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Abstract. 
We will show that a two-parameter extended entropy function is characterized by
a functional equation. As a corollary of this result, we obtain that Tsallis entropy function is
characterized by a functional equation, which is a different form that used by Suyari and Tsukada, 2009, that is, in a proposition
2.1 in the present paper. We give an interpretation of the functional equation in our main
theorem.

1. Introduction
Recently, generalized entropies have been studied from the mathematical point of view. The typical generalizations of Shannon entropy [1] are Rényi entropy [2] and Tsallis entropy [3]. The recent comprehensive book [4] and the review [5] support to understand the Tsallis statistics for the readers. Rényi entropy and Tsallis entropy are defined by 
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Throughout this paper, we call a parametric extended entropy, such as Rényi entropy and Tsallis entropy, a generalized entropy. If we take 
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We note that Rényi entropy has the additivity 
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Tsallis entropy is rewritten by 
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Since Shannon entropy can be regarded as the expectation value for each value 
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As a further generalization, a two-parameter extended entropy 
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In the paper [16], a characterization of Tsallis entropy function was proven by using the functional equation. In the present paper, we will show that the two-parameter extended entropy function 
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				𝑞
			

			
				
				(
				𝑦
				)
				=
				(
				𝑞
				−
				1
				)
				𝑥
				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				+
				(
				1
				−
				𝑥
				)
				𝑔
			

			

				𝑞
			

			
				
				𝑦
				(
				1
				−
				𝑥
				)
			

			
				𝑞
				−
				2
			

			

				.
			

		
	

						Putting 
	
		
			
				𝑦
				=
				1
			

		
	
 in the above equation, we have 
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			

				𝑥
			

			

				2
			

			

				𝑔
			

			
				
				𝑞
			

			
				(
				𝑥
				)
				+
				(
				1
				−
				𝑥
				)
			

			

				2
			

			

				𝑔
			

			
				
				𝑞
			

			
				
				(
				1
				−
				𝑥
				)
				+
				(
				1
				−
				𝑞
				)
				𝑥
				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				+
				(
				1
				−
				𝑥
				)
				𝑔
			

			

				𝑞
			

			
				
				(
				1
				−
				𝑥
				)
				=
				−
				𝑐
			

			

				𝑞
			

			

				,
			

		
	

						where 
	
		
			

				𝑐
			

			

				𝑞
			

			
				=
				−
				𝑔
			

			
				
				𝑞
			

			
				(
				1
				)
			

		
	
.By integrating (2.3) from 
	
		
			

				2
			

			
				−
				𝑁
			

		
	
 to 1 with respect to 
	
		
			

				𝑦
			

		
	
 and performing the conversion of the variables, we have 
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				
			

			
				𝑥
				2
			

			
				−
				𝑁
			

			

				𝑥
			

			

				𝑔
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				2
				1
				−
				𝑥
			

			
				−
				𝑁
			

			
				(
				1
				−
				𝑥
				)
			

			

				𝑔
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				−
			

			
				1
				2
			

			
				−
				𝑁
			

			

				𝑔
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝑥
				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				+
				(
				1
				−
				𝑥
				)
				𝑔
			

			

				𝑞
			

			
				
				(
				1
				−
				𝑥
				)
				1
				−
				2
			

			
				−
				𝑞
				𝑁
			

			
				
			
			
				𝑞
				.
			

		
	

						By differentiating the above equation with respect to 
	
		
			

				𝑥
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				−
				2
			

			
				−
				𝑁
			

			

				𝑔
			

			

				𝑞
			

			
				
				2
			

			
				−
				𝑁
			

			
				𝑥
				
				−
				𝑔
			

			

				𝑞
			

			
				(
				1
				−
				𝑥
				)
				+
				2
			

			
				−
				𝑁
			

			

				𝑔
			

			

				𝑞
			

			
				
				2
			

			
				−
				𝑁
			

			
				
				=
				(
				1
				−
				𝑥
				)
				1
				−
				2
			

			
				−
				𝑞
				𝑁
			

			
				
			
			
				𝑞
				
				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				𝑞
			

			
				(
				𝑥
				)
				−
				𝑔
			

			

				𝑞
			

			
				(
				1
				−
				𝑥
				)
				−
				(
				1
				−
				𝑥
				)
				𝑔
			

			
				
				𝑞
			

			
				
				.
				(
				1
				−
				𝑥
				)
			

		
	

						Taking the limit 
	
		
			
				𝑁
				→
				∞
			

		
	
 in the above, we have 
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				(
				1
				−
				𝑥
				)
				𝑔
			

			
				
				𝑞
			

			
				(
				𝑥
				)
				+
				(
				1
				−
				𝑞
				)
				𝑔
			

			

				𝑞
			

			
				(
				1
				−
				𝑥
				)
				=
				𝑥
				𝑔
			

			
				
				𝑞
			

			
				(
				𝑥
				)
				+
				(
				1
				−
				𝑞
				)
				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				,
			

		
	

						thanks to (2.7). From (2.9) and (2.12), we have the following differential equation: 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑥
				𝑔
			

			
				
				𝑞
			

			
				(
				𝑥
				)
				+
				(
				1
				−
				𝑞
				)
				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				=
				−
				𝑐
			

			

				𝑞
			

			

				.
			

		
	

						This differential equation has the following general solution: 
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑞
			

			
				𝑐
				(
				𝑥
				)
				=
				−
			

			

				𝑞
			

			
				
			
			
				1
				−
				𝑞
				+
				𝑑
			

			

				𝑞
			

			

				𝑥
			

			
				𝑞
				−
				1
			

			

				,
			

		
	

						where 
	
		
			

				𝑑
			

			

				𝑞
			

		
	
 is an integral constant depending on 
	
		
			

				𝑞
			

		
	
. From 
	
		
			

				𝑔
			

			

				𝑞
			

			
				(
				1
				)
				=
				0
			

		
	
, we have 
	
		
			

				𝑑
			

			

				𝑞
			

			
				=
				𝑐
			

			

				𝑞
			

			
				/
				(
				1
				−
				𝑞
				)
			

		
	
. Thus, we have
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑞
			

			
				(
				𝑥
				)
				=
				𝑐
			

			

				𝑞
			

			

				𝑥
			

			
				𝑞
				−
				1
			

			
				−
				1
			

			
				
			
			
				.
				1
				−
				𝑞
			

		
	

						Finally, we have 
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				=
				𝑐
			

			

				𝑞
			

			

				𝑥
			

			

				𝑞
			

			
				−
				𝑥
			

			
				
			
			
				1
				−
				𝑞
				=
				−
				𝑐
			

			

				𝑞
			

			

				𝑥
			

			

				𝑞
			

			
				l
				n
			

			

				𝑞
			

			
				𝑥
				.
			

		
	

						From 
	
		
			

				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				≥
				0
			

		
	
, we have 
	
		
			

				𝑐
			

			

				𝑞
			

			
				≥
				0
			

		
	
.If we take the limit as 
	
		
			
				𝑞
				→
				1
			

		
	
 in Proposition 2.1, we have the following corollary.
Corollary 2.2 (see [17]).  If the differentiable nonnegative function 
	
		
			

				f
			

		
	
 satisfies the following functional equation:
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				𝑦
				)
				+
				𝑓
				(
				(
				1
				−
				𝑥
				)
				𝑦
				)
				−
				𝑓
				(
				𝑦
				)
				=
				(
				𝑓
				(
				𝑥
				)
				+
				𝑓
				(
				1
				−
				𝑥
				)
				)
				𝑦
				,
				(
				0
				<
				𝑥
				<
				1
				,
				0
				<
				𝑦
				≤
				1
				)
				,
			

		
	

						then the function 
	
		
			

				𝑓
			

		
	
 is uniquely given by 
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				−
				𝑐
				𝑥
				l
				o
				g
				𝑥
				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a nonnegative constant.
3. Main Results
In this section, we give a characterization of a two-parameter extended entropy function by the functional equation. Before we give our main theorem, we review the following result given by Kannappan [18, 19].
Proposition 3.1 (see [18, 19]).  Let two probability distributions  
	
		
			
				(
				𝑝
			

			

				1
			

			
				,
				…
				,
				𝑝
			

			

				𝑛
			

			

				)
			

		
	
 and  
	
		
			
				(
				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑚
			

			

				)
			

		
	
. If the measureable function  
	
		
			
				𝑓
				∶
				(
				0
				,
				1
				)
				→
				ℝ
			

		
	
 satisfies 
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝑓
				
				𝑝
			

			

				𝑖
			

			

				𝑞
			

			

				𝑗
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑝
			

			
				𝛼
				𝑖
				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝑓
				
				𝑞
			

			

				𝑗
			

			
				
				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑞
			

			
				𝛽
				𝑗
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝑓
				
				𝑝
			

			

				𝑖
			

			
				
				,
			

		
	

						for all 
	
		
			
				(
				𝑝
			

			

				1
			

			
				,
				…
				,
				𝑝
			

			

				𝑛
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑚
			

			

				)
			

		
	
 with fixed 
	
		
			
				𝑚
				,
				𝑛
				≥
				3
			

		
	
, then the function 
	
		
			

				𝑓
			

		
	
 is given by 
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑐
				
				𝑝
				𝑓
				(
				𝑝
				)
				=
			

			

				𝛼
			

			
				−
				𝑝
			

			

				𝛽
			

			
				
				,
				𝛼
				≠
				𝛽
				,
				𝑐
				𝑝
			

			

				𝛼
			

			
				l
				o
				g
				𝑝
				,
				𝛼
				=
				𝛽
				,
				𝑐
				𝑝
				l
				o
				g
				𝑝
				+
				𝑏
				(
				𝑚
				𝑛
				−
				𝑚
				−
				𝑛
				)
				𝑝
				+
				𝑏
				,
				𝛼
				=
				𝛽
				=
				1
				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 and 
	
		
			

				𝑏
			

		
	
 are arbitrary constants.
Here, we review a two-parameter generalized Shannon additivity, [14, equation (30)]
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑝
			

			
				𝑖
				𝑗
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑝
			

			
				𝛼
				𝑖
				𝑚
			

			

				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑝
				(
				𝑗
				∣
				𝑖
				)
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑝
			

			

				𝑖
			

			

				
			

			

				𝑚
			

			

				𝑖
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝑝
				(
				𝑗
				∣
				𝑖
				)
			

			

				𝛽
			

			

				,
			

		
	

					where 
	
		
			

				𝑠
			

			
				𝛼
				,
				𝛽
			

		
	
 is a component of the trace form of the two-parameter entropy [14, equation (26)] 
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑝
			

			

				𝑖
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑝
			

			

				𝑖
			

			
				
				.
			

		
	

Equation (3.3) was used to prove the uniqueness theorem for two-parameter extended entropy in [14]. As for (3.3), a tree-graphical interpretation was given in [14]. The condition (3.1) can be read as the independent case (
	
		
			
				𝑝
				(
				𝑗
				∣
				𝑖
				)
				=
				𝑝
			

			

				𝑗
			

		
	
) in  (3.3).
Here, we consider the nontrivial simplest case for (3.3). Take 
	
		
			

				𝑝
			

			
				𝑖
				𝑗
			

			
				=
				{
				𝑞
			

			

				1
			

			
				,
				𝑞
			

			

				2
			

			
				,
				𝑞
			

			

				3
			

			

				}
			

		
	
, 
	
		
			

				𝑝
			

			

				1
			

			
				=
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

		
	
, and 
	
		
			

				𝑝
			

			

				2
			

			
				=
				𝑞
			

			

				3
			

		
	
. then we have 
	
		
			
				𝑝
				(
				1
				∣
				1
				)
				=
				𝑞
			

			

				1
			

			
				/
				(
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				)
			

		
	
, 
	
		
			
				𝑝
				(
				2
				∣
				1
				)
				=
				𝑞
			

			

				2
			

			
				/
				(
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				)
			

		
	
, 
	
		
			
				𝑝
				(
				1
				∣
				2
				)
				=
				1
			

		
	
, and 
	
		
			
				𝑝
				(
				2
				∣
				2
				)
				=
				0
			

		
	
, then (3.3) is written by
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				,
				𝑞
			

			

				2
			

			
				,
				𝑞
			

			

				3
			

			
				
				=
				
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛼
			

			
				
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				+
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				2
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				
				+
				𝑞
			

			
				𝛼
				3
			

			
				
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				(
				1
				)
				+
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				(
				0
				)
				+
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				
				
				𝑞
			

			

				1
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛽
			

			
				+
				
				𝑞
			

			

				2
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛽
			

			
				
				+
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				3
			

			
				
				.
			

		
	

If 
	
		
			

				𝑠
			

			
				𝛼
				,
				𝛽
			

		
	
 is an entropic function, then it vanishes at 0 or 1, since the entropy has no informational quantity for the deterministic cases, then the above identity is reduced in the following: 
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				,
				𝑞
			

			

				2
			

			
				,
				𝑞
			

			

				3
			

			
				
				=
				
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛼
			

			
				
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				+
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				2
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				
				+
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				
				
				𝑞
			

			

				1
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛽
			

			
				+
				
				𝑞
			

			

				2
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛽
			

			
				
				+
				𝑠
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				3
			

			
				
				.
			

		
	

In the following theorem, we adopt a simpler condition than (3.1).
Theorem 3.2.  If the differentiable nonnegative function  
	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

		
	
 with two positive parameters  
	
		
			
				𝛼
				,
				𝛽
				∈
				ℝ
			

		
	
 satisfies the following functional equation: 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				𝑦
				)
				=
				𝑥
			

			

				𝛼
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑦
				)
				+
				𝑦
			

			

				𝛽
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				)
				,
				(
				0
				<
				𝑥
				,
				𝑦
				≤
				1
				)
				,
			

		
	

						then the function 
	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

		
	
 is uniquely given by 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				)
				=
				𝑐
			

			
				𝛼
				,
				𝛽
			

			

				𝑥
			

			

				𝛽
			

			
				−
				𝑥
			

			

				𝛼
			

			
				
			
			
				𝑓
				𝛼
				−
				𝛽
				,
				(
				𝛼
				≠
				𝛽
				)
				,
			

			

				𝛼
			

			
				(
				𝑥
				)
				=
				−
				𝑐
			

			

				𝛼
			

			

				𝑥
			

			

				𝛼
			

			
				l
				o
				g
				𝑥
				,
				(
				𝛼
				=
				𝛽
				)
				,
			

		
	

						where 
	
		
			

				𝑐
			

			
				𝛼
				,
				𝛽
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝛼
			

		
	
 are nonnegative constants depending only on the parameters 
	
		
			

				𝛼
			

		
	
 (and 
	
		
			

				𝛽
			

		
	
).
Proof. If we put 
	
		
			
				𝑦
				=
				1
			

		
	
, then we have 
	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				1
				)
				=
				0
			

		
	
 due to 
	
		
			
				𝑥
				>
				0
			

		
	
. By differentiating  (3.7) with respect to 
	
		
			

				𝑦
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				𝑥
				𝑓
			

			
				
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				𝑦
				)
				=
				𝑥
			

			

				𝛼
			

			

				𝑓
			

			
				
				𝛼
				,
				𝛽
			

			
				(
				𝑦
				)
				+
				𝛽
				𝑦
			

			
				𝛽
				−
				1
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				)
				.
			

		
	

						Putting 
	
		
			
				𝑦
				=
				1
			

		
	
 in (3.9), we have the following differential equation: 
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				𝑥
				𝑓
			

			
				
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				)
				−
				𝛽
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				)
				=
				−
				𝑐
			

			
				𝛼
				,
				𝛽
			

			

				𝑥
			

			

				𝛼
			

			

				,
			

		
	

						where we put 
	
		
			

				𝑐
			

			
				𝛼
				,
				𝛽
			

			
				≡
				−
				𝑓
			

			
				
				𝛼
				,
				𝛽
			

			
				(
				1
				)
			

		
	
. Equation (3.10) can be deformed as follows: 
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝛽
				+
				1
			

			
				
				𝑥
			

			
				−
				𝛽
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				(
				𝑥
				)
			

			

				
			

			
				=
				−
				𝑐
			

			
				𝛼
				,
				𝛽
			

			

				𝑥
			

			

				𝛼
			

			

				,
			

		
	

						that is, we have 
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				
				𝑥
			

			
				−
				𝛽
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				(
				𝑥
				)
			

			

				
			

			
				=
				−
				𝑐
			

			
				𝛼
				,
				𝛽
			

			

				𝑥
			

			
				𝛼
				−
				𝛽
				−
				1
			

			

				.
			

		
	

						Integrating both sides on the above equation with respect to 
	
		
			

				𝑥
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			

				𝑥
			

			
				−
				𝛽
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				𝑐
				(
				𝑥
				)
				=
				−
			

			
				𝛼
				,
				𝛽
			

			
				
			
			
				𝑥
				𝛼
				−
				𝛽
			

			
				𝛼
				−
				𝛽
			

			
				+
				𝑑
			

			
				𝛼
				,
				𝛽
			

			

				,
			

		
	

						where 
	
		
			

				𝑑
			

			
				𝛼
				,
				𝛽
			

		
	
 is a integral constant depending on 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
. Therefore, we have 
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				𝑐
				(
				𝑥
				)
				=
				−
			

			
				𝛼
				,
				𝛽
			

			
				
			
			
				𝑥
				𝛼
				−
				𝛽
			

			

				𝛼
			

			
				+
				𝑑
			

			
				𝛼
				,
				𝛽
			

			

				𝑥
			

			

				𝛽
			

			

				.
			

		
	

						By 
	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				1
				)
				=
				0
			

		
	
, we have 
	
		
			

				𝑑
			

			
				𝛼
				,
				𝛽
			

			
				=
				𝑐
			

			
				𝛼
				,
				𝛽
			

			
				/
				(
				𝛼
				−
				𝛽
				)
			

		
	
. Thus, we have 
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				𝑐
				(
				𝑥
				)
				=
			

			
				𝛼
				,
				𝛽
			

			
				
			
			
				
				𝑥
				𝛼
				−
				𝛽
			

			

				𝛽
			

			
				−
				𝑥
			

			

				𝛼
			

			
				
				.
			

		
	

						Also by 
	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				)
				≥
				0
			

		
	
, we have 
	
		
			

				𝑐
			

			
				𝛼
				,
				𝛽
			

			
				≥
				0
			

		
	
.As for the case of 
	
		
			
				𝛼
				=
				𝛽
			

		
	
, we can prove by the similar way.
Remark 3.3. We can derive  (3.6) from our condition  (3.7). Firstly, we easily have 
	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				0
				)
				=
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				1
				)
				=
				0
			

		
	
 from our condition equation  (3.7). In addition, we have for 
	
		
			
				𝑞
				=
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

		
	
,
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
				𝑞
			

			

				1
			

			
				
			
			
				𝑞
				𝑞
				,
				𝑞
			

			

				2
			

			
				
			
			
				𝑞
				,
				𝑞
			

			

				3
			

			
				
				=
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
				𝑞
			

			

				1
			

			
				
			
			
				𝑞
				
				+
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
				𝑞
			

			

				2
			

			
				
			
			
				𝑞
				
				+
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				3
			

			
				
				=
				𝑞
			

			

				𝛼
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				
			
			
				𝑞
				
				+
				
				𝑞
			

			

				1
			

			
				
			
			
				𝑞
				
			

			

				𝛽
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑞
				)
				+
				𝑞
			

			

				𝛼
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				2
			

			
				
			
			
				𝑞
				
				+
				
				𝑞
			

			

				2
			

			
				
			
			
				𝑞
				
			

			

				𝛽
			

			

				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				(
				𝑞
				)
				+
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				3
			

			
				
				=
				
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛼
			

			
				
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				+
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				2
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				
				+
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			
				
				
				
				𝑞
			

			

				1
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛽
			

			
				+
				
				𝑞
			

			

				2
			

			
				
			
			

				𝑞
			

			

				1
			

			
				+
				𝑞
			

			

				2
			

			

				
			

			

				𝛽
			

			
				
				+
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑞
			

			

				3
			

			
				
				.
			

		
	

						Thus, we may interpret that our condition  (3.7) contains an essential part of the two-parameter generalized Shannon additivity.Note that we can reproduce the two-parameter entropic function by the use of 
	
		
			

				𝑓
			

			
				𝛼
				,
				𝛽
			

		
	
 as 
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				−
				𝑦
				𝑓
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑥
			

			
				
			
			
				𝑦
				
				=
				𝑥
			

			

				𝛼
			

			

				𝑦
			

			
				1
				−
				𝛽
			

			
				−
				𝑥
			

			

				𝛽
			

			

				𝑦
			

			
				1
				−
				𝛼
			

			
				
			
			
				,
				𝛼
				−
				𝛽
			

		
	

						with 
	
		
			

				𝑐
			

			
				𝛼
				,
				𝛽
			

			
				=
				1
			

		
	
 for simplicity. This leads to two-parameter extended relative entropy [15] 
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			

				𝐷
			

			
				𝛼
				,
				𝛽
			

			
				
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				|
				|
				𝑦
			

			

				1
			

			
				,
				…
				,
				𝑦
			

			

				𝑛
			

			
				
				≡
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑥
			

			
				𝛼
				𝑗
			

			

				𝑦
			

			
				𝑗
				1
				−
				𝛽
			

			
				−
				𝑥
			

			
				𝛽
				𝑗
			

			

				𝑦
			

			
				𝑗
				1
				−
				𝛼
			

			
				
			
			
				.
				𝛼
				−
				𝛽
			

		
	

						See also [20] on the first appearance of the Tsallis relative entopy (generalized Kullback-Leibler information).If we take 
	
		
			
				𝛼
				=
				𝑞
				,
				𝛽
				=
				1
			

		
	
 or 
	
		
			
				𝛼
				=
				1
				,
				𝛽
				=
				𝑞
			

		
	
 in Theorem 3.2, we have the following corollary.
Corollary 3.4.   If the differentiable nonnegative function  
	
		
			

				𝑓
			

			

				𝑞
			

		
	
 with a positive parameter  
	
		
			
				𝑞
				∈
				ℝ
			

		
	
 satisfies the following functional equation:  
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				𝑦
				)
				=
				𝑥
			

			

				𝑞
			

			

				𝑓
			

			

				𝑞
			

			
				(
				𝑦
				)
				+
				𝑦
				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				,
				(
				0
				<
				𝑥
				,
				𝑦
				≤
				1
				,
				𝑞
				≠
				1
				)
				,
			

		
	

						then the function 
	
		
			

				𝑓
			

			

				𝑞
			

		
	
 is uniquely given by 
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				=
				−
				𝑐
			

			

				𝑞
			

			

				𝑥
			

			

				𝑞
			

			
				l
				n
			

			

				𝑞
			

			
				𝑥
				,
			

		
	

						where 
	
		
			

				𝑐
			

			

				𝑞
			

		
	
 is a nonnegative constant depending only on the parameter 
	
		
			

				𝑞
			

		
	
.
Here, we give an interpretation of the functional equation (3.19) from the view of Tsallis statistics.
Remark 3.5. We assume that we have the following two functional equations for 
	
		
			
				0
				<
				𝑥
			

		
	
,  
	
		
			
				𝑦
				≤
				1
			

		
	
: 
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				𝑦
				)
				=
				𝑦
				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑓
			

			

				𝑞
			

			
				(
				𝑦
				)
				+
				(
				1
				−
				𝑞
				)
				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				𝑓
			

			

				𝑞
			

			
				𝑓
				(
				𝑦
				)
				,
			

			

				𝑞
			

			
				(
				𝑥
				𝑦
				)
				=
				𝑦
			

			

				𝑞
			

			

				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				+
				𝑥
			

			

				𝑞
			

			

				𝑓
			

			

				𝑞
			

			
				(
				𝑦
				)
				+
				(
				𝑞
				−
				1
				)
				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				𝑓
			

			

				𝑞
			

			
				(
				𝑦
				)
				.
			

		
	

						These equations lead to the following equations for 
	
		
			
				0
				<
				𝑥
			

			

				𝑖
			

			
				,
				𝑦
			

			

				𝑗
			

			
				≤
				1
			

		
	
: 
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			

				𝑦
			

			

				𝑗
			

			
				
				=
				𝑦
			

			

				𝑗
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				+
				𝑥
			

			

				𝑖
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				+
				(
				1
				−
				𝑞
				)
				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				,
				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			

				𝑦
			

			

				𝑗
			

			
				
				=
				𝑦
			

			
				𝑞
				𝑗
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				+
				𝑥
			

			
				𝑞
				𝑖
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				+
				(
				𝑞
				−
				1
				)
				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				,
			

		
	

						where 
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑛
			

		
	
 and 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑚
			

		
	
. Taking the summation on 
	
		
			

				𝑖
			

		
	
 and 
	
		
			

				𝑗
			

		
	
 in both sides, we have 
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			

				𝑦
			

			

				𝑗
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				+
				(
				1
				−
				𝑞
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			

				
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				,
			

			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			

				𝑦
			

			

				𝑗
			

			
				
				=
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑦
			

			
				𝑞
				𝑗
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑥
			

			
				𝑞
				𝑖
				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				+
				(
				𝑞
				−
				1
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑖
			

			

				
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑓
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑗
			

			
				
				,
			

		
	

						under the condition 
	
		
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑥
			

			

				𝑖
			

			
				=
				∑
			

			
				𝑚
				𝑗
				=
				1
			

			

				𝑦
			

			

				𝑗
			

			
				=
				1
			

		
	
. If the function 
	
		
			

				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
			

		
	
 is given by (3.20), then two above functional equations coincide with two nonadditivity relations given in  (1.4) and (1.11).On the other hand, we have the following equation from (23) and (3.21): 
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑞
			

			
				
				𝑥
				(
				𝑥
				𝑦
				)
				=
			

			

				𝑞
			

			
				+
				𝑥
			

			
				
			
			
				2
				
				𝑓
			

			

				𝑞
			

			
				
				𝑦
				(
				𝑦
				)
				+
			

			

				𝑞
			

			
				+
				𝑦
			

			
				
			
			
				2
				
				𝑓
			

			

				𝑞
			

			
				(
				𝑥
				)
				,
				(
				0
				<
				𝑥
				,
				𝑦
				≤
				1
				,
				𝑞
				≠
				1
				)
				.
			

		
	

						By a similar way to the proof of Theorem 3.2, we can show that the functional equation (3.25) uniquely determines the function 
	
		
			

				𝑓
			

			

				𝑞
			

		
	
 by the form given in (3.20). Therefore, we can conclude that two functional equations (23) and (3.21), which correspond to the non-additivity relations  (1.4) and  (1.11), also characterize Tsallis entropy function.If we again take the limit as 
	
		
			
				𝑞
				→
				1
			

		
	
 in Corollary 3.4, we have the following corollary.
Corollary 3.6.  If the differentiable nonnegative function  
	
		
			

				𝑓
			

		
	
 satisfies the following functional equation:  
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				𝑦
				)
				=
				𝑦
				𝑓
				(
				𝑥
				)
				+
				𝑥
				𝑓
				(
				𝑦
				)
				,
				(
				0
				<
				𝑥
				,
				𝑦
				≤
				1
				)
				,
			

		
	

						then the function 
	
		
			

				𝑓
			

		
	
 is uniquely given by 
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
				−
				𝑐
				𝑥
				l
				o
				g
				𝑥
				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a nonnegative constant.
4. Conclusion
As we have seen, the two-parameter extended entropy function can be uniquely determined by a simple functional equation. Also an interpretation related to a tree-graphical structure was given as a remark.
Recently, the extensive behaviours of generalized entropies were studied in [21–23]. Our condition given in (3.7) may be seen as extensive form. However, I have not yet found any relation between our functional (3.7) and the extensive behaviours of the generalized entropies. This problem is not the purpose of the present paper, but it is quite interesting to study this problem as a future work.
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