa) from the global
model are assimilated into the LAM every 2 days through the
SSDA procedure, directly driving the LAM from the model
domain interior.This practice of only constraining large-scale
fields above the PBL (e.g., [12]) allows the LAM to adjust its
low-level dynamics based on its own regional topography and
land-sea characteristics.

The global model results from the Community Climate
System Model version 3 (CCSM3) under the Intergovern-
mental Panel on Climate Change (IPCC)’s 20th century
(20C3M) and SRESA1B climate scenarios which are used to
drive the LAM. For current climate, the 20C3M experiment
results from the CCSM3 are used to downscale current
climatewith a time period of 1990 to 1999. For two future time
periods (2040 to 2049 and 2090 to 2099), the CCSM3 results
under the A1B scenario are used to drive the LAM.

In addition, the North American Reanalysis (NARR)
data is used as an independent data set when validating the
downscaling of wind energy resources under current climate
conditions. NARR provides various atmospheric analyses

Table 1: Classifying wind energy at 10 meters based on wind speed
(m s−1), wind power density (Wm−2), and overall wind resource
potential.

Wind power
class

Resource
potential

Wind speed
(m s−1)

Wind power
density (Wm−2)

1 Marginal <4.4 <100
2 Marginal 4.4–5.1 100–150
3 Fair 5.1–5.6 150–200
4 Good 5.6–6.0 200–250
5 Excellent 6.0–6.4 250–300
6 Outstanding 6.4–7.0 300–400
7 Superb >7.0 >400

with relatively high temporal (3 hour) and spatial (32 km)
resolution for North America and nearby land masses and
oceans from the time period of October 1978 to the present.
Another data set used to validate the wind energy resource
downscaling under current climate in this study comes
from the surface wind measurements from various surface
observation platforms collected by NCDC.

To assess wind energy resources, several metrics includ-
ing surface wind speed at 10m height, wind power density,
and wind energy resource class are used in this study. Wind
power density is the rate at which wind energy transmits
through a unit of space or area. Wind power density can be
expressed as power (𝑃) over area (𝐴): 𝑃/𝐴 = (1/2)𝜌V3, where
𝜌 is air density and V is wind speed. Wind power density
provides an overall estimation ofwind resource potential over
a specific region. As for wind energy resource classification,
according to the Wind and Water Power Program (2008)
under the US Department of Energy, wind power is classified
into seven classes ranging from class 1 to class 7. Table 1 shows
the criteria for each wind power class at a height of 10m. Each
class is characterized by a particular resource potential, wind
power density, andwind speed. However, classes 3 to 7 are the
5 main classes looked at since the first and second classes are
marginal and not suitable for wind energy development on a
utility scale.

3. Wind Energy Resource Downscaling under
Current Climate

Before conducting regional downscaling, wind energy
resources under current climate are assessed based on
CCSM3 20C3M global model results for 1990s. Figure 1
shows the annual average wind speed, wind resource
classification, and wind power density in the CONUS region
from CCSM3 20C3M global model results during 1990 to
1999. It is revealed that the greatest wind speeds are between
6 and 8m s−1 and correspond to the west and east coasts, the
Great Plains region, and over parts of the Great Lakes Region.
Most of the CONUS region has an average of 5m s−1 average
annual wind speed. The lowest wind speeds correspond to
the southeastern US with values of around 4m s−1. From
the wind resource classification for current climate based
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Figure 1: (a) Average annual wind speed (m s−1), (b) wind resource classification, and (c) average annual wind power density (Wm−2) based
on CCSM3 data in the CONUS region for current climate (1990–1999).

on CCSM3 20C3M global model results (Figure 1(b)),
one can see that the most superb winds or class 8 winds
correspond to the Atlantic and Pacific Ocean while class 7
winds correspond to the northern most section of the Great
Plains (North Dakota and Montana) region as well as along
the western and eastern coastal regions. Correspondingly,
the wind power density is as great as 300Wm−2 over the
Great Plains region and coastal regions. In contrast, the wind
power density is as low as 50Wm−2 over the southeastern
portion of the US. In between these regions and across the
rest of the CONUS, there is an average of 100–200Wm−2 of
wind power density. Although an overall general assessment
of average annual wind speed, wind resource classification,
and average annual wind power density can be made for
current climate from the CCSM3 global model results,
detailed regional features are missing in the global model
results with relatively low grid resolution. That is why it
is important to downscale the CCSM3 global model to a
regional scale in order to get a better representation of the
wind resources across the CONUS region.

Figure 2 gives the annual average wind speed, wind
resource classification, and wind power density in the
CONUS region for the SSDA downscaled CCSM3 20C3M
global model results under current climate (1990–1999). It
does an overall better job at capturing the regional scale
features across the CONUS region as compared to Figure 1,
before the SSDA downscaling was applied. Although the
areas of maxima and minima wind speeds correspond to the
same general locations as in Figure 1(a), Figure 2(a) reveals

the influence of topography and small-scale geographical
features that the SSDA downscaling picks up on in small
subscale regions that the original CCSM3 data cannot. More
specifically, the SSDA downscaled data reveals a more realis-
tic representation of wind speeds over the Rocky Mountains
and Great Lakes Region.

There is as great as a 3m s−1 difference over these
areas before downscaling takes place as opposed to after. If
downscaling is not applied, the wind speeds will often be
underestimated since the CCSM3 will skip over important
subregions with differing topography. These differences can
also be seen in Figure 2(b) which shows the wind resource
classification. In Figure 1(b), there are nearly no regional
scale topographical features shown whereas in Figure 2(b)
these regional scale features are very clearly displayed. This
is the same case for Figure 2(c) versus Figure 1(c) for average
annual wind power density. Since wind power density is
directly proportional towind speed, the areaswith differences
are the same in this case.

In general, in order to getmore realistic near-surfacewind
speeds, wind power classification, and wind power density,
the LAM with higher spatial resolution downscaling from a
global to a regional scale will outperform the global model,
due to its better representation of regional characteristics
for topography, land use, and so forth. Besides, the SSDA
approach combines the merits for both the global model
and the LAM, which will also help the LAM produce more
accurate results. In the following comparisons between the
original CCSM3 global results and the SSDA downscaled
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Figure 2: (a) Average annual wind speed (m s−1), (b) wind resource classification, and (c) average annual wind power density (Wm−2) for
SSDA downscaled simulation in the CONUS region for current climate (1990–1999).
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Figure 3: Locations of selected stations across the CONUS region
used in this study for comparison.

regional results against the NARR data, some surface wind
measurements from observation stations were made to show
the benefit of the SSDA regional downscaling.

Comparisons were made among CCSM3 data, SSDA
downscaled CCSM3, and NARR data for current climate
(1990–1999) against 30 stations that were chosen across the
US (see Figure 3 for the locations of the stations) in order to
get an overall assessment of the accuracy of the data sources
in terms of wind energy across the CONUS region. Regions
of both high and low wind energy were selected.

Table 2 shows the actual wind speed of each station
and is compared to the SSDA downscaled values, CCSM3
values, and NARR observational data values. In addition, the

standard error (SE) is shown for each data set. SSDA has the
second largest standard error value (SE = 0.27) out of all 4
data sets, indicating rather large variability of wind speeds at
each station location relative to the mean wind speed value.
SSDA has the greatest standard error value for wind speeds
in excess of 6m s−1 with a value of 0.29. This indicates even
greater variability of wind speeds at each station location
relative to the mean wind speed value.

The mean absolute error (MAE) of SSDA, CCSM3, and
NARR in comparison to the station wind speed data is also
shown in Table 2. SSDA revealed lessMAE than both CCSM3
and NARR data overall. SSDA had an MAE of 1.27 whereas
CCSM3 had an MAE of 1.43 and NARR 1.40, which means
that SSDA showed an overall 11% improvement over CCSM3
and an overall 9% improvement over NARR. Although these
percentages may not look like significant improvements, they
are calculated for a 10-year average time span from 1990 to
1999 over 30 stations.

A closer look at the data reveals that the SSDA down-
scaled wind speed tends to improve over the global model
simulation most significantly at higher wind speeds. For
stations with high wind speeds (>6m s−1), SSDA appears
to have the most significant improvement over CCSM3 and
NARR. SSDA had an MAE of 1.35, whereas CCSM3 had
an MAE of 1.78 and NARR had an MAE of 1.88, which
means that SSDA showed an overall 24% improvement over
CCSM3 and an overall 29% improvement over NARR.These
improvements are very impressive because improvements
over regions of abundant wind resources are particularly
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Figure 4: Average annual wind speed (m s−1) from CCSM3 data for (a) 2040s and (b) 2090s under the A1B climate scenario.

300

250

200

150

100

50

0

La
tit

ud
e

50

45

40

35

30

25

20

Longitude
−130 −120 −110 −100 −90 −80 −70

(a)

300

250

200

150

100

50

0

La
tit

ud
e

50

45

40

35

30

25

20

Longitude
−130 −120 −110 −100 −90 −80 −70

(b)

Figure 5: Average annual wind power density (Wm−2) from CCSM3 data for (a) 2040s and (b) 2090s under the A1B climate scenario.

significant since these are regions in which wind energy
engineering is most likely to be conducted.

4. Wind Energy Resource Downscaling under
Future Climate

It has already been previously stated that downscaling is
essential in order to capture regional scale features that
GCMs cannot. Again, in this section, a comparison is made
between the CCSM3 data and the SSDA downscaled CCSM3
data for the average annual wind speeds for the 2040s and
2090s. From the original CCSM3 global model projection
results (e.g., Figure 4), it can be seen that the average annual
wind speed distribution for the 2040s and 2090s looks
very similar with maxima occurring over the Great Plains
regions and coastal locations and minima occurring over the
southeastern US. The average annual wind power density
(Wm−2) for the 2040s also resembles that for the 2090s
(Figure 5). Since the wind power density is proportional to
thewind speed cubed, the average annual wind power density
does a better job of showing the contrast between high and
low wind regions since the colors are more defined between
the areas of maxima and minima wind speed.

However, when looking at the SSDA downscaled results
(Figures 6 and 7), the regional scale features are easily
visible across the CONUS region. Effects of topography
and local-scale features across the US are evident due to
the application of dynamical downscaling with the SSDA

approach, providing a more realistic picture of the wind
energy resources. More specifically, the regions of maxima
andminima wind speed are more defined across the CONUS
region when the regional scale features are able to be picked
up by the SSDA downscaling methodology.

In order to assess the climate change impacts on wind
energy resources, we further compare the SSDA downscaled
wind energy resources under future climate with those under
current climate conditions. Comparing Figures 6 and 7 with
Figure 2, one can notice that the average annual wind speed
experiences an overall shift across the CONUS region when
projecting a few decades ahead into the future by means
of following what is expected in IPCC’s A1B scenario. The
differences of the downscaled annual wind speed and annual
wind power density between the future climate (2040s and
2090s) and the current climate decade (1990s) are shown in
Figure 8, from which one can easily see where the average
annual wind speed is expected to increase or decrease across
the CONUS region.

According to Figure 8(a), over the next three decades,
the average annual wind speed is expected to increase over
the Great Plains, Northern Great Lakes, and Southwestern
United States located southwest of the Rocky Mountains. A
projected 0.1 to 0.2m s−1 increase in mean wind speed is
expected over these regions. Along the east coast, wind speeds
remain fairly constant from the current climate to the 2040s.
However, there is a slight decrease of up to 0.2–0.4m s−1
over the Southern Great Lakes region, Rocky Mountains,
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Table 2: Annual mean wind speed comparison of SSDA downscaled CCSM3 data, CCSM3 raw data, and NARR data to station observations
for current climate (1990–1999). Also, the standard error (SE) is shown for the observations, CCSM3, SSDA, and NARR data sets for all 30
stations as well as the 15 selected stations with wind speeds >6m s−1. Mean absolute error (MAE) for average annual wind speed for current
climate (1990–1999) between rawCCSM3 data, SSDA data, andNARR data all compared to the station data. Also, theMAE for average annual
wind speed greater than 6m s−1 is calculated.

Station name and statistics State ID number Lat. Lon. OBS CCSM3 SSDA NARR
Frying Pan Shoals NC 994040 33.483 −77.583 7.76 5.95 7.91 6.60
Cape Lookout NC 994160 34.617 −76.517 5.86 5.88 7.21 6.31
Raleigh/Ral-Durham NC 723060 35.892 −78.782 3.08 4.10 4.12 3.71
Env. Buoy 45008 — 992220 44.3 −82.4 4.99 5.57 7.17 5.33
Stannard Rock MI 994200 47.183 −87.217 8.38 5.44 7.30 5.62
Passage Island MI 994090 48.217 −88.367 6.73 5.29 6.63 5.01
Devil’s Island WI 994190 47.083 −90.733 6.07 4.90 6.38 4.19
Oklahoma City/Wiley OK 723544 35.533 −97.65 5.40 5.43 6.02 5.01
Lubbock/Lubbock INT TX 722670 33.666 −101.823 5.55 5.34 5.28 4.59
Pine Springs Guadalupe TX 722620 31.831 −104.809 8.33 4.76 5.45 5.70
Great Bend Muni KS 724517 38.35 −98.867 5.24 6.07 6.37 4.30
Grand Island County NE 725520 40.961 −98.314 5.04 6.22 6.25 4.28
Mission FLD MT 726798 45.698 −110.441 7.04 5.88 6.93 3.44
Minot Intl ND 727676 48.255 −101.273 5.24 6.63 6.30 4.04
Broomfield/Jeffco CO 724699 39.917 −105.117 4.88 5.84 6.72 4.40
Salt Lake City INTL UT 725720 40.778 −111.969 3.91 5.12 4.89 3.64
Env. Buoy 46028 — 992380 35.74 −121.89 6.73 5.54 6.91 7.36
Lemoore NAS CA 747020 36.333 −119.95 2.67 4.74 3.86 2.99
Miami FL 722020 25.791 −80.316 3.91 4.89 4.91 3.68
Chesapeake VA 994020 36.9 −75.717 7.35 5.38 8.43 5.53
Atlanta Hartsfield INTL AP GA 722190 33.63 −84.442 3.91 4.08 4.49 3.61
Nashville/Metropoli TN 723270 36.119 −86.689 3.39 4.22 4.15 3.30
Ambrose Light NY 994100 40.45 −73.8 7.81 5.57 5.80 5.34
New York/La Guardia NY 725030 40.779 −73.88 5.29 5.18 3.91 5.01
Isle of Shoals NH 994270 42.967 −70.617 7.14 5.72 6.68 5.33
MT Desert Rock ME 994060 43.967 −68.117 7.81 6.49 8.84 5.91
Env. Buoy 44005 — 992760 42.7 −68.3 6.68 7.79 8.95 6.79
Env. Buoy 44008 — 992790 40.5 −69.467 6.53 7.84 8.73 7.00
Env. Buoy 44013 — 992420 42.383 −70.783 6.12 5.92 6.50 5.21
Edisto — 992730 32.5 −79.1 6.58 5.72 7.51 6.28
SE — — — — 0.29 0.16 0.27 0.22
SE for wind speeds >6m/s — — — — 0.19 0.23 0.29 0.27
MAE — — — — — 1.43 1.27 1.40
MAE for wind speeds >6m/s — — — — — 1.78 1.35 1.88

La
tit

ud
e

50

45

40

35

30

25

20

Longitude
−130 −120 −110 −100 −90 −80 −70

8

7

6

5

4

3

2

1

0

(a)

La
tit

ud
e

50

45

40

35

30

25

20

Longitude
−130 −120 −110 −100 −90 −80 −70

8

7

6

5

4

3

2

1

0

(b)

Figure 6:Dynamical downscaled average annual wind speed (m s−1) fromCCSM3 for (a) 2040s and (b) 2090s under theA1B climate scenario.
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Figure 7: Dynamical downscaled average annual wind power density (Wm−2) from CCSM3 for (a) 2040s and (b) 2090s under the A1B
climate scenario.
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Figure 8: (a) Difference of average annual mean wind speed (m s−1) between 2040s and 1990s (current climate) and (b) difference of average
annual mean wind speed (m s−1) between 2090s and 1990s (current climate).

and along the southeastern states west of the Appalachian
Mountains including the states of Kentucky, Tennessee,
Alabama, and Mississippi. The southeastern states east of the
Appalachian Mountains remain fairly constant.

When projecting further ahead into the 2090s decade,
by means of following what is expected in IPCC’s A1B
scenario (Figure 8(b)), the average annual wind speed also
experiences an overall shift across the CONUS region as
compared to current climate. There is an overall increase
in the Great Plains region and Southwestern United States
located southwest of the Rockies. However, the mean wind
speed only increases between 0 and 0.1m s−1 from the current
climate to the 2090s. However, the Northern Great Lakes
region experiences a greater increase in mean wind speed
anywhere from 0.1 to 0.4m s−1. Along the east coast, wind
speeds experience a slight decrease of about 0.1m s−1. The
Southern Great Lakes region and southeastern states west
of the Appalachians decrease once again but only by 0.1 to
0.2m s−1 as compared to current climate. Overall, the Rockies
decrease by an average of 0.1 to 0.2m s−1. However, there
are a few small spots along the Rockies that experience a
decrease of around 0.3m s−1. The southeastern states east of
the Appalachian Mountains remain fairly constant for the
most part, except for a very few areas that experience a slight
decrease anywhere between 0 to 0.1m s−1.

Therefore, overall, there is a more significant shift in
wind speeds from the current climate to the 2040s versus the

current climate to the 2090s over the majority of the CONUS
region with only one noticeable exception taking place over
the Northern Great Plains region.

In addition to comparing the future climate decades to
current climate across the CONUS region as a whole, four
subregions are chosen in order to get a closer look at how the
wind speeds are expected to change in these selected regions
throughout time.The four subregions chosen were as follows:

(1) Southeastern US (lon > −90 , lon < −82, lat > 30, and
lat < 38).

(2) Rocky Mountains (lon > −114, lon < −106, lat > 37,
and lat < 45).

(3) North Carolina (lon > −85, lon < −75, lat > 33, and
lat < 37).

(4) Great Plains (lon > −102, lon < −98, lat > 36, and
lat < 40).

Figure 9 shows themean wind speed time series for these
four subregions. As for the Southeastern US region, the
average annual wind speed is plotted for current climate
(1990s) and future climate decades 2040s and 2090s. The
black and white points represent yearly mean wind speeds
and the red points represent the overall 10-year averages for
each decade. Based on the plotted red point, there is an
evident decrease by about 0.1m s−1 in the 10-year average
wind speed from the 1990s to the 2040s and then the wind
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Figure 9: Mean wind speed (m s−1) time series for the (a) southeastern US, (b) Rocky Mountains, (c) North Carolina, and (d) Great Plains
regions.The average annual wind speed is plotted for current climate (1990–1999) and future climate decades 2040s and 2090s.The black and
white points represent yearly mean wind speeds and the red points represent the overall 10-year averages for each decade.

speed remains fairly constant from the 2040s to 2090s. For the
RockyMountains region, the wind speed appears to decrease
from around 5.35 to 5.1m s−1 between the 1990s and 2040s.
There is then a very slight increase of approximately 0.1m s−1
from the 2040s to the 2090s, but this wind speed value is
still smaller than for current climate. The mean wind speed
time series for the North Carolina region experiences a slight
decrease between the 1990s and the 2040s and then remains
fairly constant from the 2040s to the 2090s with an average
value of around 5m s−1. And for the Great Plains region,
the mean wind speed time series reveals a mean wind speed
of approximately 5.9m s−1 for the 1990s, and then the wind
speed increases to around 6m s−1 by the 2040s.This indicates
an overall slight increase of approximately 0.1m s−1 over the
Great Plains region from current climate to the 2040s. Then,
there is then a very slight decrease from the 2040s to the

2090s, but the overall wind speed in the 2090s is still larger
than for current climate.

5. Conclusion

Accurately assessing wind energy resources and predicting
the impacts that climate change has on them are essential in
order to prevent further waste of fossil fuels and encourage
new and improved renewable wind energy projects across
the CONUS region. Regional dynamical downscaling of
global climate models is beneficial due to its higher spatial
resolution and better capturing of the regional scale features
that the global models cannot. Besides, the new dynamical
downscaling approach of scale-selective data assimilation
(SSDA) in addition to the traditional sponge zone relaxation
downscaling approach was introduced in this study for
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wind energy resource downscaling in the CONUS, which
assimilates large-scale information from the global model to
the LAM, combining the merits of both the global and the
regional models.

The SSDA method was utilized to assess wind energy
resources under current climate based on CCSM3 global data
and also was used to project wind energy resources under
future climate for the 2040s and the 2090s by means of
followingwhat is expected in IPCC’sA1B scenario.This SSDA
downscaling approach was demonstrated to make marked
improvements in downscaling wind energy resources under
current climate in the CONUS region.The distribution of the
wind energy resources produced by the SSDA downscaling
approach is more closely depicted to the actual observational
wind energy resource under current climate (1990s) across
the CONUS region, as compared to the other data sets
(including the original global CCSM3 data and the NARR
data) used in this study.

Wind energy resources under future climate were then
compared with those of current climate to assess the climate
change impacts on the evolution of wind energy resources in
theCONUS region. It was found that the average annual wind
speed experiences an overall shift across the CONUS region.
From the current climate to the 2040s, the average annual
wind speed is expected to increase over the Great Plains,
Northern Great Lakes region, and Southwestern United
States located southwest of the RockyMountains. A projected
0.1 to 0.2m s−1 increase in mean wind speed is expected over
these regions. Whereas, when projecting into the 2090s from
current climate, there is an overall increase in theGreat Plains
region and Southwestern United States located southwest
of the Rockies with a mean wind speed increase anywhere
between 0 and 0.1m s−1 from the current climate to the 2090s.
However, the Northern Great Lakes region experiences an
even greater increase from the current climate to the 2090s
than over the first few decades, with a mean wind speed of
anywhere from 0.1 to 0.4m s−1.

It was also shown that the regional dynamically down-
scaled wind speeds tended to improve over the global model
results, specifically at regions with higher wind speeds.
Improvements over these regions of abundant wind resources
are particularly significant since these are regions where
wind energy engineering is most likely to be conducted. The
findings in this study provide the knowledge necessary to
renewablewind energy companies so that they knowwhere to
invest in new wind energy projects and what impacts climate
change could have on the wind energy resources across the
continental United States.
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