Hindawi

Advances in Meteorology

Volume 2017, Article ID 9451802, 13 pages
https://doi.org/10.1155/2017/9451802

Hindawi

Research Article

ANN Model-Based Simulation of the Runoff
Variation in Response to Climate Change on
the Qinghai-Tibet Plateau, China

Chang Juan,' Wang Genxu,’> Mao Tianxu,” and Sun Xiangyang2

'Key Laboratory of Western China’s Environmental Systems, Ministry of Education, College of Earth and Environmental Science,
Lanzhou University, Lanzhou 730000, China
*Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, China

Correspondence should be addressed to Chang Juan; changjuan@lzu.edu.cn
Received 21 February 2017; Revised 21 April 2017; Accepted 4 May 2017; Published 9 July 2017
Academic Editor: Ravinesh C. Deo

Copyright © 2017 Chang Juan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Precisely quantitative assessments of stream flow response to climatic change and permafrost thawing are highly challenging and
urgent in cold regions. However, due to the notably harsh environmental conditions, there is little field monitoring data of runoft
in permafrost regions, which has limited the development of physically based models in these regions. To identify the impacts of
climate change in the runoff process in the Three-River Headwater Region (TRHR) on the Qinghai-Tibet Plateau, two artificial
neural network (ANN) models, one with three input variables (previous runoff, air temperature, and precipitation) and another
with two input variables (air temperature and precipitation only), were developed to simulate and predict the runoff variation in the
TRHR. The results show that the three-input variable ANN model has a superior real-time prediction capability and performs well
in the simulation and forecasting of the runoff variation in the TRHR. Under the different scenarios conditions, the forecasting
results of ANN model indicated that climate change has a great effect on the runoff processes in the TRHR. The results of this
study are of practical significance for water resources management and the evaluation of the impacts of climatic change on the

hydrological regime in long-term considerations.

1. Introduction

Worldwide hydrological processes have been significantly
affected by climate change. Rivers in permafrost regions
are considered more sensitive to climatic warming than
those in other regions [1]. There is significant complexity
in physical interactions between thermal, hydrological, and
hydrogeological effects in permafrost-affected regions [2].
Thus, the synergic influences of climate and permafrost
degradation have resulted in changes in the original rainfall-
runoft relationships and runoff generation mechanisms in
permafrost regions [3, 4]. The main feature of the long-term
fluctuations in discharge of most Arctic rivers is an increase
[5]. The is followed by seasonal variations of river flow with
increases in winter discharge and changes in magnitude of
minimum river flow and the temporal shifts in maximum
river flow [6, 7]. Conversely, the long-term variation trend in
runoft in the permafrost areas of the Qinghai-Tibet Plateau is

adecrease [8]. Because of the minor human intervention (e.g.,
reservoirs, dams, and agricultural irrigation), the main reason
for these tendencies is regional changes in climate conditions
during the last 30 years [5, 9]. However, little is known about
the differences in the effects of climate changes on surface
runoff in different permafrost regions [4, 7].

The development of hydrological modeling techniques
is still progressing in a bid to achieve better accuracy
and understanding [10-12]. To quantitatively and accurately
analyze series of spatially variable hydrological behaviors and
impacts of natural climatic fluctuations and human activ-
ities, many physics-based distributed hydrological models
have been developed in the last 20 years. However, these
distributed hydrological models were restricted in some
ungauged basins, especially in cold basins on the Tibetan
Plateau, due to the limited availability of data and the lack
of knowledge regarding how the freeze-thaw cycle affects
runoff generation and dynamics [13]. The frozen layers act
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as special regional aquiclude or aquitard layers and block
or weaken the hydraulic connections between the surface
water and groundwater, which make the hydrological cycle
complex [4, 14-16]. Therefore, we still have no effective math-
ematical method or theory for modeling the hydrogeological
processes of the permafrost region [3, 4, 17]. Under complex
hydrological processes and data-scarce conditions, the use of
physically based models is highly restricted. Thus, the lumped
conceptual model is usually used in these regions.

In the last two decades, Artificial Intelligence (AI) has
exhibited significant progress in forecasting and modeling
nonlinear hydrological applications and in capturing the
noise complexity in the data set [18]. At the same time, the
most widely employed Al approaches that are artificial neural
networks (ANNSs) [19], decision tree, and kernel methods
such as the Support Vector Machine (SVM) [20], fuzzy
logic approach [21], Evolutionary Computation (EC) [22],
and wavelet conjunction models [23] also exhibit numerous
successful hydrological processes in the hydrological research
field [18]. The artificial neural network (ANN) model, a
commonly used approach of feed-forward hierarchical archi-
tecture, has been successfully applied in the forecasting and
modeling of evaporation [24], water quality [25], sediment
transport [26], rainfall [27], stream flows [28], groundwater
level changes [29-32], and glacier volume [33, 34]. Unlike
physically based numerical models, ANNs do not require
a detailed knowledge of the physical characteristics of a
catchment and have the ability to derive meaning from
complicated or imprecise data [35]. This is very convenient
when the physical model is not explicitly known or if it cannot
be quantified accurately. Most of all, many scholars have
used ANN models to simulate and predict runoff fluctuations
[36-41]. However, all of these research areas are arid or
semiarid areas without permafrost. There are few studies
using ANN models to predict runoft in permafrost regions.
Meanwhile, due to the cold climate and harsh conditions
in study region, getting the measured data is relatively
difficult [42]. ANN models can provide a way to reveal the
character of hydrological processes, which will help us to
better understand the influence of environmental changes on
the hydrological processes in permafrost regions with little
available data. Therefore, in this study, an ANN model is
used to simulate and forecast runoft variations of permafrost
regions on the Qinghai-Tibet Plateau (QTP) in China.

The Three-River Headwaters Region (TRHR) in the hin-
terland of the QTP is the source region of the Yangtze River,
Yellow River, and Lantsang River and is known as “China’s
Water Tower.” This region is divided into three subregions:
the Yangtze River Headwater Region (YARHR), the Yellow
River Headwater Region (YERHR), and the Lantsang River
Headwater Region (LARHR). This region is not only an
important ecological barrier in China and Eastern Asia
but also a region with a sensitive and fragile ecological
environment [43]. The warming climate has attracted the
attention of researchers to shrinking glaciers, permafrost
degradation, and the deterioration of ecosystems on the QTP
[44-46]. In the 40 years from 1965 to 2005, the temperature
of the TRHR increased, the runoft of the three subregions
decreased, and both parameters experienced abrupt changes
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in 1994, despite the lack of significant changes in precipitation
[47,48]. Since 2005, runoff values in the YERHR and LARHR
have been decreasing continually; however, an increasing
trend has been reported in the YARHR [49, 50]. The impacts
of climatic change on runoff have not been the same in the
three subregions of the TRHR. Qian et al. [51] investigated
the impacts of climate change on annual runoft in the YARHR
during 1957-2009 and indicated that the correlation between
runoff and climatic components depends on periods. How-
ever, the cause and future trend of these runoft changes in
the “China’s Water Tower” are unknown. For insight into the
impacts of climate change and permafrost degradation on
the regional water cycle, it is imperative to understand the
runoff dynamics in the TRHR under these conditions. Using
extensive field monitoring data from the hydrological stations
of the TRHR in this research, we attempt to (1) construct a
runoff model by using an ANN framework and examine the
validity of the model, (2) investigate the impacts of climate
change on the runoft dynamics and their differences among
the different watershed, and (3) predict the trend of runoff
changes in the TRHR in the future under different climate
change scenarios.

2. Study Area Description

The “Three-River Headwaters” region lies in the inte-
rior of the Qinghai-Tibet Plateau in the western part of
China and in southern Qinghai province (31°39'N-36°12'N;
89°45'E-102°23'E). The study area covers an area of 30.25 x
10* km?, of which more than 67% contains permafrost, and
accounts for approximately 12% of the total land area of
the Qinghai-Tibet Plateau. The TRHR includes the Yangtze
River Headwater Region (YARHR), Yellow River Headwater
Region (YERHR), and Lantsang River Headwater Region
(LARHR). The elevation in the TRHR ranges from 2610 to
6950 m, and the average elevation is 4500 m [51]. The climate
in the study area is the typical plateau continental monsoon
type, with an annual mean temperature range from —5.38
to 4.14°C and an annual precipitation between 262.2 and
772.8 mm [50, 52].

3. Materials and Methods

3.1. Data Collection. In the study region, monthly runoff data
were collected from the Changdu, Zhimenda, and Tangnaihai
hydrological station located at the outlet of the YERHR,
YARHR, and LARHR, respectively. Detailed information on
the three hydrological stations can be found in Figure 1 and
Table 1. The monthly mean runoff values from 1961 to 2007
were obtained from the Hydrology and Water Resources
Management Bureau of Qinghai Province. Generally, the air
temperature and precipitation are considered the main driv-
ing forces of runoff variation. There are eighteen weather sta-
tions in the TRHR. Most of them were installed between 1958
and 1961. Based on the uniformity, stability, completeness,
and consistency of the climate sequences, twelve weather
stations were selected in this study. The monthly mean
temperature and precipitation data of the selected weather
stations were downloaded from the China Meteorological
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TABLE 1: Detailed information of the 12 meteorological stations in the TRHR.

Basin WTO number Station Long. (E) Lat. (N) Altitude (m)
56034 Qingshuihe 97°08' 33°48' 4422
56021 Qumalai 95°47' 34°07' 4197

YARHR 56004 Tuotuohe 92°26' 34°12' 4542
52908 Wudaoliang 93°04' 35°13' 4622
56029 Yushu 97°05' 33°00’ 3637

LARHR 56018 Zaduo 95“17’, 32“53,’ 4074
56125 Nanggian 96°29 32°12 3656
56046 Henan 101°36' 34°44' 3529
56065 Dari 99°39’ 33°45' 3989

YERHR 56067 Jiuzhi 101°29’ 3325’ 3631
56033 Maduo 98°12' 34°54' 4272
52943 Xinghai 99°59’ 35°35' 3305
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34°N -\ |  Tuotuohe,”
e

Tangnaihai
R A

92°E 94°E 96°E
—— River

@ Meteorological station
4 Hydrological station

FIGURE 1: Distribution of meteorological stations, hydrological stations, and subregions in the TRHR.

Data Sharing Service System (http://data.cma.cn). The loca-
tion, WMO number, latitude, longitude, and elevation of
the twelve weather stations are presented in Table 2. To
ensure consistent runoff data sequences, the temperature and
precipitation data covering a range from January 1961 to
December 2007 were selected for use in this study.

3.2. Development of an ANN-Based Runoff Forecasting Model.
The development of an ANN model includes three stages:
(1) setting up a typical three-layered feed-forward neural
network and determining the connection weights and the
activation function, (2) selecting an algorithm (usually the
Levenberg-Marquardt training algorithm is used in current
research) that provides the best fit to the data to train
the ANN model, and (3) identifying the optimal number
of neurons in the hidden layer by using a trial and error
procedure by varying the number of hidden neurons from 2
to 25. Furthermore, minimum root mean square error is also

used to identify the optimal network architecture. Based on
these methods, an ANN model is developed in this study to
reproduce the dynamic processes of the runoft in the TRHR
for the period corresponding to the observed time series of
the external variables.

The selection of appropriate input parameters is a very
important aspect of ANN modeling because it provides the
basic information about the system being modeled. Statistical
procedures were suggested for appropriate input vectors for
a model [53, 54]. At present, the phase space reconstruction
method and partial autocorrelation function method are
generally considered as the two target optimum methods to
be commonly used to determine the number of antecedents
of parameters in ANN model. In using the phase space
reconstruction method, it is very difficult to appropriately
determine the parameters of time delay and embedding
dimension in this study area. Therefore, in this study, a
partial autocorrelation function (PACF) was employed to
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TABLE 2: Detailed information of the three hydrological stations in the TRHR.
Basin Station Long. (E) Lat. (N) Altitude (m) Drainage area (km?)
YARHR Zhimenda 97°14' 33°00’ 3536 137,704
LARHR Changdu 9711 31°08’ 3224 50,608
YERHR Tangnaihai 100°08’ 35°30’ 2725 121,972
TABLE 3: Statistical parameters of runoff data in each data set.
Rivers Min Max Std Mean C, C,
All 46.1 2530 415.42 398.9 1.57 1.04
YARHR Training 474 2130 419.87 398.2 1.56 1.05
Testing 46.1 2530 403.59 401.1 1.64 1.01
All 75.9 2110 399.77 468.8 1.29 0.85
LARHR Training 75.9 2110 409.11 473.0 1.35 0.86
Testing 94.3 1760 372.27 456.3 1.06 0.82
All 871 3550 520.63 638.3 1.52 0.82
YERHR Training 116.0 3550 548.06 675.6 1.46 0.81
Testing 87.1 2290 413.55 529.4 1.45 0.78

Note. Min is the minimum runoff, Max is the maximum runoff, Std is the standard deviation, C; is the coefficient of skew, and C, is the coeflicient of variation.

determine the number of parameters corresponding to
different values of the monthly runoff antecedents. PACFs
are generally used to diagnose the order of an autoregressive
process and can be employed in prediction modeling
[53]. In this study, to obtain a better prediction result and
considering the difficulty of data acquisition in this study
region, twelve previous lags were considered as inputs to the
models in this study. The inputs represent the previous runoft
(tt—-1,t-2,t-3,t—-4,t-5t-6,t—7,t—8,t-9,t - 10,
and t — 11), and the output layer node corresponds to
the runoft at time ¢ + 1. Thus, the following combinations
of output data for the runoff were evaluated: (1) RO,,;
(2) RO,,3; (3) RO (4) RO,y and (5) RO,,,,. The
other input parameters for the ANN model were selected
by considering the parameters that have the potential
to affect the runoff. Air temperature and precipitation,
two important factors that generally influence the runoft
processes, are inevitably potential input parameters. To
correspond to the monthly runoff data, the input variables
of precipitation (P) and temperature (T) are as follows:
PyP Py, gy P gy P, P, Py Prg, Pros Py, and
Py, and T, T T 5T 5T 4 Ty s Ty Ty T
T, 9, T,_1p> and T,_,;, respectively.

In this study, we developed the ANN model in two ways,
one using three driving factors of the monthly mean air
temperature, precipitation, and the previous monthly runoff
and another using only two driving factors of the monthly
mean air temperature and precipitation. The latter was
designed for application in the absence of prior runoff data.
The detailed methodology of ANN model development and
application was similar to that outlined by Chang et al. [32].
The performances of the models developed in this study were
assessed using standard statistical performance evaluation
criteria, including the coeflicient of correlation (R), root mean
squared error (RMSE), mean absolute error (MAE), relative
root mean squared error (RRMSE), and Nash-Sutcliffe (NS)

efficiency coefficient [18]. The methodology of those criteria
calculation and development of the simulation models also
references Chang et al. [32]. ANN analyses were performed
using MATLAB Neural Network Toolbox.

3.3. Data Analysis. All data types (including the monthly
average precipitation, monthly average temperature, and
monthly average runoff data) used to predict the runoff
cover 47 years, which can be regarded as 564 sets of data.
All data were divided into two parts as training and testing
periods. The first 420 sets of data (1961/01-1995/12) were
used for training of the ANN models, and the last 144
sets of data (1996/01-2007/12) were employed for testing.
Table 3 shows the statistics of the training, testing, and total
data sets for the monthly runoff of the YERHR, YARHR,
and LARHR. The recorded monthly maximum runoft was
2530, 2110, and 3550 m>/s for the YARHR, LARHR, and
YERHR, respectively. The monthly minimum runoft was 46.1,
75.9, and 116.0 m*/s for the YARHR, LARHR, and YERHR,
respectively. The observed monthly runoft values show low
positive skewness for all stations, showing that the data have
a less scattered distribution.

4. Results

4.1. ANN Model with Three Input Factors. By using the
monthly average temperature, monthly average precipitation,
and previous monthly average runoff as driving factors, the
performances of the ANN models for forecasting the 1-,
3-, 6-, 12- and 24-month-ahead runoft variations for the
YERHR, YARHR, and LARHR are summarized in Tables
4, 5, and 6, respectively. During the testing periods, the
performances of the 1-, 12-, and 24-month-ahead forecast-
ing models are better than those of the 3- and 6-month-
ahead forecasts. In YARHR and LARHR, the NS and R of
the forecasting models are more than 0.8 and 0.9 for the
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TABLE 4: Performance statistics of the ANN model with three input variables (runoff, precipitation, and air temperature) during the training
and testing periods for 1-, 6-, 12-, and 24-month-ahead runoff forecasting in the YARHR.

Training periods Testing periods
Structure
R RMSE MAE NS R RMSE MAE NS

1 month ahead 0.9301 153.25 90.67 0.8644 36-14-1 0.9161 165.65 91.20 0.8389
3 months ahead 0.8794 198.44 118.41 0.7726 36-2-1 0.8806 196.28 102.95 0.7745
6 months ahead 0.8551 216.04 125.40 0.7304 36-4-1 0.8708 205.58 113.44 0.7569
12 months ahead 0.8744 199.57 123.82 0.7637 36-2-1 0.9064 180.00 116.37 0.8184
24 months ahead 0.8632 204.97 122.33 0.7385 36-9-1 0.9078 190.50 112.12 0.8063

TABLE 5: Performance statistics of the ANN model with three input variables (runoff, precipitation, and air temperature) during the training
and testing periods for 1-, 6-, 12-, and 24-month-ahead runoff forecasting in the LARHR.

Training periods Testing periods
Structure
R RMSE MAE NS R RMSE MAE NS

1 month ahead 0.9258 155.20 89.26 0.8550 36-8-1 0.9294 139.77 88.29 0.8618
3 months ahead 0.8745 199.75 121.41 0.7599 36-22-1 0.8770 182.44 116.27 0.7651
6 months ahead 0.8660 204.15 127.06 0.7495 36-2-1 0.8918 171.69 107.40 0.7944
12 months ahead 0.8828 185.90 110.92 0.7792 36-7-1 0.9032 168.58 102.40 0.8058
24 months ahead 0.8393 212.27 134.84 0.7037 36-7-1 0.8946 168.76 106.36 0.8003

TABLE 6: Performance statistics of the ANN model with three input variables (runoff, precipitation, and air temperature) during the training
and testing periods for 1-, 6-, 12-, and 24-month-ahead runoff forecasting in the YERHR.

Training periods Testing periods
Structure
R RMSE MAE NS R RMSE MAE NS

1 month ahead 0.9204 213.00 121.90 0.8470 36-4-1 0.8892 196.46 123.23 0.7852
3 months ahead 0.8516 304.90 171.41 0.6866 36-2-1 0.8021 253.93 153.49 0.6421
6 months ahead 0.7835 356.27 207.98 0.5717 36-2-1 0.7860 26758 176.19 0.6091
12 months ahead 0.8232 312.27 191.50 0.6699 36-3-1 0.8047 258.95 158.42 0.6453
24 months ahead 0.7780 349.42 207.56 0.5747 36-4-1 0.8004 267.50 180.98 0.6307

12- and 24-month-ahead forecasts, respectively. While the R
is more than 0.8, the NS is more than 0.63 in YERHR. Those
results showed that the ANN model with three input driving
factors has excellent validity for the relatively long-term 12-
or 24-month-ahead forecasts. The RMSE and MAE values,
less than 267.58 m/s and 180.98 m>/s, respectively, show the
valuable and appropriate simulation capacity of the ANN
model. Normally, a model can be claimed to produce a perfect
and accurate estimate if the NS criterion is greater than 0.8,
and the modeling result is acceptable when NS is >0.6 but
<0.8 [55]. The NS values in this study for 1-, 12-, and 24-
month-ahead forecasts are all over 0.8 in the YARHR and
LARHR, and the NS values for 1-, 12-, and 24-month-ahead
forecasts in the YERHR are all over 0.63, which indicates that
the models produce acceptable results (Tables 4, 5, and 6).
On the whole, the ANN model with the three driving factors
of temperature, precipitation, and previous runoft has more
forecasting validity in the YARHR and the LARHR than in
the YERHR.

The runoft values predicted using the ANN model
developed above were compared with field-observed data
from the YERHR, YARHR, and LARHR for the 6- and 12-
month-ahead forecasts, as shown in Figure 2. The correlation

coefficient R* is greater than 0.83 for the YARHR, greater
than 0.80 for the LARHR, and greater than 0.62 for the
YERHR, indicating that the runoff values estimated by the
ANN forecasting models closely matched the observed values
and followed the same dynamic trend. For the relatively long-
term 24-month forecast, the developed ANN model could
identify the varying processes in the runoff that fit better
with the measured variation of the runoff during the wet
season and dry season (Figure 3). However, the prediction
accuracy of the extreme flood runoff in the wet season was
fair with significant underestimation (Figure 3). Under the
condition of not considering the underestimation for one of
the most extreme flood flows during 24 months, the RRMSE
values of ANN prediction model in this study for 1-, 3-, 6-,
12-, and 24-month-ahead forecasts in the YARHR are 16.84%,
19.89%, 22.88%, 19.17%, and 23.37%, respectively. At the same
condition, the RRMSE values of ANN prediction model in
this study for 1-, 3-, 6-, 12-, and 24-month-ahead forecasts
in the LARHR are 15.23%, 19.06%, 17.54%, 16.33%, and
20.45%, respectively, and 23.64%, 23.98%, 27.81%, 28.03%,
and 28.96%, respectively, in the YERHR. The result of relative
root mean square error (RRMSE) also showed that the results
of simulation about the month runoff in the YARHR and
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FIGURE 2: Comparison of the measured runoff values and those forecasted 6 and 12 months ahead by the ANN model for the YARHR (a), the

LARHR (b), and the YERHR (¢).
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FIGURE 3: Comparison of the measured runoff values and those forecasted 24 months ahead by the ANN model for the YARHR (a), the

LARHR (b), and the YERHR (c).

LARHR are superior to the simulation results in the YERHR
(Tables 4-9). Therefore, the ANN forecasting model with
three driving factors developed in this study could provide
accurate and reliable monthly runoff predictions for a period
as long as two years, although the prediction accuracy of the
highest amount of flood runoff in the wet season was not
better than that of the minimum amount of base runoft in the
dry season (there are small underestimations of flood runoft
by the ANN model).

4.2. ANN Model with the Two Factors: Temperature and
Precipitation. The above results show that the ANN model
with three driving factors (temperature, precipitation, and
previous runoft) developed in this study has validity and
reliability in simulating and predicting runoff variation.
However, observed runoff data is lacking in most permafrost

regions, whereas the climate factors of temperature and
precipitation are relatively easy to obtain. Thus, if the ANN
model developed above could be executed using only cli-
mate factors to predicate the dynamic trends in the runoft,
the model would have even higher application value in
permafrost regions. Based on the ANN model developed
above, the previous runoft factor was removed from the
original three driving factors, so that the input variables are
precipitation (P) and temperature (7).

When the input variables are the mean monthly temper-
ature (T) and monthly precipitation (P), the performances
of the ANN models for forecasting the 1-, 3-, 6-, 12-, and
24-month-ahead runoff dynamics for the three rivers in the
TRHR are shown in Tables 7, 8, and 9. The R values in
the testing period for the three rivers were almost all above
0.78, showing the good correlation between the observed



Advances in Meteorology

TaBLE 7: Performance of the ANN model with two input variables (precipitation and air temperature) during the training and testing periods

for 1-, 3-, 6-, 12-, and 24-month-ahead runoft forecasting in the YARHR.

Training periods Testing periods
Structure
R RMSE MAE NS R RMSE MAE NS

1 month ahead 0.9132 170.44 99.15 0.8322 24-5-1 0.9163 175.22 98.64 0.8306
3 months ahead 0.8696 207.50 121.73 0.7514 24-8-1 0.8625 215.22 119.73 0.7435
6 months ahead 0.8905 189.52 109.08 0.7925 24-2-1 0.8848 198.98 120.18 0.7814
12 months ahead 0.8616 209.13 111.00 0.7406 24-2-1 0.9107 179.52 100.22 0.8214
24 months ahead 0.8708 197.48 118.60 0.7573 24-9-1 0.8994 196.42 100.03 0.7941

TaBLE 8: Performance of the ANN model with two input variables (precipitation and air temperature) during the training and testing periods

for 1-, 3-, 6-, 12-, and 24-month-ahead runoftf forecasting in the LARHR.

Training periods Testing periods
Structure
R RMSE MAE NS R RMSE MAE NS

1 month ahead 0.9012 178.84 113.54 0.8074 24-11-1 0.9334 140.04 101.72 0.8709
3 months ahead 0.8818 192.94 119.02 0.7760 24-14-1 0.8947 174.09 110.11 0.8002
6 months ahead 0.8682 202.71 121.35 0.7530 24-3-1 0.9090 164.47 101.60 0.8243
12 months ahead 0.8802 187.92 121.19 0.7744 24-5-1 0.9223 154.56 105.45 0.8424
24 months ahead 0.8773 187.17 118.25 0.7696 24-6-1 0.9043 162.19 105.65 0.8156

and forecasted runoff using the ANN model derived from
only the monthly mean temperature and monthly average
precipitation. The RMSE and MAE were less than 274.90 m*/s
and 17719 m’/s, respectively. Meanwhile, the NS values are
all over 0.60. Those statistical indices showed the forecasting
validity and reliability of the ANN model with two input
variables. In addition, the performances of the 12- and 24-
month-ahead forecast are better than those of the 3- and
6-month-ahead forecasts for all the three rivers (Tables 7,
8, and 9). This result is consistent with the results of the
ANN model with the three input factors discussed above. The
efficiency of the forecasting model of two input parameters
(precipitation and temperature) is similar to the forecasting
model efficiency of the three input parameters (temperature,
precipitation, and previous runoft). These results show that
the longer-term (12 and 24 months) dynamics of the runoft
were relatively stable using the ANN forecasting model.

The statistical indices of the forecasting results for the
YARHR and LARHR were better than those of the YERHR,
which shows that the runoff dynamics in the YARHR and the
LARHR were more obviously affected by climate factors (air
temperature and precipitation) than those in the YERHR. The
effects of air temperature and precipitation explain more than
90% of the variation in the runoff 24 months ahead in the
YARHR and the LARHR and more than 79% of the variation
in the runoff 24 months ahead in the YERHR. Therefore,
the ANN forecasting model developed in this study using
easily obtainable climate data could offer valid and reliable
predications of the monthly runoff variation.

4.3. Response of Runoff to Climate Change. Over the last
10 years, the air temperature has increased by 0.47°C/10
years, while the precipitation has increased slightly in the
headwaters of the Lantsang, Yangtze, and Yellow Rivers.
According to this actual climate change, two possible climate

change scenarios in the future are assumed as follows: ®
precipitation increases by 10%, while the air temperature
increases by 0.5°C, 1.0°C, or 2.0°C; @ precipitation increases
by 20%, while the air temperature increases by 0.5°C,1.0°C, or
2.0°C. The runoff responses to the climate changes are then
forecasted by using the ANN model established above with
the two input parameters of T and P for producing 24-month-
ahead predictions, and the results are listed in Table 10.

With temperature increases of 0.5, 1.0, and 2.0°C and
an increase in precipitation of 10% or 20%, the average
runoff in the YARHR would increase by 1.6% (7.52 m?/s),
1.5% (7.41m>/s), and 0.9% (5.43 m®/s) per year, respectively.
The average runoff in the LARHR would increase by 3.4%
(15.51m>/s), 3.4% (15.61 m°>/s), and 3.5% (15.81 m>/s) per year,
respectively. The average runoffin the YERHR would increase
by 1.1% (6.13-6.34 m*/s) under all three climate scenarios.

When the air temperature increases by 0.5, 1.0, and 2.0°C,
the average difference in runoff increase is 20 and 48 m>/s
when the precipitation increases by 10%, and the difference
is 21 and 46 m>/s when the precipitation increases by 20% in
the YARHR. Under the same scenarios, the average difference
in runoffincrease is 0.96 and 2.33 m>/s when the precipitation
increases by 10%, and the difference is 0.51 and 1.33m’/s
when the precipitation increases by 20% in the LARHR.
However, the average difference in runoft variation is —0.33
and —0.57 m’/s when the precipitation increases by 10%, and
the difference is —0.7 and —1.35m>/s when the precipitation
increases by 20% in the YERHR. These results indicate
that the response of runoff to climate change (the synergic
effects of temperature and precipitation) is more intense and
variable in the YARHR than in the LARHR and YERHR.
However, even in the YERHR, the runoft would decrease with
increasing temperature under a given precipitation scenario.

Future climate change with warming and slight wetting
could greatly change the annual runoff of TRHR. In the
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TABLE 9: Performance of the ANN model with two input variables (precipitation and air temperature) during the training and testing periods
for 1-, 3-, 6-, 12-, and 24-month-ahead runoff forecasting in the YERHR.

Training periods N Testing periods
tructure
R RMSE MAE NS R RMSE MAE NS
1 month ahead 0.8906 251.05 144.96 0.7874 24-12-1 0.8841 204.16 129.12 0.7809
3 months ahead 0.8329 307.64 189.14 0.6810 24-5-1 0.8003 263.93 165.42 0.6322
6 months ahead 0.7819 354.69 210.55 0.5755 24-2-1 0.7757 274.90 171.01 0.5997
12 months ahead 0.7919 333.87 203.46 0.6227 24-13-1 0.7978 263.63 166.32 0.6306
24 months ahead 0.7707 362.16 216.94 0.5431 24-2-1 0.7938 271.00 177.19 0.6209
TABLE 10: The response of runoft to climate change at the Three-River Headwater Regions (m3/ s).
Sites Index Normal P10% P20%
T0.5 T1.0 T2.0 T0.5 T1.0 T2.0
Average runoff 416.51 471.16 498.16 561.68 478.58 505.57 56711
YARHR Max 1277.95 1348.05 1374.07 1414.78 1353.04 1370.28 1422.16
Min 26.88 9.89 8.13 19.44 6.48 6.75 22.24
Average change 0 9114 111.02 158.80 101.21 122.16 168.34
Average runoft 460.30 457.03 453.29 445.67 472.54 468.90 461.48
LARHR Max 1098.51 1095.30 1093.81 1090.39 1097.25 1095.86 1092.67
Min 123.19 123.70 124.34 126.32 124.99 125.97 130.14
Average change 0 70.63 71.69 74.02 81.06 81.57 82.90
Average runoff 566.75 568.95 565.84 559.67 575.08 572.04 566.01
YERHR Max 1192.67 1214.68 1210.26 1201.11 1239.65 1235.57 122712
Min 206.05 202.78 202.60 202.25 200.56 200.40 200.08
Average change 0 70.37 70.04 69.47 76.31 75.61 74.26

Note. (1) T0.5, T1.0, and T2.0 mean air temperature increased by 0.5°C, 1.0°C, and 2.0°C, respectively. P 10% and P 20% mean the precipitation increased by

10% and 20%, respectively.

climate change scenarios involving a precipitation increase,
the mean monthly runoft would increase in the TRHR
under a given temperature. In the climate change scenarios
involving a temperature increase, the mean monthly runoff
would increase in the YARHR and LARHR, but the mean
monthly runoff would decrease in the YERHR. There are
obvious differences in the responses of runoff to climate
changes in the different watersheds of the TRHR.

5. Discussion

5.1. Validity of the ANN Models Using Two and Three Variables
to Predict Runoff. A mathematical model of hydrogeology
based on physical mechanisms is certainly a powerful and
valid tool for simulating and forecasting variations in runoff
processes. The applicability of the runoff model to real
situations depends on the accuracy of the input data and the
parameters. It is relatively difficult to observe and measure
the runoff processes on the Qinghai-Tibet Plateau due to
the complex and unknown mechanisms of runoft forma-
tion and runoff dynamics. For example, we do not exactly
understand the interaction between the surface water and
groundwater in the permafrost region, and the uncertainty
extends to the permafrost aquifer due to the lack of intense
observation data and related theories [4, 32, 42]. Glacier and
snow meltwater are the main sources of river runoff on the
Qinghai-Tibet Plateau, but a lack of data, parameters, and

methods hinders exact simulations of the effects of meltwater
on surface runoff [1]. Thus, data-scarce conditions and
parameter uncertainty present limitations and formidable
challenges to numerical runoft model applicability. Seeking
to overcome the data limitations and parameter uncer-
tainty and to simplify the physical assumptions inherent
in numerical models, artificial neural networks (ANNSs) are
considered a good alternative approach for runoff modeling
and prediction [36-38]. Our results confirmed that the
ANN model and prediction approach can be successfully
used to simulate and predict the runoff variation in runoft
processes on the Qinghai-Tibet Plateau and can improve our
understanding of the response of permafrost runoff to climate
change.

To enable the ANN model to achieve excellent predictive
accuracy over specific field locations in complex water cycle
systems, as many input variables should be used as possible.
However, data-scarce conditions and parameter uncertainty
present limitations and formidable challenges to numerical
runoff model applicability. At present, most researchers
have found that three input variables related to accessible
field data (i.e., runoff, precipitation, and temperature) were
adequate to develop an excellent ANN model [36, 37]. In
this study, we developed two ANN models based on three
input variables (e.g., runoff, precipitation, and temperature)
and two input variables (e.g., precipitation and temperature)
for the complex runoft processes of the permafrost region on
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the Qinghai-Tibet Plateau. In comparing Tables 4, 5, and 6
with Tables 7, 8, and 9, it is found that the evaluation criteria
(e.g., R, NS, and RMSE) of model performance indicated
significant differences between the three input variables’
model and the two input variables’ model. The forecasting
performance of the three input variables model was only
slightly better than that of two input variables’ model. Taking
the previous runoft as one of the three input variables, the
ANN model achieved acceptable predictive accuracy in the
TRHR, with R > 0.80, NS > 0.63, and RMSE < 26750
for the 24-month-ahead prediction. In particular, the ANN
model for the three input variables achieved more excellent
predictive accuracy in the YARHR and the LARHR, with R >
0.89, NS > 0.80, and RMSE < 190.5 for the 24-month-ahead
prediction (Tables 4, 5, and 6). The results were consistent
with most findings related to ANN technology applications
worldwide [36, 37]. However, the ANN model using the two
input variables of precipitation and air temperature also had
a reasonably good prediction of runoff in the TRHR, with R
>0.79, NS > 0.62, and RMSE < 271.0 for the 24-month-ahead
prediction. In particular, the ANN model for the two input
variables achieved better predictive accuracy in the YARHR
and the LARHR, with R > 0.90, NS > 0.79, and RMSE < 215.22
for the 24-month-ahead prediction (Tables 7, 8, and 9). The
forecasts of both the model with three input variables and
the model with two input variables in the YARHR and the
LARHR were superior.

These results indicate that the previous runoft does not
have significant effects on the predicted runoff in the TRHR
and that the climate factors had more intense effects on
the runoff in the TRHR. In fact, due to the sensitivity
and vulnerability of the runoff to climate changes in the
permafrost region, the simulation of the runoff must consider
the heat transmission and the runoff supply of permafrost
degradation. In addition, the impacts of glacier and snow
cover responses to climate change on runoft processes also
enhanced the effects of the climate factors on the runoft
processes in the TRHR.

5.2. Impacts of Climate Change on Runoff. Runoff is intensely
affected by the precipitation and the freeze-thaw processes
related to snow, ice, and permafrost, which directly control
the formation and development of the runoft. In the TRHR,
the annual glacier runoft is 15.52, 1.74, and 4.43 x 108 m?
in the YARHR, YERHR, and LARHR, respectively, and
the contribution of glacier meltwater to watershed runoft
is 8.8, 0.8, and 4.0%, respectively [56]. With the warming
climate, the glacier runoft has significantly increased in the
last 30 years [57]. Unlike in nonfrozen regions, the soil
freezing process not only confines the water exchange to
the land surface, active soil, and permafrost and impedes
water movement in the impervious frozen layers but also
results in an entropy change process associated with the
phase transition of frozen soil moisture. Therefore, there are
unique behaviors in the hydrological cycle in permafrost
regions [16, 32, 42]. All the environmental features of runoft
formation and development demonstrate the high sensitivity
and vulnerability of the runoft to climate change in the
TRHR.
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The sensitivity of runoff to climate change was analyzed
by using the ANN model developed in this study, and the
results are shown in Table 10. It is found that there was a
significant effect of precipitation increases of 10% and 20%
on the runoff in the YARHR, LARHR, and YERHR, and
the forecasted runoff increased in the YARHR, LARHR,
and YERHR (Table 10). If the air temperature increases by
0.5, 1.0, and 2.0°C, the forecasted runoff increases in the
YARHR but decreases in the LARHR and YERHR. Higher
air temperatures resulted in greater increases in predicted
runoff in the YARHR. Even if the air temperature increased
by only 0.5°C, the response of the forecasted runoff was
more significant than that with a precipitation increase
of 20% in the YARHR. However, the runoff significantly
decreases with climate warming in the LARHR and YERHR.
If the precipitation increases only 10%, the water dissipation
resulting from a temperature increase of 1.0°C or 2.0°C not
only offsets the additional precipitation but decreased the
runoff in the LARHR and YERHR. Because there is relatively
greater glacier melt water feeding the runoff in the LARHR
than in the YERHR, the runoff significantly increases in the
LARHR with warming but decreases in the YERHR when
temperature increases more than 2.0°C and precipitation
increases by 20% (Table 10).

Xu et al. [58] found that the air temperature will increase
by 2°C or more and that precipitation will increase by
less than 20% by the 2050s in the study area. From the
predicted results listed in Table 10, the mean annual surface
runoff increases with increasing precipitation in the YARHR,
LARHR, and YERHR. The mean annual surface runoft
decreases with increasing air temperature in the LARHR
and YERHR but increases significantly with increasing air
temperature in the YARHR. These results were consistent
with the findings of runoff responses to climate change
in the TRHR [47, 48, 50, 59]. In northern Eurasian and
northwestern North American rivers, it was suggested that
the accelerated increase in the groundwater discharge from
permafrost degradation has led to runoff increases in recent
decades [7, 60, 61]. In the permafrost regions of the Qinghai-
Tibet Plateau, Ge et al. [62] also found that, with increased
warming, there is more groundwater flow in the active layer
and therefore increased groundwater discharge to rivers.
Because permafrost covers only 42% of the YERHR, less
than that of the YARHR (76%) and LARHR (63%) [1],
the increased groundwater in the YERHR is believed to be
significantly less than that in the YARHR. Glaciers cover
1895.0km” in the YARHR, 316.32km’ in the LARHR, and
only 172.41km? in the YERHR [56]. Thus, the glacier melt-
water discharge to the river is not greater in the YARHR than
that in the LARHR and YERHR at present but will increase
with greater glacier runoff under a future warmer climate.

These results demonstrate that climate warming has a
great effect on the surface runoff processes on Qinghai-
Tibet Plateau. Only a precipitation increase greater than 20%
could offset the effects of an increase in air temperature
of 1.0°C. The areas of permafrost, glaciers, and snow cover
are the important factors in offsetting the effects of climate
warming on surface runoft processes. Enhanced runoft from
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glacier and permafrost areas tends to increase runoft under
future climate warming. For the TRHR, the predicted results
of the ANN model show that the surface runoff has a
tendency to decrease in the LARHR and the YERHR when
air temperatures rise by 2.0°C, whereas the surface runoff has
a tendency to increase slightly in the YARHR.

6. Conclusions

The ANN technology and prediction approach is useful
and valid in simulating and forecasting runoff variations
to overcome data limitations, parameter uncertainty, and
the formidable challenge of numerical hydrological model
applicability. For prediction of the runoff in the TRHR,
two ANN models were developed in this study. If field
observations of the runoff are available, the ANN model with
three input variables (runoff, precipitation, and temperature)
should be developed and applied in permafrost regions. The
three input variabless ANN model has a significantly superior
real-time prediction capability and produces a high-accuracy
performance in the simulation and forecasting of the runoft
dynamics. When no field observations of the runoff are
available, the ANN model developed using only two input
variables of accessible climate data (precipitation and air
temperature) also has a good accuracy for simulation and
prediction of the variations in runoff.

The runoff variation and its response to climate change
differ for the different rivers on the Qinghai-Tibetan Plateau.
The runoff is intensely affected by climate warming changes
and has more sensitivity to temperature variation than to
precipitation in the YARHR. However, the runoft is more
sensitive to precipitation variations than to air temperatures
in the LARHR and the YERHR. The predicted results of
the ANN model show that the surface runoft will likely
decrease in the LARHR and the YERHR by the 2050s,
whereas the surface runoff will likely increase slightly in
the YARHR by the 2050s. In the long-term simulated pre-
dictions of runoff in the TRHR, precipitation is the main
factor affecting the runoff, but the influence on hydrological
regimes caused by continual temperature increase is also
very important. The obvious vulnerability of the runoft to
climate change will drive intensive efforts to understand
the water cycle in permafrost regions on the Qinghai-Tibet
Plateau.

Although the results presented here are promising and
these data driven models can be successfully applied to
establish river flow with three input parameters ANN fore-
casting models, these models underestimate extreme flood
flow. In the future, further research is necessary to improve
the prediction accuracy, especially for the flood flow, by
combining or improving model parameters. For the study
area of this article, we can consider trying to add the glacier
melting runoff as input parameters in the ANN prediction
models to improve the precision in future.
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