Research Article

Higher Order Compact Finite Difference Schemes for Unsteady Boundary Layer Flow Problems

P. G. Dlamini, 1 S. S. Motsa, 2 and M. Khumalo 1

1 Department of Mathematics, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
2 School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville 3209, South Africa

Correspondence should be addressed to P. G. Dlamini; phgdlamini@gmail.com

Received 1 October 2013; Accepted 2 December 2013

Academic Editor: Waqar Khan

Copyright © 2013 P. G. Dlamini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the applicability of the compact finite difference relaxation method (CFDRM) in solving unsteady boundary layer flow problems modelled by nonlinear partial differential equations. The CFDRM utilizes the Gauss-Seidel approach of decoupling algebraic equations to linearize the governing equations and solve the resulting system of ordinary differential equations using compact finite difference schemes. The CFDRM has only been used to solve ordinary differential equations modelling boundary layer problems. This work extends its applications to nonlinear partial differential equations modelling unsteady boundary layer flows. The CFDRM is validated on two examples and the results are compared to results of the Keller-box method.

1. Introduction

The many, important applications associated with boundary layer flow and heat transfer induced by a stretching surface have made them one of the most studied problems in the field of fluid dynamics. These applications include aerodynamic extrusion of plastic sheets, the cooling process of metallic plates in a cooling bath, and the cooling and/or drying of paper and textiles Sakiadis [1] was the first to study boundary layer flows induced by a stretching surface. Since then, due to their industrial importance they have been studied by quite a number of researchers. Initially, steady flows were considered, but since it is not always to maintain steady state conditions, in recent years the focus has shifted towards unsteady flows. In this work, we consider unsteady flows modelled by partial differential equations.

In solving the unsteady boundary layer problems many researchers have employed the Williams III and Rhine [2] transformation. Williams III and Rhine introduced self-similar coordinates to transform the equations governing the unsteady flows by converting the infinite time scale of unsteady problems to a finite region of integration. Various analytical and numerical methods have been used to solve the transformed equations. The Keller-box method of Cebeci and Bradshaw [3] has been very popular in solving this kind of problems amongst researchers. These include Seshadri et al. [4] who combined the Keller-box and perturbation series approach for the solution of unsteady mixed convection flow along a heated vertical plate. Nazar et al. [5, 6] solved the unsteady boundary layer flow problem due to an impulsively stretching surface in a rotating fluid by means of the Keller-box numerical method, and they obtained a first-order perturbation approximation of the solution. The limitation of the perturbation approach, as noted by Liao [7], is that it gives solutions that are only valid for small time. Liao proposed the use of the homotopy analysis method (HAM) instead and since then the HAM has been dominantly used in solving the unsteady boundary layer flow problems (see [8–16]). The advantage of the HAM over the perturbation techniques is that it is able to produce solutions valid for all time.

In this work we propose the use of a new method that combines the use of higher order compact finite difference (CFD) schemes and the Gauss-Seidel approach of solving algebraic equations. The method called compact finite difference relaxation method (CFDRM) has only been used once by Dlamini et al. [17] to solve ordinary differential equations. The CFDRM is based on simple decoupling and rearrangement of the governing equations and numerically integrating.
the resulting equations using the CFD schemes. The use of higher order CFD schemes is motivated by the fact that they produce highly accurate solutions on coarser grids with greater computational efficiency. Various CFD schemes used for applications such as interpolation, filtering, and evaluating high-order derivatives were discussed in detail by Lele [18]. CFD schemes have been used to solve, for example, Burger’s equation [19, 20], Navier-Stokes equation [21], Korteweg-de Vries equation [22], Black-Scholes equation [23], and many more [24–26]. In this work we explore their usage in solving unsteady boundary layer flow problems.

We consider two examples, the unsteady one-dimensional MHD laminar boundary layer flow due to an impulsively stretching surface. Section 5 contains the unsteady three-dimensional MHD flow and heat transfer over an impulsively stretching surface. Section 4 presents CFDRM implementation of an laminar boundary layer flow due to an impulsively stretching surface that was previously studied by Srinivasan and Eswara [27], and the unsteady three-dimensional MHD laminar boundary layer flow due to an impulsively stretching surface.

Consider the nonlinear differential equations

\[y'' + p(x) y' + q(x) y(x) + f(x, y, y') = 0, \]

where \(f(x, y, y') \) is a nonlinear function, \(p(x) \) and \(q(x) \) are known functions of \(x \), and \(y_a \) and \(y_b \) are known constants. In solving (4) we apply the CFD approximation for the first and second derivatives given by (2) and (3), respectively, at the interior nodes \((i = 2, \ldots, N - 1) \). Since we know boundary conditions at \(i = 1 \) and \(i = N \), the CFD schemes must be adjusted for the nodes near the boundary points. In order to maintain the order \(O(h^6) \) accuracy at the boundary points as in the interior points and to maintain the same tridiagonal format, we use the following one sided scheme at \(i = 2 \):

\[y'_2 + \frac{1}{3} y'_3 = \frac{1}{h} (a_1 y_1 + a_2 y_2 + a_3 y_3 + a_4 y_4 + a_5 y_5 + a_6 y_6 + a_7 y_7), \]

and when \(i = N - 1 \) we use

\[\frac{1}{3} y'_{N-2} + y'_{N-1} = \frac{1}{h} (b_1 y_N + b_2 y_{N-1} + b_3 y_{N-3} + b_4 y_{N-4} + b_5 y_{N-5} + b_6 y_{N-6} + b_7 y_{N-7}), \]

where \(a_i, b_i \) \((i = 1, \ldots, 7)\) are constants to be determined. To obtain a sixth-order accurate scheme we use Taylor series expansion about \(x_1 \) and \(x_N \) up to \(O(h^6) \), in (5) and (6), respectively, and equate terms of order \(h \). In each case, we obtain a system of seven linear algebraic equations in seven unknowns which are solved to give

\[a_1 = -\frac{7}{45}, \quad a_2 = -\frac{17}{12}, \quad a_3 = \frac{83}{36}, \quad a_4 = -\frac{11}{9}, \]
\[a_5 = \frac{2}{3}, \quad a_6 = -\frac{37}{180}, \quad a_7 = \frac{1}{36}, \]
\[b_k = -a_k, \quad k = 1, 2, \ldots, 7. \]

Similarly, for the second derivatives, we use

\[y''_2 + \frac{2}{11} y''_3 = \frac{1}{h^2} \left(c_1 y_1 + c_2 y_2 + c_3 y_3 + c_4 y_4 + c_5 y_5 + c_6 y_6 + c_7 y_7 + c_8 y_8 \right), \]

\[y''(a) = y_a, \quad y''(b) = y_b, \]

The rest of the paper is organized as follows. In Section 2, we discuss the derivation of the compact finite difference schemes. In Section 3 we discuss the development of the CFDRM for computing the solution of an unsteady MHD laminar boundary layer flow due to an impulsively stretching surface. Section 4 presents CFDRM implementation of an unsteady three-dimensional MHD flow and heat transfer over an impulsively stretching plate. Section 5 contains the results and discussion and the conclusions are given in Section 6.

2. Compact Finite Difference Schemes

In the derivation of the CFD schemes we consider a one-dimensional uniform mesh on the region \([a, b]\) with nodes \(x_i \) \((i = 1, 2, \ldots, N)\), where

\[a = x_1 < x_2 < \cdots < x_N = b, \]

and a corresponding function \(y_i = y(x_i) \) at the nodes. The distance between any two successive nodes is a constant \(h = x_i - x_{i-1} \). Sixth-order approximations of the first, second, and third derivatives at interior nodes can be obtained using the following schemes (see [18] for details):

\[
\frac{1}{3} y'_{i-1} + y'_{i} + \frac{1}{3} y'_{i+1} = \frac{14}{9} y_{i+1} - y_{i-1} + \frac{1}{9} y_{i+2} - y_{i-2}, \quad (2)
\]

\[
\frac{2}{11} y''_{i-1} + y''_{i} + \frac{2}{11} y''_{i+1} = \frac{12}{11} y_{i+1} - 2 y_{i} + y_{i-1} + \frac{3}{11} y_{i+2} - 2 y_{i+1} + y_{i+2}. \quad (3)
\]

For illustrative purposes we describe the application of the CFD schemes to second-order differential equations for \(y(x) \) with known boundary conditions at \(y(a) \) and \(y(b) \). Consider the nonlinear differential equations

\[y'' + p(x) y' + q(x) y(x) + f(x, y, y') = 0, \]

\[y(a) = y_a, \quad y(b) = y_b, \]
at \(i = 2 \) and

\[
\frac{2}{11} y_N'' + y_{N-1}'' = \frac{1}{h^2} \left(d_1 y_N + d_2 y_{N-1} + d_3 y_{N-3} + d_4 y_{N-4} + d_5 y_{N-5} + d_6 y_{N-6} + d_7 y_{N-7} + d_8 y_{N-8} \right),
\]

at \(i = N-1 \). The parameters \(c_i, d_i \) can be determined by expanding (8) and using Taylor series and equating powers of \(h \) and subsequently solving the resulting equations. This gives

\[
c_1 = \frac{31}{45}, \quad c_2 = -\frac{19}{110}, \quad c_3 = -\frac{339}{110},
\]

\[
c_4 = \frac{1933}{396}, \quad c_5 = -\frac{40}{11}, \quad c_6 = \frac{96}{55},\quad \text{and} \quad c_i = \frac{13}{220}, \quad d_i = c_i, \quad i = 1, 2, \ldots, 8.
\]

Using the above equations, the equations for approximating the first- and second-order derivatives can be expressed as

\[
\begin{align*}
A_1 Y' &= B_1 Y + K_1, \\
A_2 Y'' &= B_2 Y + K_2,
\end{align*}
\]

where

\[
A_1 = \begin{bmatrix}
1 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1/3 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1/3 & 1 & 1/3 & 1 & 1/3 & 1 & 1/3 \\
1 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 \\
1 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 \\
1 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 \\
1 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 & 1/3 \\
\end{bmatrix}_{(N-2) \times (N-2)}, \quad B_1 = \begin{bmatrix}
0 & 7/9 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 \\
0 & 1/9 & 7/9 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 \\
0 & 1/9 & 1/9 & 7/9 & 1/9 & 1/9 & 1/9 & 1/9 \\
0 & 1/9 & 1/9 & 1/9 & 7/9 & 1/9 & 1/9 & 1/9 \\
0 & 1/9 & 1/9 & 1/9 & 1/9 & 7/9 & 1/9 & 1/9 \\
0 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 & 7/9 & 1/9 \\
0 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 & 7/9 \\
0 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 & 1/9 \\
\end{bmatrix}_{(N-2) \times (N-2)},
\]

\[
K_1 = \begin{bmatrix}
\frac{c_1 y_1}{36} & \frac{c_2 y_1}{36} & \frac{c_3 y_1}{36} & \frac{c_4 y_1}{36} & \frac{c_5 y_1}{36} & \frac{c_6 y_1}{36} & \frac{c_7 y_1}{36} & \frac{c_8 y_1}{36} \\
\frac{c_1 y_1}{36} & \frac{c_2 y_1}{36} & \frac{c_3 y_1}{36} & \frac{c_4 y_1}{36} & \frac{c_5 y_1}{36} & \frac{c_6 y_1}{36} & \frac{c_7 y_1}{36} & \frac{c_8 y_1}{36} \\
\vdots & \vdots \\
\frac{c_1 y_N}{36} & \frac{c_2 y_N}{36} & \frac{c_3 y_N}{36} & \frac{c_4 y_N}{36} & \frac{c_5 y_N}{36} & \frac{c_6 y_N}{36} & \frac{c_7 y_N}{36} & \frac{c_8 y_N}{36} \\
\end{bmatrix}_{(N-2) \times 1}.
\]
\[Y' = [y_2', y_3', \ldots, y_{N-2}', y_{N-1}']^T, \]
\[Y'' = [y_2'', y_3'', \ldots, y_{N-2}'', y_{N-1}'']^T. \]
\[(12) \]

From (11), \(Y' \) and \(Y'' \) can be expressed as
\[Y' = E_1 Y + H_1, \]
\[Y'' = E_2 Y + H_2, \]
where
\[E_1 = A_1^{-1} B_1, \quad E_2 = A_2^{-1} B_2, \]
\[H_1 = A_1^{-1} K_1, \quad H_2 = A_2^{-1} K_2. \]
\[(14) \]

3. Unsteady MHD Laminar Boundary Layer Flow Due to an Impulsively Stretching Surface

We consider the unsteady, laminar incompressible flow of a viscous electrically conducting fluid over a linear surface. This problem was studied by Srinivasa and Eswara [27]. They used the Keller-box method to solve the problem. After applying Williams III and Rhine [2] similarity transformation to the original equation governing this flow they obtained the following dimensionless governing equation for the flow
\[f''' + \frac{1}{2} \eta (1 - \xi) f'' + \xi \left(f f'' - M f' - f'^2 \right) = \xi (1 - \xi) \frac{\partial f'}{\partial \xi}, \]
subject to the boundary conditions
\[f(0, \xi) = 0, \quad f'(0, \xi) = 1, \quad f'(\infty, \xi) = 0, \]
where \(\xi \in [0, 1] \) is the dimensionless time scale defined as
\[\xi = 1 - e^{-\tau}, \quad \tau = bt, \]
with \(b \) as positive constant and \(t \) as the time variable. The analysis of boundary layer flow problems, a quantity that is of physical interest is the skin friction which in this model is given [4, 5, 7], in dimensionless form, as
\[C_f \Re_x^{1/2} = \xi^{-1/2} f''(\xi, 0), \]
where \(\Re_x \) is the local Reynolds number.

The initial unsteady solution at \(\xi = 0 \) \((\tau = 0)\) for the governing equation (15) is obtained as a solution of the equation
\[f''' + \frac{1}{2} \eta f'' = 0, \quad f(0, 0) = 0, \quad f'(0, 0) = 1, \quad f'(\infty, 0) = 0, \]
where the primes denote differentiation with respect to \(\eta \).

Solving (19) gives
\[f(\eta, 0) = \eta \text{erfc} \left(\frac{\eta}{2} \right) + \frac{2}{\sqrt{\pi}} \left[1 - \exp \left(-\frac{\eta^2}{4} \right) \right], \]
where \(\text{erfc} \) is the standard complementary error function defined by
\[\text{erfc} (\eta) = \frac{2}{\sqrt{\pi}} \int_{\eta}^{\infty} \exp \left(-z^2 \right) dz. \]

The steady state solution when \(\xi = 1 \), corresponding to \(\tau \to +\infty \), is obtained from
\[f''' + f f'' - (f')^2 = 0, \quad f(0, 1) = 0, \quad f'(0, 1) = 1, \quad f'(\infty, 1) = 0. \]
The solution to the above equation is
\[f(\eta, 1) = 1 - \exp (\eta). \]

Now we discuss the development of the CFDRM to solve the partial differential equation (15). The CFDRM works for systems of differential equations and hence it is convenient to reduce the order of (15) from three to two. We set \(f' = u \), so that (15) becomes
\[u'' + \frac{1}{2} \eta (1 - \xi) u' + \xi \left[f u' - M u - u^2 \right] = \xi (1 - \xi) \frac{\partial u}{\partial \xi}, \quad f' = u. \]

The CFDRM algorithm uses the same ideas as the SRM described in [28–30]. Both employ the Gauss Seidel idea of decoupling systems of algebraic equations to decouple differential equations. In the framework of the SRM the resulting linear system of differential equations is integrated by the spectral collocation method. Instead of using spectral method, the CFDRM uses the compact finite differences to integrate the linearized system of differential equations. Applying the CFDRM on (24) we obtain the following linear PDEs:
\[u_{r+1}'' + a_{1r} u_{r+1}' + a_{2r} u_{r+1} + a_{3r} = \xi (1 - \xi) \frac{\partial u_{r+1}}{\partial \xi}, \]
\[f_{r+1}' = u_{r+1}, \]
\[f_{r+1} (0, \xi) = 0, \quad u_{r+1} (0, \xi) = 1, \quad u_{r+1} (\infty, \xi) = 0, \]
where
\[a_{1r} = \frac{1}{2} \eta (1 - \xi) + \xi f, \quad a_{2r} = -\xi u^2, \]
for solving (25)-(26) are obtained as the solutions at \(\xi = 0 \). Thus \(f_0(\eta, \xi) \) and \(u_0(\eta, \xi) \) are given by
\[f_0(\eta, \xi) = \eta \text{erfc} \left(\frac{\eta}{2} \right) + \frac{2}{\sqrt{\pi}} \left[1 - \exp \left(-\frac{\eta^2}{4} \right) \right], \]
\[u_0(\eta, \xi) = \text{erfc} \left(\frac{\eta}{2} \right). \]
Starting from given initial approximations (29), the iteration scheme (25) can be solved iteratively for \(u_{r+1}(\eta, \xi) \) when \(r = 0, 1, 2, \ldots \). The solution for \(u_{r+1} \) is used in (26) which is, in turn, solved for \(f_{r+1} \). To solve (25) we use sixth order compact finite difference schemes described in the previous section and use an implicit finite difference method in the \(\xi \)-direction.

The finite difference scheme with centering about a midpoint halfway between \(\xi^{n+1} \) and \(\xi^n \) is applied in the \(\eta \) direction. This midpoint is defined as \(\xi^{n+1/2} = (\xi^{n+1} + \xi^n)/2 \).

Applying the centering about \(\xi^{n+1/2} \) to any function, say \(u(\eta, \xi) \) and its associated derivative, we obtain

\[
\begin{align*}
\left. u \right|_{\eta_j, \xi^{n+1/2}} &= u^n_j + u^n_j, \\
\left. \frac{\partial u}{\partial \xi} \right|_{\eta_j, \xi^{n+1/2}} &= \frac{u^{n+1}_j - u^n_j}{\Delta \xi}.
\end{align*}
\]

We first apply the CFD schemes on (25) and (26) to obtain

\[
\begin{align*}
[E_2 + a_{1r}E_1] U_{r+1} &+ H_2 + a_{1r}H_1 + a_{2r} = \xi (1 - \xi) \frac{dU_{r+1}}{d\xi}, \\
E_1 F_{r+1} &+ H_1 = U_{r+1},
\end{align*}
\]

subject to the following boundary and initial conditions:

\[
\begin{align*}
&f_{r+1}(\eta, \xi) = 0, \\
&u_{r+1}(\eta, \xi) = 0,
\end{align*}
\]

where

\[
\begin{align*}
X &= -\frac{1}{2} \left(E_2 + a_{1r}E_1 \right) + \frac{\xi^{n+1/2} (1 - \xi^{n+1/2})}{\Delta \xi} I, \\
Y &= \frac{1}{2} \left(E_2 + a_{1r}E_1 \right) + \frac{\xi^{n+1/2} (1 - \xi^{n+1/2})}{\Delta \xi} I,
\end{align*}
\]

Next, we apply the finite difference scheme on (31) in the \(\xi \)-direction with centering about the midpoint \(\xi^{n+1/2} \) to obtain

\[
\begin{align*}
XU_{r+1}^{\xi^{n+1/2}} &= YF_{r+1}^{\xi^{n+1/2}} + G,
\end{align*}
\]

with initial approximations

\[
\begin{align*}
f_{r+1}(\eta, 0) &= \eta_j \text{erfc} \left(\frac{\eta_j}{2} \right) + \frac{2}{\sqrt{\pi}} \left[1 - \exp \left(-\frac{\eta_j^2}{4} \right) \right], \\
u_{r+1}(\eta, 0) &= \text{erfc} \left(\frac{\eta_j}{2} \right), \quad j = 0, 1, 2, \ldots, N_x,
\end{align*}
\]

4. Unsteady Three-Dimensional MHD Flow and Heat Transfer over an Impulsively Stretching Plate

We consider the unsteady, three-dimensional flow of an electrically conducting fluid caused by an impulsively stretching surface in two lateral directions. The fluid is electrically conducting in a traverse magnetic field. The magnetic field is neglected under the assumption of a small magnetic Reynolds number. Xu et al. [8] solved this problem using the homotopy analysis method. Here we use the compact finite difference relaxation method to solve the governing equations. The flow is governed by the following three partial differential equations:

\[
\begin{align*}
f'''' + (1 - \xi) \left(\frac{\eta_j}{2} f'''' - \xi \frac{\partial f'}{\partial \xi} \right) + \xi \left[(f + s) f'''' - (f')^2 - M f' \right] &= 0, \\
s'''' + (1 - \xi) \left(\frac{\eta_j}{2} g'''' - \xi \frac{\partial g'}{\partial \xi} \right) + \xi \left[(f + s) s'''' - (s')^2 - M s' \right] &= 0, \\
\xi g'' + \text{Pr}(1 - \xi) \left(\frac{\eta_j}{2} g'' - \xi \frac{\partial g}{\partial \xi} \right) + \text{Pr} \xi (f + s) g' &= 0,
\end{align*}
\]
with the following boundary conditions:

\[f(\xi, 0) = s(\xi, 0) = 0, \quad f'(\xi, 0) = g(\xi, 0) = 1, \]
\[s'(\xi, 0) = c, \]
\[f'(\xi, \infty) = s'(\xi, \infty) = g(\xi, \infty) = 0. \]

In the above equations prime denotes the derivative with respect to \(\eta \) and \(c \) the stretching parameter is a positive constant. \(M \) is the local Hartmann number and \(Pr \) the Prandtl number. The initial unsteady solution can be found exactly by setting \(\xi = 0 \) in the above equations and solving the resulting equations. The closed form analytical solutions are given by

\[f(0, \eta) = \eta \text{ erfc} \left(\frac{\eta}{2} \right) + \frac{2}{\sqrt{\pi}} \left[1 - \exp \left(-\frac{\eta^2}{4} \right) \right], \]
\[s(0, \eta) = c \left(\eta \text{ erfc} \left(\frac{\eta}{2} \right) + \frac{2}{\sqrt{\pi}} \left[1 - \exp \left(-\frac{\eta^2}{4} \right) \right] \right), \]
\[g(0, \eta) = \text{erfc} \left(\frac{\sqrt{Pr} \eta}{2} \right). \]

Now we discuss the development of the spectral relaxation method to solve the system of partial differential equations (38)–(40). First, we set \(f'' = u \) and \(s'' = v \), so that (38) and (39) become

\[u'' + (1 - \xi) \left(\frac{\eta u'' - \eta \frac{\partial u}{\partial \xi}}{2} \right) + \xi \left[(f + g) u' - u^2 - Mu \right] = 0, \]
\[v'' + (1 - \xi) \left(\frac{\eta v'' - \eta \frac{\partial v}{\partial \xi}}{2} \right) + \xi \left[(f + g) v' - v^2 - Mv \right] = 0. \]

(43)

Applying the CFDRM on the resulting system of nonlinear partial differential equations gives the following linear partial differential equations:

\[u''_{r+1} + a_{1,r} u'_{r+1} + a_{2,r} u_{r+1} + a_{3,r} = \xi (1 - \xi) \frac{\partial u_{r+1}}{\partial \xi}, \]
\[f'_{r+1} = u_{r+1}, \]
\[v''_{r+1} + b_{1,r} v'_{r+1} + b_{2,r} v_{r+1} + b_{3,r} = \xi (1 - \xi) \frac{\partial v_{r+1}}{\partial \xi}, \]
\[s'_{r+1} = v_{r+1}, \]
\[g''_{r+1} + c_{1,r} g'_{r+1} = \xi (1 - \xi) \frac{\partial g_{r+1}}{\partial \xi}, \]

(44)

with the following boundary conditions:

\[u_{r+1}(0, \xi) = g_{r+1}(0, \xi) = 1, \]
\[f_{r+1}(0, \xi) = s_{r+1}(0, \xi) = 0, \]
\[v_{r+1}(0, \xi) = c, \]
\[u_{r+1}(\infty, \xi) = v_{r+1}(\infty, \xi) = g_{r+1}(\infty, \xi) = 0. \]

(45)

Starting from given initial approximations, denoted by \(u_0(\eta, \xi), f_0(\eta, \xi), v_0(\eta, \xi), s_0(\eta, \xi), \) and \(g_0(\eta, \xi) \), (44) can be solved iteratively for the unknown functions. To solve the above decoupled system of differential equations we apply CFD schemes on the space variable and finite differences in the time variable as described previously and obtain the following system of decoupled equations:

\[X_u U_{r+1} = Y_1 U_{r+1} + G_1, \]
\[E_1 F_{r+1} = H_1 = U_{r+1}, \]
\[X_v V_{r+1} = Y_2 V_{r+1} + G_2, \]
\[E_1 S_{r+1} = H_1 = V_{r+1}, \]
\[X_g G_{r+1} = Y_3 G_{r+1} + G_3, \]

with the following boundary conditions:

\[u_{r+1}(\eta_0, \xi^n) = g_{r+1}(\eta_0, \xi^n) = 1, \]
\[v_{r+1}(\eta_0, \xi^n) = c, \]
\[f_{r+1}(\eta_0, \xi^n) = s_{r+1}(\eta_0, \xi^n) = 0, \]
\[u_{r+1}(\eta_0, \xi^n) = v_{r+1}(\eta_0, \xi^n) = g_{r+1}(\eta_0, \xi^n) = 0, \]
\[n = 0, 1, 2, \ldots, N_t, \]

(46)
and initial functions

\[
\begin{align*}
 f_{r+1}(\eta_j, 0) &= \eta \text{erfc}\left(\frac{\eta_j}{2}\right) + \frac{2}{\sqrt{\pi}} \left[1 - \exp\left(-\frac{\eta_j^2}{4}\right) \right], \\
 s_{r+1}(\eta_j, 0) &= c \left(\eta \text{erfc}\left(\frac{\eta_j}{2}\right) + \frac{2}{\sqrt{\pi}} \left[1 - \exp\left(-\frac{\eta_j^2}{4}\right) \right] \right), \\
 g_{r+1}(\eta_j, 0) &= \text{erfc}\left(\frac{\sqrt{Pr} \eta_j}{2}\right), \quad j = 0, 1, 2, \ldots, N_x.
\end{align*}
\]

\tag{49}

The matrices above are defined as

\[
X_1 = \frac{1}{2} \left(E_2 + a_{1,r}^{n+(1/2)} E_1 + a_{2,r} \right) - \frac{\xi^{n+(1/2)} (1 - \xi^{n+(1/2)})}{\Delta \xi} I, \\
X_2 = \frac{1}{2} \left(E_2 + b_{1,r}^{n+(1/2)} E_1 + b_{2,r} \right) - \frac{\xi^{n+(1/2)} (1 - \xi^{n+(1/2)})}{\Delta \xi} I, \\
X_3 = \frac{1}{2} \left(E_2 + c_{1,r}^{n+(1/2)} E_1 \right) - \frac{\text{Pr} \xi^{n+(1/2)} (1 - \xi^{n+(1/2)})}{\Delta \xi} I, \\
Y_1 = -\frac{1}{2} \left(E_2 + a_{1,r}^{n+(1/2)} E_1 + a_{2,r} \right) - \frac{\xi^{n+(1/2)} (1 - \xi^{n+(1/2)})}{\Delta \xi} I.
\]
Y_2 = -\frac{1}{2} \left(E_2 + b_1^{n+1/2} E_1 + b_2 \right) - \frac{Pr^{n+1/2}}{\Delta \xi} \left(1 - \xi^{n+1/2} \right) I_1,
Y_3 = -\frac{1}{2} \left(E_2 + c_1^{n+1/2} E_1 \right) - \frac{Pr^{n+1/2} \xi^{n+1/2}}{\Delta \xi} I_1,
\quad G_1 = a_{1,r}^{n+1/2} - H_2 - a_{1,r}^{n+1/2} H_1,
\quad G_2 = b_{3,r}^{n+1/2} - H_2 - b_{1,r}^{n+1/2} H_1,
\quad G_3 = -H_2 - c_{1,r}^{n+1/2} H_1.
(50)

The vectors U, F, V, S, and G are the vectors of the functions u, f, v, s, and g, respectively, when evaluated at the grid points η_j (j = 0, 1, ..., N_η).

5. Results and Discussion

In this section we give the CFDRM and Keller-box method results for the two examples described above. The Keller-box method is an implicit finite difference scheme which is made up of four major steps. First, the governing differential equation is reduced to a system of first-order equations. The resulting first-order equations are discretized using central finite differences. The resulting algebraic equations are linearised by Newton’s method and written in matrix vector form. The linear system obtained is then solved by block tridiagonal elimination technique.

Example 1 was solved for M = 1. The value of η_∞, which correspond to η = ∞, was approximated to be equal to 10. This value was found to be large enough to give consistent results. For the CFDRM, uniform stepsizes Δη = 0.1 in the η-direction and Δξ = 0.0025 in the ξ-direction were used to get results accurate to six decimal places. For the Keller-box, stepsizes Δη = 0.005 and Δξ = 0.004 were used. Table I shows the skin friction f”(0, ξ) for Example 1 obtained using both CFDRM and Keller-box method. The times taken to compute the solution at different values of ξ are also given in Table 1. It can be seen that the CFDRM takes a very short period of time to compute the solution compared to the Keller-box method. The Keller-box required quite a small Δη to get a solution accurate to six decimal places. This means that more points are needed in the Keller-box compared to the CFDRM. Figure 1 shows the effects of varying the magnetic field parameter (M) on the skin friction f”(0, ξ).

<table>
<thead>
<tr>
<th>η</th>
<th>f”(0, ξ)</th>
<th>Time (sec)</th>
<th>f”(0, ξ)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-0.665032</td>
<td>0.234</td>
<td>-0.665031</td>
<td>3.427</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.854591</td>
<td>0.687</td>
<td>-0.854591</td>
<td>10.029</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.029610</td>
<td>1.156</td>
<td>-1.029610</td>
<td>16.657</td>
</tr>
<tr>
<td>0.7</td>
<td>-1.191787</td>
<td>1.606</td>
<td>-1.191787</td>
<td>23.267</td>
</tr>
<tr>
<td>0.9</td>
<td>-1.342594</td>
<td>2.110</td>
<td>-1.342594</td>
<td>31.140</td>
</tr>
</tbody>
</table>

The Keller-box results for the skin friction f”(0, ξ) in Example 1 when M = 1.
points are required in the Keller-box method for the required accuracy. Graphical solutions of $f''(0, \xi)$, $s''(0, \xi)$, and $g'(0, \xi)$ in the entire range $0 \leq \xi \leq 1$ for Example 2 are shown in Figures 2, 3, and 4. The solution is plotted for different values of M and c. Comparing the plots with those of [8], it can be seen that the results of the CFDRM are comparable with their homotopy analysis method results. Xu et al. [8] used the homotopy analysis method to get series solutions which are accurate and uniformly valid for all dimensionless time $0 \leq \xi \leq 1$. From these figures it is clear that the CFDRM is able to give results which are accurate and uniformly valid for all dimensionless time $0 \leq \xi \leq 1$.

6. Conclusion

In this paper, two unsteady boundary layer flow problems have been investigated. The nonlinear partial differential equations governing the unsteady boundary layer flow of the two examples considered are solved using the compact finite difference relaxation method (CFDRM). The CFDRM had previously been applied only to ordinary differential equations modelling boundary layer problems [17]. This work has successfully extended its application to partial differential equations. The results obtained are in good agreement with results obtained using the Keller-box. The CFDRM is computationally faster than the Keller-box method. This is because the CFDRM gives highly accurate solutions on coarser grids.

References

