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Urbanization, industrialization, and regional economic integration have developed rapidly in China in recent years. Air pollution
has attracted more and more attention. However, PM2.5 is the main particulate matter in air pollution. +erefore, how to predict
PM2.5 accurately and effectively has become a concern of experts and scholars. For the problem, atmosphere PM2.5 concentration
prediction algorithm is proposed based on time series and interactive multiple model in this paper. PM2.5 concentration is
collected by using the monitor at different air quality levels. +e time series models are established by historical PM2.5 con-
centration data, which were given by the autoregressive model (AR). In the paper, three PM2.5 time series models are established
for three different air quality levels. +en, the three models are converted to state equation, respectively, by autoregressive
integrated with Kalman filter (AR-Kalman) approaches. Besides, the proposed interactive multiple model (IMM) algorithm is,
respectively, compared with autoregressive (AR) model algorithm and AR-Kalman prediction algorithm. It is turned out the
proposed IMM algorithm is more accurate than the other two approaches for PM2.5 prediction, and it is effective.

1. Introduction

Air pollution is composed of harmful gases and particulate
matter. PM2.5 is one kind of the particulate matter, and it is
one of the main indicators affecting air quality. +e air
pollution statuses are not only the key issues in the sci-
entific research but also the hot social issues of the public’s
life. +erefore, many experts and scholars at home and
abroad have done a lot of research on PM2.5 concentration
prediction. A number of prediction methods [1] have been
widely developed, such as principal component analysis
[2], regression analysis [3, 4], neural network [5–8], genetic
algorithm, time series [9, 10], and Kalman filter [11]. Azid
et al. used principal component analysis (PCA) [12] to
analyse the major components affecting air quality and to
predict the air pollutant concentration by the predictive
ability of neural network [13]. However, the disadvantage
of this method is easily trapped in the local minimum, so
the accuracy of air quality prediction will be affected. Zhou

et al. propose a hybrid model method of combining em-
pirical model decomposition with neural network for
predicting PM2.5 concentration [14]. But the EEMD
method [15] needs a large amount of calculation and time
and can retain residual noise in decomposition process.
Ping et al. found a hybrid strategy used to predict the PM2.5
concentration in Beijing, Tianjin, and Hebei [16]. However,
the selection of parameters and the training time may be
inaccurate. Wang et al. used the autoregressive integrated
moving average model to establish the time series of the
PM2.5 concentration, and the noise deviation is trained by
SVM [17]. But this algorithm is simple and robust and it has
some disadvantages such as needing a lot of computing
time and equipment requirements. Voukantsis and Dag-
oumas used the principal component analysis and neural
network [8] for comparing the air quality in +essaloniki
and Helsinki [18]. Michano Michanowicz et al. used the
AERM-OD (AMS/EPA regulatory model) model to predict
the PM2.5 concentration [19]. Many experts and scholars
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have proposed the Kalman filtering algorithm [20, 21] to
predict PM2.5 concentration. In the abovementioned al-
gorithms, there are still great limitations in accuracy and
effectiveness because these algorithms predict PM2.5 con-
centration mostly for a certain period of time or a single
model. In different weather conditions, atmospheric PM2.5
concentration levels are different. +e single model is only
suitable for PM2.5 concentration prediction of a certain
weather quality. Once the weather changes, the PM2.5
concentration level is also changed. +e single model will
produce errors in PM2.5 prediction and cannot be relied on
for accurate prediction. And the multiple model algorithm
is widely used in the field of control [22, 23] and other fields
[24–26], but not in the field of weather prediction.+us, the
multiple model algorithm under different weather condi-
tions is selected to reduce the errors and make the pre-
diction more accurate.

Different weather conditions are considered to predict
PM2.5 for the above method. +erefore, based on multiple
model theory [27–29] and interactive multiple model al-
gorithm, in this paper, the main objective of this study is to
accurately predict PM2.5 concentration according to dif-
ferent air quality levels. A feasible and effective method is
provided for air pollution prediction.

2. Materials and Methods

2.1. Data Collection. In order to prove the prediction ac-
curacy of the proposed method, the PM2.5 concentration
data were provided by the monitoring station in Beijing. +e
monitoring station is shown in Figure 1. +e data were
collected at different air quality levels from Sept. 29th to Oct.
1st, Mar. 21st to 23th, and Oct. 14th to 16th in 2018. +e
information sequence, which includes PM2.5, NO2, SO2, CO,
PM10, and O3 concentrations (μg/m3), temperature, and
humidity, is used to predict the performance of the proposed
methods. +en, the time series model is established and
combined with the proposed method to predict the PM2.5
concentration.

Figure 2 shows the monitoring area. +e red circle
represents a monitoring point in the figure.

Figure 3 shows the air quality in three months, and
different colors represent different air quality levels. +e
green color represents air quality level is excellent, yellow
represents air quality level is good, and orange represents air
quality level is slightly polluted. Specific air quality assess-
ment standard is shown in Table 1.

2.2. Time Series Model. Prediction methods of PM2.5 con-
centration mainly include numerical model method and
statistical method. Time series analysis method belongs to
the statistical category, and it can be used to extract the
relevant information. +us, the structure of time series and
pattern can be used to deduce the future change trend of the
system. +e time series model includes autoregressive (AR)
model, moving average (MA) model, and autoregressive and
moving average (ARMA) model. Since the 20th century,
various parameterization methods such as linear regression,

smoothing method, and autoregressive process have been
widely used in weather forecasting and have achieved good
results. In this paper, AR(p) model is given as follows:

Xn � φ1Xn− 1 + φ2Xn− 2 + · · · + φpXn− p + εn, (1)

where φ1,φ2, . . . ,φp are the autoregressive coefficient and εn

is the independent sequence of identically distributed ran-
dom variable, and it is white noise. Xn, n � 0, ±1, ±2, . . .􏼈 􏼉

is the p-order autoregressive model AR(p).

1

2

3

Figure 1: Air pollution monitor (1 is the device monitoring probe,
2 is the equipment power supply box, and 3 is the solar electronic
board).

Figure 2: PM2.5 monitoring area.
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2.3. Autoregressive-Kalman Filter Method. For complex at-
mospheric dynamic systems, traditional methods are difficult
to measure every predicted variable. But the Kalman filter
method can directly use the limited and indirect measurement
information to estimate the missing information and predict
the future change trend of the atmospheric dynamic system.
Because the collected PM2.5 concentration data are time series,
PM2.5 concentration time series model and Kalman filtering
approach are combined in the paper. +e ARmodel was firstly
established, and then, the AR model is transformed into state
equation for Kalman filtering. +e state space model of PM2.5
concentration at different air quality levels is written as follows:

X(k + 1) � A(k + 1, k)X(k) + Γ(k + 1, k)W(k),

Y(k + 1) � H(k + 1)X(k + 1) + V(k + 1), (k � 0, 1, . . .),

(2)

where X(k + 1) is the n-dimensional state vector, Y(k + 1) is
the m-dimensional observation vector, A and H, are, re-
spectively, m × n-dimensional state transition matrix and
observation matrix, and W(k) and V(k) represent process
and measurement noises, respectively. +e state equation in
the AR-Kalman method [26] is given as follows:
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⋮
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Figure 3: Air quality monitoring.

Table 1: Air quality standard based on ambient air quality index (AQI).

AQI Air quality index level Air quality index category Health implications
0∼50 Level 1 Excellent No air pollution
50∼100 Level 2 Good Air quality is acceptable
100∼150 Level 3 Slight pollution Symptoms of irritation appear
150∼200 Level 4 Moderate pollution Respiratory system is affected
200∼300 Level 5 Heavy pollution Symptoms of patients increase
>300 Level 6 Severe pollution Diseases appear
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Meanwhile, the measurement equation is expressed as

Y(k + 1) � 1 0 · · · 0 0􏼂 􏼃
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⋮
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+ V(k + 1). (4)

According to the Technical Regulation on Ambient
Air Quality Index, the air pollution index is divided into
different levels (excellent, good, mild pollution, and so
on). In this paper, the three kinds of models at different
air quality levels are only used for research and
simulation.

2.4. Interactive Multiple Model Approach. In different
weather conditions, atmospheric PM2.5 concentration levels
are different. +e interactive multiple model (IMM), which
uses two ormore models to describe the possible states in the
process of work, is a soft switching algorithm and estimates
the state of the system through effective weighted fusion.
When PM2.5 concentration changes, the different models
can switch to the corresponding PM2.5 concentration model
by the interactive multiple model method in this paper.
+erefore, the IMM model has strong robustness. IMM is
used to achieve the initial condition of a specific model
matching filter by mixing all the state estimations generated
from the filter at the current moment under the assumption
condition. Each model is performed by a standard Kalman
Filter [30]; then, all filters generate updated state estimates
weighted combination. At last, the results of state and co-
variance estimates are finally obtained. At time k, when the
target state estimation is calculated by the interactive
multiple model method [31–33], all filters generate updated
state estimates weighted combination. +us, the time series
models of PM2.5 concentration are established at different air
quality levels in this paper. +e model at different air quality
levels can be represented as follows:

M � M1, M2, . . . , Mj􏽮 􏽯, j � 1, 2, 3. (5)

EachmodelMj has a prior probability. It is given as follows:

μj(0) � P Mj(0)􏼐 􏼑. (6)

+e transformation probability from model i to model j

is denoted as follows:

πij � Pr Mj(k + 1) | Mi(k)􏽮 􏽯. (7)

Next, we need to calculate πij. In the random process,

P Xn+1�j Xn � in, Xn− 1 � in− 1, . . . , X0 � i0
􏼌􏼌􏼌􏼌 􏼑 � P Xn+1 � j

􏼌􏼌􏼌􏼌 Xn � i􏼐􏼐 􏼑,

i, j ∈ E, E � 0, 1, . . .{ },

(8)

we set E � 1, 2, 3{ }. E is a set of three PM2.5 concentration
levels. +e levels 1, 2, and 3 represent excellent, good, and
slight pollution. Xn, n � 0, 1, 2, . . .􏼈 􏼉 is a Markova chain of

discrete time parameters of state space transition probability,
and it is given as follows:

P Xm+n � j | Xm � i( 􏼁, (i, j � 1, 2, . . . , m). (9)

From (9), the air quality level can be approximately
considered as Markov chain. In this paper, the Markov state
transition probability matrix can be obtained as follows:

p �

p11 p12 p13

p21 p22 p23

p31 p32 p33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

+e flow chart of IMM is shown in Figure 4:
In Figure 4,Xn

∧
(k) represents the initial value of the state of

each model before input interaction. Pn

∧
(k) represents the

initial covariance of eachmodel after input interaction.Xn

∧
(k)∗

represents the initial value of the state of each model. Pn

∧
(k)∗

represents the initial covariance of each model. Xn

∧
(k + 1) and

Pn

∧
(k + 1) are the updated state vector and covariance matrix

of each model. X
∧

(k + 1) is the prediction value. P
∧

(k + 1) is
estimation covariance matrix; n � 1, 2, 3, . . ..

In order to apply the IMM algorithm, for different air
quality levels, we establish different PM2.5 time series
models. When air quality grades are excellent, good, and
slightly polluted, respectively, the corresponding PM2.5
concentration models are model 1, model 2, and model 3,
respectively. When the time series model is combined with
Kalman filter, according to the three different air quality
levels that are mentioned above, model 4, model 5, and
model 6 are established, respectively. +e state space of the
models is written as follows:

Xj(k + 1) � Φj(k)Xj(k) + Gj(k)Wj(k), (11)

where Xj is the state vector. +e target state equation is
represented by model j, i, j ∈ [1, 2, 3]. +e measurement
equation is given as follows:

Yj(k + 1) � Hj(k + 1)Xj(k + 1) + Vj(k + 1), (12)

where Φj(k) is the state transition matrix of model Mj,
Wj(k) is the white noise, Wj ∈ (0, Qj), Vj(k) is the ob-
served noise sequence with zeromean and covariancematrix
is Qj, and V ∈ N(0, Qj). Hj(k + 1) is the observation matrix
of model Mj. Gj is the noise correlation matrix of model Mj.
+ere are four steps in the IMM algorithm, which are
reinitialization, model filtering, probability updation, and
prediction. In this paper, we use homogeneous Markov
chain to achieve the transformation between different
models and calculate the transition probability matrix using
submodel predictions. +e specific steps of the IMM algo-
rithm are as follows:

Step 1 (reinitialization). +e prediction probability of the
model from k time to time k + 1 is performed as follows:

μj

∧
� P Mj(k) | Y(k)􏼐 􏼑 � 􏽘

r

i�1
πijμi(k), r � 3, (13)
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where Mj(k) is the selected model at time k and Y(k) is the
measured value at time k. Based on the model probability,
the estimated results of each filter are weighted and merged.
+e probability of model j is expressed as follows:

μj(k + 1) �
μ
∧

·Λj(k + 1)

􏽐
r
j�1μj

∧ Λj(k + 1)
. (14)

Each Kalman filter is initialized as follows:

Xj

∧
(k | k) � E X(k) | Mi(k + 1), Y(k + 1)􏼂 􏼃

� 􏽘
r

i�1
Xi

∧
(k | k)μij(k),

Pj

∧
(k | k) � 􏽘

3

i

Pi(k | k) + Xi

∧
(k | k) − Xj

∧
(k | k)􏼒 􏼓􏼔

· Xi

∧
(k | k) − Xj

∧
(k | k)􏼒 􏼓

T

􏼣 · μij(k),

(15)

where Pj

∧
(k | k) is the reinitialized state vector at time k + 1,

μj is the normalized constant for model j, Xi

∧
(k | k) is the

corresponding covariance state estimation of the j filter,
i, j � 1, 2, . . . , r, and μij(k) is the initial weight of each filter.

Step 2 (model filtering)

Xj

∧
(k + 1 | k) � Φj(k)Xj

∧
(k | k), (16)

where Xj

∧
(k | k) is the reinitialization state at time k. +e

covariance matrix is as follows:

Pj(k + 1 | k) � ΦjPj(k | k)Φj(k) + Gj(k)Qj(k)Gj(k).

(17)
+e Kalman gain is as follows:

Kj(k + 1) � Pj(k + 1 | k) · Hj(k + 1)􏼐 􏼑
T

· Sj(k + 1)􏼐 􏼑
− 1

.

(18)

Covariance matrix can be obtained as follows:

Sj(k + 1) � Hj(k + 1) · Pj(k + 1 | k) · Hj(k + 1)􏼐 􏼑
T

+ Qj(k + 1).
(19)

State estimation updates Xj

∧
(k + 1 | k + 1) and Pj(k +

1 | k + 1) are given as

Xj

∧
(k + 1 ∣ k + 1) � Xj

∧
(k + 1 ∣ k + 1) + Kj(k + 1) · vj(k + 1),

Pj(k + 1 ∣ k + 1) � Pj(k + 1 ∣ k) − Kj(k + 1) · Sj(k + 1)

· Kj(k + 1)􏼐 􏼑
T
.

(20)

+e residual is as follows:

vj(k + 1) � Y(k + 1) − Hj(k + 1) · Xj

∧
(k + 1 | k). (21)

Step 3 (probability updating). Likelihood function Λj(k +

1) is designed as follows:

Λj(k + 1) �
1

2πSj(k + 1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

· exp −
1
2
vj(k + 1)

T
· S

− 1
j (k + 1)vj(k + 1)􏼚 􏼛.

(22)

Initialization of the weight of each Kalman filter in IMM
algorithm is denoted as follows:

μij(k) � P Mi(k) | Mj(k + 1), Y(k)􏼐 􏼑 �
πijμi(k)

μj

∧ , (23)

where πij denotes the transition probability from model i to
model j. μi(k) is model probability vector.

Step 4 (prediction). Prediction results are obtained by the
update probability of each model and hybrid prediction
model can be computed as follows:

X
∧

(k + 1 | k + 1) � 􏽘
r

j�1
Xj

∧
(k + 1 | k + 1) · μj(k + 1), r � 3.

(24)

Estimation covariance matrix is given as follows:

P
IMM

(k + 1 | k + 1) � 􏽘
r

j�1
􏼢Pj(k + 1 | k + 1)

+ X
∧

(k + 1 | k + 1) − Xj

∧
(k + 1 | k + 1)􏼒 􏼓

· X
∧

(k + 1 | k + 1) − Xj

∧
(k + 1 | k + 1)􏼒 􏼓

T

􏼣

· μj(k + 1), r � 3.

(25)

Excellent model Good model Slightly polluted 
model

Combination and model probability update

Input interaction 

X2(k + 1) ^

X1(k) P1(k)^ ^ X2(k) P2(k)^ ^ X3(k) P3(k)^ ^

X(k + 1) P(k + 1)^ ^

P1(k + 1) ^

X1(k)∗ ^ P1(k)∗ ^ X2(k)∗ ^ P2(k)∗ ^ X3(k)∗ ^ P3(k)∗ ^

X1(k + 1) ^ P2(k + 1) ^ X3(k + 1)^ P3(k + 1) ^

Figure 4: Flow chart of IMM.
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3. Simulation Analysis and Prediction

To verify the feasibility and effectiveness of the proposed
IMM algorithm, some simulations are made to predict PM2.5
concentration.+e PM2.5 concentration data from Sept. 29th
00 : 00 to Oct. 1st 00 : 00, Mar. 21st 00 : 00 to 23th 00 : 00, and
Oct. 14th 00 : 00 to 16th 00 : 00 in 2018 (sampled every ten
minutes) are selected as the experimental objects.

PM2.5 concentration in the atmosphere always changes
with the change of environment. For this problem, different
models are transferred by the Markov chain. +us, in the
experimental study, the transfer is determined by the
Markov probability transfer matrix. +e Markov transition
probability is given as follows:

π �

0.963 0.037 0

0 0.9444 0.0556

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (26)

Initial state probability is μ(0) � 0.33. Initial value
X(0) � E[X(0)]. Initial covariance P(0) � E[(X(0)−

E[X(0)])(X(0) − E[X(0)])T].
+e state space equation of model 1 is given as follows:

X1(k + 1)

X2(k + 1)
􏼢 􏼣 �

0.6946 0.3054

1 0
􏼢 􏼣

X1(k)

X2(k)
􏼢 􏼣 +

1

0
􏼢 􏼣e(k + 1).

(27)

+e state space equation of model 2 is given as follows:

X1(k + 1)

X2(k + 1)
􏼢 􏼣 �

0.931 0.069

1 0
􏼢 􏼣

X1(k)

X2(k)
􏼢 􏼣 +

1

0
􏼢 􏼣e(k + 1).

(28)

+e state space equation of model 3 is given as follows:

X1(k + 1)

X2(k + 1)
􏼢 􏼣 �

0.551 0.449

1 0
􏼢 􏼣

X1(k)

X2(k)
􏼢 􏼣 +

1

0
􏼢 􏼣e(k + 1).

(29)

+e model 1 can predict PM2.5 concentration at 0∼50;
the predictive effect is shown in Figure 5. Since model 1 is
established based on data with PM2.5 concentrations be-
tween 0 and 50, when the PM2.5 concentration is more than
50, the predictive effect of the model 1 cannot truly reflect
prediction result at other air quality levels.

In Figure 6, model 2 is used to predict PM2.5 concen-
tration. It shows that the model has a small error when the
PM2.5 concentration is between 50 and 100, and it cannot
predict PM2.5 concentration at other air quality levels. It is
similar to model 1: since the model 2 is established based on
data with PM2.5 concentrations between 50 and 100, the
predictive effect of the model 2 cannot truly reflect pre-
diction result at other air quality levels.

In Figure 7, model 3 is used to predict PM2.5 concen-
trations. From Figure 7, we can see that when PM2.5 con-
centrations are between 100 and 150, the model can well
predict trend of PM2.5 concentration. It is similar to model 1
and model 2: model 3 can only be used to predict PM2.5
concentrations from 100 to 150.

In Figure 8, PM2.5 concentration is predicted by model 4
(AR-Kalman). When PM2.5 concentration is between 0 and
50, prediction error is obviously small. Compared with the
predictive effect of model 1, the predictive effect of model 4 is
better. It is similar to model 1: model 4 can only be used to
predict PM2.5 concentrations from 0 to 50.

In Figure 9, model 5 is used to predict PM2.5 concen-
trations. From Figure 9, we can see that the prediction error
of PM2.5 concentration is smaller than that of model 2 when
the PM2.5 concentration is between 50 and 100.

In Figure 10, the PM2.5 concentration is predicted by
model 6. It can be clearly seen that compared with model 3,
model 6 has a higher prediction accuracy than model 3.

In Figure 11, we adopt the multiple model method to
predict PM2.5 concentration. From Figure 11, we can see that
the IMMmethod can be used to predict PM2.5 concentration
values at all air quality levels effectively. Besides, compared
with the single model, the IMM method has a better pre-
dictive effect. In order to more intuitively compare the
prediction effects among various models, the performance
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Figure 5: PM2.5 concentration prediction result of model 1 (AR).
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indicators of each prediction model are given in Table 2.
Table 2 shows that the prediction error of AR model is
significantly larger than that of the IMM method. In ad-
dition, Figures 5–7 also indicate that the predictive result of
the single model is effective. +e prediction performance
analysis of AR-Kalman model and AR model is given in
Table 2. From Table 2, we can see that the AR-Kalman model
is better than the ARmethod. However, from Figures 8 to 10,
the AR-Kalman model is only applicable to predict PM2.5

concentration at the corresponding air quality level and it
cannot be used to predict accurately PM2.5 concentration at
different air quality levels. In Table 2, when the air quality
level is excellent, the prediction error of IMM is more ac-
curate than the single model (AR-Kalman).+e single model
can only obtain higher prediction accuracy under the cor-
responding air quality conditions. However, IMM can be
used to accurately predict PM2.5 concentration at different
air quality levels.
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Figure 7: PM2.5 concentration prediction result of model 3 (AR).
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Figure 6: PM2.5 concentration prediction result of model 2 (AR).
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+e performance indicators in the above table can be
given by the following metrics. +e mean absolute error
(MAE) is defined as follows:

MAE �
1
N

􏽘

N

i�1
Xi

∧
− �X

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (30)

where Xi is the observation, Xi

∧
is the predictive value, �X is

the mean value of observed PM2.5 concentration, N is the
number of points to sample data, and the second indicator is
MAPE, which is used to calculate mean absolute percentage
error:

MAPE �
1
N

􏽘

N

i�1

Xi

∧
− Xi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

Xi

× 100%. (31)

+e root mean square error (RMSE) is defined as follows:

RMSE �

��������������

1
N

􏽘

N

i�1
Xi

∧
− Xi􏼒 􏼓

2

􏽶
􏽴

. (32)

However, the mean square error (MSE) is defined as
follows:
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Figure 9: PM2.5 concentration prediction result of model 5 (AR-Kalman).
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Figure 8: PM2.5 concentration prediction result of model 4 (AR-Kalman).
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Figure 11: PM2.5 concentration prediction result of IMM.

Table 2: AR-Kalman model, AR model prediction, and IMM results for PM2.5 concentration.

Forecasting model MAE MAPE RMSE MSE
Excellent (AR) 5.48 6.46 7.47 41.8
Good (AR) 5.88 6.50 8.19 48.5
Slight pollution (AR) 5.46 6.31 7.37 40.7
Excellent (AR-Kalman) 2.87 3.18 3.25 17.81
Good (AR-Kalman) 2.49 3.04 2.82 15.45
Slight pollution (AR-Kalman) 2.16 4.72 2.70 14.82
IMM 0.54 0.55 0.95 5.23
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Figure 10: PM2.5 concentration prediction result of model 6 (AR-Kalman).
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MSE �
1
N

􏽘

N

i�1
Xi

∧
− Xi􏼒 􏼓

2
. (33)

+e validity and rationality of the proposed method can
be proved by analysing and comparing various indicators.

4. Conclusions

In this paper, the time series model (AR) of PM2.5 con-
centration is established at different air quality levels and
these models are used to predict PM2.5 concentration. +e
Kalman filter method is introduced by transforming the AR
model into the form of equation of state, and the AR-Kalman
hybrid prediction method was obtained. +e method was
used to predict PM2.5 concentration at different air quality
levels. +en, the method of AR model and AR-Kalman is
compared for PM2.5 concentration prediction. It is indicated
that the AR-Kalman model could predict more accurately
than the AR model. Finally, the proposed interactive mul-
tiple model method is applied and analysed to predict PM2.5
concentration by historical data at different air quality levels.
+e mean average prediction error is proposed as the
evaluation index for the prediction models. +e comparison
indicates that the interactive multiple model (IMM) could
predict more accurately than the single AR model and single
AR-Kalman model. For PM2.5 concentration, this method
has lower prediction error at different air quality levels.

In future work, temperature, pressure, humidity, and
other factors in the weather environment are to be con-
sidered. +us, nonlinear the PM2.5 model will be built and
the dynamic update transition matrix may be considered to
predict PM2.5 concentration.
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