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Abstract. 
Recently, we introduced a type of autocorrelation function (ACF) to describe a long-range dependent (LRD) process indexed with two parameters, which takes standard fractional Gaussian noise (fGn for short) as a special case. For simplicity, we call it the generalized fGn (GfGn). This short paper gives the power spectrum density function (PSD) of GfGn.


1. Introduction
LRD time series increasingly gains applications to many fields of science and technologies; see, for example, Mandelbrot [1] and references therein. In this regard, standard fGn introduced by Mandelbrot and van Ness is a widely used tool for modeling LRD time series; see, for example, Beran [2], Abuzeid et al. [3, 4], and Liao et al. [5]. Following [1, H11], [2], its ACF is given by 
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Li [6] recently introduced an ACF form that is a generalization of ACF of fGn. Since ACF is an even function, we write ACF of GfGn by
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2. PSD of GfGn
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Corollary 2.  
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Proof. Note 
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Proof.  This corollary is straightforward from Lemma 3.
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  The following proposition is a consequence of Corollaries 2, 6, and 7. 
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				(
				2
				𝐻
				)
				Γ
				(
				1
				+
				𝑘
				)
				×
				s
				i
				n
				𝛼
				(
				2
				𝐻
				−
				𝑘
				)
				𝜋
			

			
				
			
			
				2
				
				|
				𝜔
				|
			

			
				−
				𝛼
				(
				2
				𝐻
				−
				𝑘
				)
				−
				1
			

			
				,
				|
				𝜏
				|
			

			

				𝛼
			

			
				>
				1
				.
			

		
	

Considering the leading term of (8) results in the following proposition.
Proposition 9.  PSD of GfGn has the following approximate value:
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑆
				(
				𝜔
				)
				≈
				s
				i
				n
				(
				𝐻
				𝛼
				𝜋
				)
				Γ
				(
				2
				𝐻
				𝛼
				+
				1
				)
				|
				𝜔
				|
			

			
				−
				2
				𝐻
				𝛼
				−
				1
			

			

				.
			

		
	

  From (9), we can easily get the two notes below.
Note 1. 
	
		
			
				𝑆
				(
				𝜔
				)
			

		
	
 is divergent at the origin for 
	
		
			
				0
				<
				2
				𝐻
				𝛼
				+
				1
				<
				1
			

		
	
, which is the LRD condition. This is the basic feature of LRD process. 
Note 2.  Recall 
	
		
			
				2
				𝐻
				𝛼
				+
				1
				>
				0
			

		
	
. Then, the cases of 
	
		
			
				2
				𝐻
				𝛼
				+
				1
				<
				1
			

		
	
 and 
	
		
			
				𝐻
				∈
				(
				0
				.
				5
				,
				1
				)
			

		
	
 imply 
	
		
			
				𝛼
				∈
				(
				0
				,
				1
				]
			

		
	
. This explains the range of 
	
		
			

				𝛼
			

		
	
 for GfGn from a view in the frequency domain. 
3. Conclusions
We have derived PSD of GfGn. Its approximate expression has been given. The range of 
	
		
			

				𝛼
			

		
	
 has been explained from a spectral view.
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