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Abstract. 
Let 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 be the Hilbert space effect algebra on a Hilbert space 
	
		
			

				𝐻
			

		
	
 with 
	
		
			
				d
				i
				m
				𝐻
				≥
				3
			

		
	
, 
	
		
			
				𝛼
				,
				𝛽
			

		
	
 two positive numbers with 
	
		
			
				2
				𝛼
				+
				𝛽
				≠
				1
			

		
	
 and 
	
		
			
				Φ
				∶
				ℰ
				(
				𝐻
				)
				→
				ℰ
				(
				𝐻
				)
			

		
	
 a bijective map. We show that if 
	
		
			
				Φ
				(
				𝐴
			

			

				𝛼
			

			

				𝐵
			

			

				𝛽
			

			

				𝐴
			

			

				𝛼
			

			
				)
				=
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				Φ
				(
				𝐵
				)
			

			

				𝛽
			

			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

		
	
 holds for all 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, then there exists a unitary or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝐴
				)
				=
				𝑈
				𝐴
				𝑈
			

			

				∗
			

		
	
 for every 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
. 


1. Introduction and Notations
Let 
	
		
			

				𝐻
			

		
	
 be a Hilbert space. Denote by 
	
		
			
				ℬ
				(
				𝐻
				)
			

		
	
 the algebra of all bounded linear operators acting on 
	
		
			

				𝐻
			

		
	
. The operator interval in 
	
		
			
				ℬ
				(
				𝐻
				)
			

		
	
: 
	
		
			
				ℰ
				(
				𝐻
				)
				=
				{
				𝑇
				∈
				ℬ
				(
				𝐻
				)
				∣
				0
				≤
				𝑇
				≤
				𝐼
				}
			

		
	
, where 
	
		
			

				𝐼
			

		
	
 is the identity, is called Hilbert space effect algebra on 
	
		
			

				𝐻
			

		
	
, and the elements in 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 are called effects. The concept of effect algebras plays a fundamental role in mathematical description of quantum measurement, and the range of general quantum observables (POV-measurement) consists of effects [1].
The Hilbert space effect algebra 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 can be equipped with some algebraic operations. Denote the space of all projections on 
	
		
			

				𝐻
			

		
	
 by 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
. Clearly 
	
		
			
				𝒫
				(
				𝐻
				)
				⊆
				ℰ
				(
				𝐻
				)
			

		
	
. Let 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
. 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 is a partial ordered set with the order “
	
		
			

				≤
			

		
	
”
	
		
			
				∶
				𝐴
				≤
				𝐵
			

		
	
 if 
	
		
			
				𝐵
				−
				𝐴
				≥
				0
			

		
	
. Obviously, the sum 
	
		
			
				𝐴
				+
				𝐵
			

		
	
 may not be in 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
. In the case that 
	
		
			
				𝐴
				+
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, we can define an operation of conditional addition in 
	
		
			
				ℰ
				(
				𝐻
				)
				∶
				𝐴
				⊕
				𝐵
				=
				𝐴
				+
				𝐵
			

		
	
. Particularly, since 
	
		
			
				𝑃
				+
				𝑄
				∈
				𝒫
				(
				𝐻
				)
				⇔
				𝑃
				𝑄
				=
				0
			

		
	
, this gives an orthogonal addition operation in 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
. Generally speaking, the product 
	
		
			
				𝐴
				𝐵
			

		
	
 may not be in 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 either. However, the Jordan semitriple product 
	
		
			
				𝐴
				∘
				𝐵
				=
				𝐴
				𝐵
				𝐴
			

		
	
 is a well-defined operation in 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 since 
	
		
			
				𝐴
				𝐵
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
 for all 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
. More generally, for any fixed positive real numbers 
	
		
			
				𝛼
				,
				𝛽
			

		
	
, the generalized Jordan triple product 
	
		
			

				∘
			

			
				𝛼
				,
				𝛽
			

		
	
 induced by 
	
		
			
				(
				𝛼
				,
				𝛽
				)
			

		
	
 is well defined, too, in 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 and here 
	
		
			
				𝐴
				∘
			

			
				𝛼
				,
				𝛽
			

			
				𝐵
				=
				𝐴
			

			

				𝛼
			

			

				𝐵
			

			

				𝛽
			

			

				𝐴
			

			

				𝛼
			

		
	
.
Recently many mathematicians pay their attention to the problem of characterizing certain maps on Hilbert space effect algebras or other quantum structures [2–8]. Let 
	
		
			

				𝐻
			

		
	
 be a Hilbert space with 
	
		
			
				d
				i
				m
				𝐻
				≥
				3
			

		
	
 and 
	
		
			
				Φ
				∶
				ℰ
				(
				𝐻
				)
				→
				ℰ
				(
				𝐻
				)
			

		
	
 a bijective map. It seems that [5] is the first paper discussing the problem of characterizing the Jordan semitriple maps on Hilbert effect algebras. In [5] Molnár showed that if 
	
		
			
				Φ
				(
				𝐴
				𝐵
				𝐴
				)
				=
				Φ
				(
				𝐴
				)
				Φ
				(
				𝐵
				)
				Φ
				(
				𝐴
				)
			

		
	
 for all 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, then there exists a unitary or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝐴
				)
				=
				𝑈
				𝐴
				𝑈
			

			

				∗
			

		
	
 for every 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
; that is, 
	
		
			

				Φ
			

		
	
 is implemented by a unitary or an antiunitary operator on 
	
		
			

				𝐻
			

		
	
. Molnár and Šemrl proved in [7] that if 
	
		
			

				Φ
			

		
	
 satisfies 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				Ψ
				
				𝐴
				∘
			

			
				1
				/
				2
				,
				1
			

			
				𝐵
				
				=
				Ψ
				(
				𝐴
				)
				∘
			

			
				1
				/
				2
				,
				1
			

			
				Ψ
				(
				𝐵
				)
				∀
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
				,
			

		
	

					where 
	
		
			

				Ψ
			

		
	
 denotes 
	
		
			

				Φ
			

		
	
 and 
	
		
			

				Φ
			

			
				−
				1
			

		
	
, then there is a positive number 
	
		
			

				𝑝
			

		
	
 and a unitary or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 such that 
	
		
			
				Φ
				(
				𝐴
				)
				=
				𝑈
				𝐴
			

			

				𝑝
			

			

				𝑈
			

			

				∗
			

		
	
 for every 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
 (we will show that 
	
		
			
				𝑝
				=
				1
			

		
	
 in fact). The generalized Jordan semitriple product 
	
		
			
				𝐴
				∘
			

			
				1
				/
				2
				,
				1
			

			
				𝐵
				=
				𝐴
			

			
				1
				/
				2
			

			
				𝐵
				𝐴
			

			
				1
				/
				2
			

		
	
 is called sequence product. Kim showed in [4] that if 
	
		
			

				𝐻
			

		
	
 is separable and 
	
		
			

				Φ
			

		
	
 satisfies 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐴
				𝐵
				=
				𝐵
				𝐴
				⟹
				Φ
				(
				𝐴
				𝐵
				)
				=
				Φ
				(
				𝐴
				)
				Φ
				(
				𝐵
				)
				=
				Φ
				(
				𝐵
				)
				Φ
				(
				𝐴
				)
				,
				𝐴
				𝐵
				=
				𝐵
				𝐴
				,
				𝐴
				+
				𝐵
				∈
				ℰ
				(
				𝐻
				)
				⟹
				Φ
				(
				𝐴
				+
				𝐵
				)
				=
				Φ
				(
				𝐴
				)
				+
				Φ
				(
				𝐵
				)
			

		
	

					for 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, then 
	
		
			

				Φ
			

		
	
 is also implemented by a unitary or an antiunitary operator on 
	
		
			

				𝐻
			

		
	
. Our purpose in this paper is to generalize the results of [5, 7] to generalized Jordan semitriple maps, that is, the maps 
	
		
			

				Φ
			

		
	
 satisfying 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				Φ
				
				𝐴
				∘
			

			
				𝛼
				,
				𝛽
			

			
				𝐵
				
				=
				Φ
				(
				𝐴
				)
				∘
			

			
				𝛼
				,
				𝛽
			

			
				Φ
				(
				𝐵
				)
				.
			

		
	

					Let 
	
		
			

				𝐻
			

		
	
 be a Hilbert space with 
	
		
			
				d
				i
				m
				𝐻
				≥
				3
			

		
	
, 
	
		
			
				𝛼
				,
				𝛽
			

		
	
 two positive real numbers with 
	
		
			
				2
				𝛼
				+
				𝛽
				≠
				1
			

		
	
, and 
	
		
			
				Φ
				∶
				ℰ
				(
				𝐻
				)
				→
				ℰ
				(
				𝐻
				)
			

		
	
 a bijective map satisfying 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				Φ
				
				𝐴
			

			

				𝛼
			

			

				𝐵
			

			

				𝛽
			

			

				𝐴
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				Φ
				(
				𝐵
				)
			

			

				𝛽
			

			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

		
	

					for all 
	
		
			

				𝐴
			

		
	
, 
	
		
			
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
. We first show that 
	
		
			

				Φ
			

		
	
 is orthoadditive on 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
, that is, for any orthogonal projections 
	
		
			

				𝑃
			

		
	
, 
	
		
			

				𝑄
			

		
	
, 
	
		
			
				Φ
				(
				𝑃
				+
				𝑄
				)
				=
				Φ
				(
				𝑃
				)
				+
				Φ
				(
				𝑄
				)
			

		
	
. As an application, we prove that all bijective generalized Jordan semitriple maps on Hilbert space effect algebras, that is, the maps satisfying (4), are implemented by a unitary or an antiunitary operator on 
	
		
			

				𝐻
			

		
	
.
2. Orthoadditivity of Generalized Jordan Semitriple Maps
Additivity of multiplicative maps is studied by many authors. In this section, we show that every generalized Jordan semitriple map on the effect algebra 
	
		
			
				ℰ
				(
				𝐻
				)
			

		
	
 is orthoadditive on 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
. To do this we need a description which gives a description of the zero product preservers on 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
. Recall that a map 
	
		
			

				Ψ
			

		
	
 preserves zero products (in both directions) if 
	
		
			
				Ψ
				(
				𝐴
				)
				Ψ
				(
				𝐵
				)
				=
				0
			

		
	
, whenever (if and only if) 
	
		
			
				𝐴
				𝐵
				=
				0
			

		
	
.
Lemma 1.  Let 
	
		
			

				𝐻
			

		
	
 be a real or complex Hilbert space with 
	
		
			
				d
				i
				m
				𝐻
				≥
				3
			

		
	
. Assume that 
	
		
			
				Φ
				∶
				𝒫
				(
				𝐻
				)
				→
				𝒫
				(
				𝐻
				)
			

		
	
 is a bijective map preserving zero products of operators in both directions. (1)If 
	
		
			

				𝐻
			

		
	
 is real, then there is a unitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝑃
				)
				=
				𝑈
				𝑃
				𝑈
			

			

				∗
			

		
	
 for all rank one 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
.(2)If 
	
		
			

				𝐻
			

		
	
 is complex, then there is a unitary operator or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝑃
				)
				=
				𝑈
				𝑃
				𝑈
			

			

				∗
			

		
	
 for all rank one 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
.
Proof. Denote by 
	
		
			

				𝒫
			

			

				1
			

			
				(
				𝐻
				)
			

		
	
 the set of all projections of rank one. For any 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
, write 
	
		
			
				{
				𝑃
				}
			

			

				⟂
			

			
				=
				{
				𝑇
				∈
				𝒫
				(
				𝐻
				)
				∶
				𝑇
				≠
				0
				,
				𝑇
				𝑃
				=
				0
				}
			

		
	
.Claim 1. For any 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
, 
	
		
			
				{
				𝑃
				}
			

			

				⟂
			

			
				=
				∅
			

		
	
 if and only if 
	
		
			
				𝑃
				=
				𝐼
			

		
	
; 
	
		
			
				{
				𝑃
				}
			

			

				⟂
			

		
	
 is singleton; that is, it contains exactly one element, if and only if 
	
		
			
				𝐼
				−
				𝑃
			

		
	
 is of rank one.If 
	
		
			
				𝑃
				=
				𝐼
				⇒
				{
				𝑃
				}
			

			

				⟂
			

			
				=
				∅
			

		
	
 is obvious, assume that 
	
		
			
				𝑃
				≠
				𝐼
			

		
	
 and then 
	
		
			
				𝐼
				−
				𝑃
				≠
				0
			

		
	
 and 
	
		
			
				𝐼
				−
				𝑃
				∈
				{
				𝑃
				}
			

			

				⟂
			

		
	
.If 
	
		
			
				{
				𝑃
				}
			

			

				⟂
			

		
	
 contains only one element, then 
	
		
			
				𝑃
				≠
				𝐼
			

		
	
 and 
	
		
			
				{
				𝑃
				}
			

			

				⟂
			

			
				=
				{
				𝐼
				−
				𝑃
				}
			

		
	
. If 
	
		
			
				𝐼
				−
				𝑃
			

		
	
 is not of rank one, for any unit vector 
	
		
			
				𝑥
				∈
				r
				a
				n
				(
				𝐼
				−
				𝑃
				)
			

		
	
, one has 
	
		
			
				𝑥
				⊗
				𝑥
				∈
				{
				𝑃
				}
			

			

				⟂
			

		
	
 but 
	
		
			
				𝑥
				⊗
				𝑥
				≠
				𝐼
				−
				𝑃
			

		
	
, a contradiction. So, 
	
		
			
				r
				a
				n
				k
				(
				𝐼
				−
				𝑃
				)
				=
				1
			

		
	
. The converse is obvious.Claim 2. 
	
		
			

				Φ
			

		
	
 preserves rank one projections in both directions.For any rank one projection 
	
		
			
				𝑥
				⊗
				𝑥
			

		
	
, let 
	
		
			
				𝑃
				=
				𝐼
				−
				𝑥
				⊗
				𝑥
			

		
	
; then 
	
		
			
				{
				𝑥
				⊗
				𝑥
				}
				=
				{
				𝑃
				}
			

			

				⟂
			

		
	
. By the property of 
	
		
			

				Φ
			

		
	
 that it preserves zero products in both directions, one has 
	
		
			
				Φ
				(
				{
				𝑥
				⊗
				𝑥
				}
				)
				=
				Φ
				(
				{
				𝑃
				}
			

			

				⟂
			

			
				)
				=
				{
				Φ
				(
				𝑃
				)
				}
			

			

				⟂
			

		
	
. Thus 
	
		
			
				{
				Φ
				(
				𝑃
				)
				}
			

			

				⟂
			

		
	
 is singleton, which forces that 
	
		
			
				Φ
				(
				𝑥
				⊗
				𝑥
				)
			

		
	
 is of rank one by Claim 1, and vice versa.Claim 3. There exists a unitary or antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				Φ
				(
				𝑃
				)
				=
				𝑈
				𝑃
				𝑈
			

			

				∗
			

		
	

						holds for all 
	
		
			
				𝑃
				∈
				𝒫
			

			

				1
			

			
				(
				𝐻
				)
			

		
	
. 
	
		
			

				𝑈
			

		
	
 is unitary in real case.By Claim 3, for every unit vector 
	
		
			
				𝑥
				∈
				𝐻
			

		
	
, there is a unit vector 
	
		
			

				𝑦
			

			

				𝑥
			

			
				∈
				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝑥
				⊗
				𝑥
				)
				=
				𝑦
			

			

				𝑥
			

			
				⊗
				𝑦
			

			

				𝑥
			

		
	
.Let 
	
		
			
				𝜙
				∶
				𝑃
				𝐻
				→
				𝑃
				𝐻
			

		
	
 be the map on the projective space 
	
		
			
				𝑃
				𝐻
			

		
	
 defined by 
	
		
			
				𝜙
				(
				[
				𝑥
				]
				)
				=
				[
				𝑦
			

			

				𝑥
			

			

				]
			

		
	
, where 
	
		
			
				[
				𝑥
				]
			

		
	
 stands for the 1-dimensional linear subspace spanned by 
	
		
			

				𝑥
			

		
	
. Then it is clear that 
	
		
			

				𝜙
			

		
	
 is bijective since 
	
		
			

				Φ
			

		
	
 preserves rank one projection in both directions. For any linearly independent unit vectors 
	
		
			
				𝑥
				,
				𝑢
			

		
	
 and any scalars 
	
		
			
				𝛾
				,
				𝛿
			

		
	
, let 
	
		
			
				𝑣
				=
				‖
				𝛾
				𝑥
				+
				𝛿
				𝑢
				‖
			

			
				−
				1
			

			
				(
				𝛾
				𝑥
				+
				𝛿
				𝑢
				)
			

		
	
. For any unit 
	
		
			
				𝑦
				∈
				𝐻
			

		
	
, there is a unit vector 
	
		
			

				𝑤
			

		
	
 such that 
	
		
			
				Φ
				(
				𝑤
				⊗
				𝑤
				)
				=
				𝑦
				⊗
				𝑦
			

		
	
. If 
	
		
			
				⟨
				𝑦
				,
				𝑦
			

			

				𝑥
			

			
				⟩
				=
				⟨
				𝑦
				,
				𝑦
			

			

				𝑢
			

			
				⟩
				=
				0
			

		
	
, then 
	
		
			
				(
				𝑦
				⊗
				𝑦
				)
				(
				𝑦
			

			

				𝑥
			

			
				⊗
				𝑦
			

			

				𝑥
			

			
				)
				=
				(
				𝑦
				⊗
				𝑦
				)
				(
				𝑦
			

			

				𝑥
			

			
				⊗
				𝑦
			

			

				𝑥
			

			
				)
				=
				0
			

		
	
. This implies that 
	
		
			
				⟨
				𝑤
				,
				𝑥
				⟩
				=
				⟨
				𝑤
				,
				𝑢
				⟩
				=
				0
			

		
	
 and consequently 
	
		
			
				⟨
				𝑤
				,
				𝑣
				⟩
				=
				0
			

		
	
. Hence 
	
		
			
				⟨
				𝑦
				,
				𝑦
			

			

				𝑣
			

			
				⟩
				=
				0
			

		
	
. It follows from the arbitrariness of 
	
		
			

				𝑦
			

		
	
 that 
	
		
			

				𝑦
			

			

				𝑣
			

			
				∈
				[
				𝑦
			

			

				𝑥
			

			
				]
				+
				[
				𝑦
			

			

				𝑢
			

			

				]
			

		
	
; that is, 
	
		
			
				[
				𝑣
				]
				∈
				[
				𝑥
				]
				+
				[
				𝑢
				]
				⇒
				𝜙
				(
				𝑣
				)
				∈
				𝜙
				(
				𝑥
				)
				+
				𝜙
				(
				𝑢
				)
			

		
	
. Now we can use the fundamental theorem of projective geometry to get a semilinear bijection 
	
		
			
				𝐴
				∶
				𝐻
				→
				𝐻
			

		
	
 such that 
	
		
			
				𝜙
				(
				[
				𝑥
				]
				)
				=
				[
				𝐴
				𝑥
				]
			

		
	
. Therefore, for any unit 
	
		
			
				𝑥
				∈
				𝐻
			

		
	
, 
	
		
			
				Φ
				(
				𝑥
				⊗
				𝑥
				)
				=
				‖
				𝐴
				𝑥
				‖
			

			
				−
				2
			

			
				𝐴
				𝑥
				⊗
				𝐴
				𝑥
			

		
	
. It is obvious that 
	
		
			

				𝐴
			

		
	
 preserves orthogonality in both directions; that is, 
	
		
			
				⟨
				𝑥
				,
				𝑢
				⟩
				=
				0
				⇔
				⟨
				𝐴
				𝑥
				,
				𝐴
				𝑢
				⟩
				=
				0
			

		
	
. Hence 
	
		
			
				𝐴
				=
				𝑐
				𝑈
			

		
	
 for some unitary or antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
. In the case that 
	
		
			

				𝐻
			

		
	
 is real, 
	
		
			

				𝑈
			

		
	
 is unitary. Clearly, 
	
		
			
				|
				𝑐
				|
				=
				1
			

		
	
, so 
	
		
			
				Φ
				(
				𝑥
				⊗
				𝑥
				)
				=
				𝑈
				(
				𝑥
				⊗
				𝑥
				)
				𝑈
			

			

				∗
			

		
	
 for all rank one projection 
	
		
			
				𝑥
				⊗
				𝑥
			

		
	
.
Theorem 2.  Let 
	
		
			

				𝐻
			

		
	
 be a Hilbert space with 
	
		
			
				d
				i
				m
				𝐻
				≥
				3
			

		
	
, 
	
		
			
				𝛼
				,
				𝛽
			

		
	
 positive numbers with 
	
		
			
				2
				𝛼
				+
				𝛽
				≠
				1
			

		
	
, and 
	
		
			
				Φ
				∶
				ℰ
				(
				𝐻
				)
				→
				ℰ
				(
				𝐻
				)
			

		
	
 a bijective map. If 
	
		
			

				Φ
			

		
	
 satisfies 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				Φ
				
				𝐴
			

			

				𝛼
			

			

				𝐵
			

			

				𝛽
			

			

				𝐴
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				Φ
				(
				𝐵
				)
			

			

				𝛽
			

			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			

				,
			

		
	

						for all 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, then for any projections 
	
		
			
				𝑃
				,
				𝑄
			

		
	
, 
	
		
			
				𝑃
				⟂
				𝑄
			

		
	
 implies that 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				Φ
				(
				𝑃
				+
				𝑄
				)
				=
				Φ
				(
				𝑃
				)
				+
				Φ
				(
				𝑄
				)
				.
			

		
	

Proof. For 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
, we have 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				Φ
				(
				𝑃
				)
			

			

				𝛾
			

			
				=
				Φ
				(
				𝑃
				)
				,
			

		
	

						where 
	
		
			
				𝛾
				>
				0
			

		
	
. Note 
	
		
			
				Φ
				(
				𝑃
				)
				≥
				0
			

		
	
. For 
	
		
			
				𝛾
				≠
				1
			

		
	
, the spectral solution theorem implies that 
	
		
			
				Φ
				(
				𝑃
				)
			

			

				2
			

			
				=
				Φ
				(
				𝑃
				)
			

		
	
. By considering 
	
		
			

				Φ
			

			
				−
				1
			

		
	
, we see that 
	
		
			

				Φ
			

		
	
 preserves projections in both directions.For any 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				
				𝐼
				Φ
				(
				𝐼
				)
				Φ
				(
				𝐴
				)
				=
				Φ
				(
				𝐼
				)
				Φ
				(
				𝐼
				𝐴
				𝐼
				)
				=
				Φ
				(
				𝐼
				)
				Φ
			

			

				𝛼
			

			
				
				𝐴
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			

				𝐼
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝐼
				)
				Φ
				(
				𝐼
				)
			

			

				𝛼
			

			
				Φ
				
				𝐴
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				Φ
				(
				𝐼
				)
			

			

				𝛼
			

			
				
				𝐴
				=
				Φ
				(
				𝐼
				)
				Φ
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				Φ
				(
				𝐼
				)
				.
			

		
	

						Similarly, we have 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				𝐴
				Φ
				(
				𝐼
				)
				Φ
				(
				𝐴
				)
				=
				Φ
				(
				𝐼
				)
				Φ
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				Φ
				(
				𝐼
				)
				.
			

		
	

						So 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				Φ
				(
				𝐴
				)
				Φ
				(
				𝐼
				)
				=
				Φ
				(
				𝐼
				)
				Φ
				(
				𝐴
				)
			

		
	

						holds for all 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
. By the surjectivity of 
	
		
			

				Φ
			

		
	
 and 
	
		
			
				Φ
				(
				𝐼
				)
				=
				Φ
				(
				𝐼
				)
			

			

				2
			

		
	
, we must have 
	
		
			
				Φ
				(
				𝐼
				)
				=
				𝐼
			

		
	
. Since 
	
		
			

				Φ
			

		
	
 is bijective, there is 
	
		
			

				𝐴
			

			

				0
			

			
				∈
				ℰ
				(
				𝐻
				)
			

		
	
 such that 
	
		
			
				Φ
				(
				𝐴
			

			

				0
			

			
				)
				=
				0
			

		
	
. Thus 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				𝐴
				Φ
				(
				0
				)
				=
				Φ
			

			
				𝛼
				0
			

			
				0
				𝐴
			

			
				𝛼
				0
			

			
				
				
				𝐴
				=
				Φ
			

			

				0
			

			

				
			

			

				𝛼
			

			
				Φ
				(
				0
				)
			

			

				𝛽
			

			
				Φ
				
				𝐴
			

			

				0
			

			

				
			

			

				𝛼
			

			
				=
				0
				;
			

		
	

						that is, 
	
		
			
				Φ
				(
				0
				)
				=
				0
			

		
	
.Now we show that 
	
		
			

				Φ
			

		
	
 preserves zero product in both directions on 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
, that it preserves orthogonality in both directions. For any 
	
		
			
				𝑃
				,
				𝑄
			

		
	
 in 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
, 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑃
				𝑄
				=
				0
				⟺
				𝑃
			

			
				𝛽
				/
				2
			

			

				𝑄
			

			

				𝛼
			

			
				
				𝑃
				=
				0
				⟺
			

			
				𝛽
				/
				2
			

			

				𝑄
			

			

				𝛼
			

			

				
			

			

				∗
			

			

				𝑃
			

			
				𝛽
				/
				2
			

			

				𝑄
			

			

				𝛼
			

			
				=
				0
				⟺
				𝑄
			

			

				𝛼
			

			

				𝑃
			

			

				𝛽
			

			

				𝑄
			

			

				𝛼
			

			
				=
				0
				.
			

		
	

						Then 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑃
				𝑄
				=
				0
				⟺
				𝑄
			

			

				𝛼
			

			

				𝑃
			

			

				𝛽
			

			

				𝑄
			

			

				𝛼
			

			
				
				𝑄
				=
				0
				⟺
				Φ
			

			

				𝛼
			

			

				𝑃
			

			

				𝛽
			

			

				𝑄
			

			

				𝛼
			

			
				
				=
				0
				⟺
				Φ
				(
				𝑄
				)
			

			

				𝛼
			

			
				Φ
				(
				𝑃
				)
			

			

				𝛽
			

			
				Φ
				(
				𝑄
				)
			

			

				𝛼
			

			
				=
				0
				⟺
				Φ
				(
				𝑃
				)
				Φ
				(
				𝑄
				)
				=
				0
				.
			

		
	

						Therefore, by Lemma 1, there exists a unitary or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝑃
				)
				=
				𝑈
				𝑃
				𝑈
			

			

				∗
			

		
	
 holds for all rank one projections 
	
		
			

				𝑃
			

		
	
. Without loss of generality we may assume that 
	
		
			
				Φ
				(
				𝑃
				)
				=
				𝑃
			

		
	
 for every rank one projection 
	
		
			

				𝑃
			

		
	
.For any 
	
		
			
				𝑃
				,
				𝑄
				∈
				𝒫
				(
				𝐻
				)
			

		
	
, if 
	
		
			
				𝑃
				⟂
				𝑄
			

		
	
, let 
	
		
			
				𝑅
				=
				Φ
				(
				𝑃
				+
				𝑄
				)
				∈
				𝒫
				(
				𝐻
				)
			

		
	
, 
	
		
			
				𝑆
				=
				Φ
				(
				𝑃
				)
				∈
				𝒫
				(
				𝐻
				)
			

		
	
, and 
	
		
			
				𝑇
				=
				Φ
				(
				𝑄
				)
				∈
				𝒫
				(
				𝐻
				)
			

		
	
. We will show that 
	
		
			
				𝑅
				=
				𝑆
				+
				𝑇
			

		
	
. To do this, it is enough to show that 
	
		
			
				r
				a
				n
				(
				𝑅
				)
				=
				r
				a
				n
				(
				𝑆
				+
				𝑇
				)
			

		
	
. Note that for any 
	
		
			

				𝑥
			

		
	
 in 
	
		
			

				𝐻
			

		
	
 with norm 1, 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑥
				⊗
				𝑥
				𝑅
				𝑥
				⊗
				𝑥
				=
				(
				𝑥
				⊗
				𝑥
				)
			

			

				𝛼
			

			

				𝑅
			

			

				𝛽
			

			
				(
				𝑥
				⊗
				𝑥
				)
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝑥
				⊗
				𝑥
				)
			

			

				𝛼
			

			
				(
				𝑃
				+
				𝑄
				)
			

			

				𝛽
			

			
				(
				𝑥
				⊗
				𝑥
				)
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝑥
				⊗
				𝑥
				(
				𝑃
				+
				𝑄
				)
				𝑥
				⊗
				𝑥
				)
				,
				𝑥
				⊗
				𝑥
				⟂
				𝑆
				⟺
				𝑥
				⊗
				𝑥
				⟂
				𝑃
				,
				𝑥
				⊗
				𝑥
				⟂
				𝑇
				⟺
				𝑥
				⊗
				𝑥
				⟂
				𝑄
				.
			

		
	

						Thus we have 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝑥
				⊗
				𝑥
				𝑅
				𝑥
				⊗
				𝑥
				=
				0
				⟺
				𝑥
				⊗
				𝑥
				(
				𝑃
				+
				𝑄
				)
				𝑥
				⊗
				𝑥
				=
				0
				⟺
				𝑥
				⊗
				𝑥
				(
				𝑆
				+
				𝑇
				)
				𝑥
				⊗
				𝑥
				=
				0
				.
			

		
	

						This forces 
	
		
			
				r
				a
				n
				(
				𝑅
				)
				=
				r
				a
				n
				(
				𝑆
				+
				𝑇
				)
			

		
	
. So 
	
		
			
				Φ
				(
				𝑃
				+
				𝑄
				)
				=
				Φ
				(
				𝑃
				)
				+
				Φ
				(
				𝑄
				)
			

		
	
 whenever 
	
		
			
				𝑃
				⟂
				𝑄
			

		
	
.
3. Characterization of Generalized Jordan Semitriple Maps
The following is our main result.
Theorem 3.  Let 
	
		
			

				𝐻
			

		
	
 be a Hilbert space with 
	
		
			
				d
				i
				m
				𝐻
				≥
				3
			

		
	
. Assume that 
	
		
			
				𝛼
				,
				𝛽
			

		
	
 are positive numbers with 
	
		
			
				2
				𝛼
				+
				𝛽
				≠
				1
			

		
	
 and 
	
		
			
				Φ
				∶
				ℰ
				(
				𝐻
				)
				→
				ℰ
				(
				𝐻
				)
			

		
	
 a bijective map. If 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				Φ
				
				𝐴
			

			

				𝛼
			

			

				𝐵
			

			

				𝛽
			

			

				𝐴
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				Φ
				(
				𝐵
				)
			

			

				𝛽
			

			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			

				,
			

		
	

						for all 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, then there exists a unitary or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝐴
				)
				=
				𝑈
				𝐴
				𝑈
			

			

				∗
			

		
	
 for all 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
.
The following corollary gives a better form of sequence product multiplicative maps, comparing with [7].
Corollary 4.  Let 
	
		
			

				𝐻
			

		
	
 be a Hilbert space with 
	
		
			
				d
				i
				m
				𝐻
				≥
				3
			

		
	
 and 
	
		
			
				Φ
				∶
				ℰ
				(
				𝐻
				)
				→
				ℰ
				(
				𝐻
				)
			

		
	
 a bijective map. If 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				Φ
				
				√
			

			
				
			
			
				√
				𝐴
				𝐵
			

			
				
			
			
				𝐴
				
				=
				√
			

			
				
			
			
				√
				Φ
				(
				𝐴
				)
				Φ
				(
				𝐵
				)
			

			
				
			
			
				Φ
				(
				𝐴
				)
			

		
	

						for all 
	
		
			
				𝐴
				,
				𝐵
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, then there exists an unitary or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 on 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				Φ
				(
				𝐴
				)
				=
				𝑈
				𝐴
				𝑈
			

			

				∗
			

		
	
 for every 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
.
Proof of Theorem 3. By Theorem 2 we know that 
	
		
			

				Φ
			

		
	
 preserves projections in both directions, 
	
		
			
				Φ
				(
				𝐼
				)
				=
				𝐼
			

		
	
, 
	
		
			
				Φ
				(
				0
				)
				=
				0
			

		
	
, and 
	
		
			

				Φ
			

		
	
 is orthoadditive on 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
.Furthermore, 
	
		
			

				Φ
			

		
	
 preserves the order of projections in both directions. To see this, let 
	
		
			
				𝑃
				,
				𝑄
				∈
				𝒫
				(
				𝐻
				)
			

		
	
. It is clear that 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑃
				≤
				𝑄
				⟺
				𝑃
				𝑄
				=
				𝑄
				𝑃
				=
				𝑃
				⟺
				𝑄
				𝑃
				𝑄
				=
				𝑃
				,
				𝑃
				𝑄
				𝑃
				=
				𝑃
				⟺
				𝑄
			

			

				𝛼
			

			

				𝑃
			

			

				𝛽
			

			

				𝑄
			

			

				𝛼
			

			
				=
				𝑃
			

			

				𝛽
			

			
				=
				𝑃
				,
				𝑃
			

			

				𝛼
			

			

				𝑄
			

			

				𝛽
			

			

				𝑃
			

			

				𝛼
			

			
				=
				𝑃
			

			

				𝛼
			

			
				=
				𝑃
				.
			

		
	

						So, 
	
		
			
				𝑃
				≤
				𝑄
			

		
	
 implies that 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝑄
				Φ
				(
				𝑃
				)
				=
				Φ
			

			

				𝛼
			

			

				𝑃
			

			

				𝛽
			

			

				𝑄
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝑄
				)
			

			

				𝛼
			

			
				Φ
				(
				𝑃
				)
			

			

				𝛽
			

			
				Φ
				(
				𝑄
				)
			

			

				𝛼
			

			
				,
				
				𝑃
				Φ
				(
				𝑃
				)
				=
				Φ
			

			

				𝛼
			

			

				𝑄
			

			

				𝛽
			

			

				𝑃
			

			

				𝛼
			

			
				
				=
				Φ
				(
				𝑃
				)
			

			

				𝛼
			

			
				Φ
				(
				𝑄
				)
			

			

				𝛽
			

			
				Φ
				(
				𝑃
				)
			

			

				𝛼
			

			

				.
			

		
	

						Consequently, 
	
		
			
				Φ
				(
				𝑃
				)
				≤
				Φ
				(
				𝑄
				)
			

		
	
. Similarly, using 
	
		
			

				Φ
			

			
				−
				1
			

		
	
, one can check that 
	
		
			
				Φ
				(
				𝑃
				)
				≤
				Φ
				(
				𝑄
				)
			

		
	
 implies that 
	
		
			
				𝑃
				≤
				𝑄
			

		
	
.So, by Theorem 2 and [9], the restriction of 
	
		
			

				Φ
			

		
	
 on 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
 can be extended to a bounded linear map 
	
		
			
				Ψ
				∶
				ℬ
				(
				𝐻
				)
				→
				ℬ
				(
				𝐻
				)
			

		
	
. Note that 
	
		
			

				Ψ
			

		
	
 preserves projections in both directions; it must be a Jordan star-isomorphism. Since every Jordan star-automorphism of 
	
		
			
				ℬ
				(
				𝐻
				)
			

		
	
 is either a star-automorphism or star-antiautomorphism, there exists a unitary operator 
	
		
			

				𝑈
			

		
	
 or an antiunitary operator 
	
		
			

				𝑉
			

		
	
 such that 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				Ψ
				(
				𝐴
				)
				=
				𝑈
				𝐴
				𝑈
			

			

				∗
			

			
				∀
				𝐴
				∈
				ℬ
				(
				𝐻
				)
			

		
	

						or 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				Ψ
				(
				𝐴
				)
				=
				𝑉
				𝐴
			

			

				∗
			

			

				𝑉
			

			

				∗
			

			
				∀
				𝐴
				∈
				ℬ
				(
				𝐻
				)
				.
			

		
	

						It follows that there is a unitary or an antiunitary operator 
	
		
			

				𝑈
			

		
	
 such that 
	
		
			
				Φ
				(
				𝑃
				)
				=
				𝑈
				𝑃
				𝑈
			

			

				∗
			

		
	
 for all 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
.Without loss of generality, we can assume that 
	
		
			
				Φ
				(
				𝑃
				)
				=
				𝑃
			

		
	
 holds for every projection 
	
		
			

				𝑃
			

		
	
.Next we show that 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝜆
				𝑃
			

		
	
 holds for every 
	
		
			
				𝜆
				∈
				[
				0
				,
				1
				]
			

		
	
 and 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
.By the definition of 
	
		
			

				Φ
			

		
	
 that we have for any 
	
		
			
				𝜆
				∈
				[
				0
				,
				1
				]
			

		
	
 and any rank one projection 
	
		
			

				𝑃
			

		
	
, we have
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				𝑃
				Φ
				(
				𝜆
				𝑃
				)
				=
				Φ
			

			

				𝛼
			

			
				
				𝜆
			

			
				1
				/
				𝛽
			

			
				𝑃
				
			

			

				𝛽
			

			

				𝑃
			

			

				𝛼
			

			
				
				
				𝜆
				=
				𝑃
				Φ
			

			
				1
				/
				𝛽
			

			
				𝑃
				
			

			

				𝛽
			

			
				𝑃
				.
			

		
	

						So there is a 
	
		
			

				𝑓
			

			

				𝑃
			

			
				(
				𝜆
				)
				∈
				[
				0
				,
				1
				]
			

		
	
 such that 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝑓
			

			

				𝑃
			

			
				(
				𝜆
				)
				𝑃
			

		
	
. Denote 
	
		
			

				𝑓
			

			

				𝑃
			

		
	
 by 
	
		
			

				𝑓
			

		
	
; that is, 
	
		
			
				𝑓
				(
				𝜆
				)
				=
				𝑓
			

			

				𝑃
			

			
				(
				𝜆
				)
			

		
	
. 
	
		
			
				𝑓
				∶
				[
				0
				,
				1
				]
				→
				[
				0
				,
				1
				]
			

		
	
 is a function such that 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝑓
				(
				𝜆
				)
				𝑃
			

		
	
. It follows that for every 
	
		
			
				𝜇
				∈
				[
				0
				,
				1
				]
			

		
	

	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				Φ
				
				𝜆
				(
				𝜆
				𝜇
				𝑃
				)
				=
				𝑓
				(
				𝜆
				𝜇
				)
				𝑃
				,
				Φ
				(
				𝜆
				𝜇
				𝑃
				)
				=
				Φ
			

			
				(
				1
				/
				2
				𝛼
				)
				𝛼
			

			
				𝑃
				𝜇
			

			
				(
				1
				/
				𝛽
				)
				𝛽
			

			
				𝑃
				𝜆
			

			
				(
				1
				/
				2
				𝛼
				)
				𝛼
			

			
				𝑃
				
				
				𝜆
				=
				Φ
			

			
				1
				/
				2
				𝛼
			

			
				𝑃
				
			

			

				𝛼
			

			
				Φ
				
				𝜇
			

			
				1
				/
				𝛽
			

			
				𝑃
				
			

			

				𝛽
			

			
				Φ
				
				𝜆
			

			
				1
				/
				2
				𝛼
			

			
				𝑃
				
			

			

				𝛼
			

			
				
				𝜆
				=
				𝑓
			

			
				1
				/
				2
				𝛼
			

			

				
			

			
				2
				𝛼
			

			
				𝑓
				
				𝜇
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				𝑃
				.
			

		
	

						On the other hand, 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				
				𝜆
				𝑓
				(
				𝜆
				)
				𝑃
				=
				Φ
				(
				𝜆
				𝑃
				)
				=
				Φ
			

			
				(
				1
				/
				2
				𝛼
				)
				𝛼
			

			
				𝑃
				𝑃
				𝑃
				𝜆
			

			
				(
				1
				/
				2
				𝛼
				)
				𝛼
			

			
				
				
				𝜆
				=
				𝑓
			

			
				1
				/
				2
				𝛼
			

			

				
			

			
				2
				𝛼
			

			
				
				𝑃
				,
				𝑓
				(
				𝜇
				)
				𝑃
				=
				Φ
				(
				𝜇
				𝑃
				)
				=
				Φ
				𝐼
				𝜇
			

			
				(
				1
				/
				𝛽
				)
				𝛽
			

			
				
				
				𝜇
				𝑃
				𝐼
				=
				𝑓
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				𝑃
				.
			

		
	

						Thus 
	
		
			
				𝑓
				(
				𝜆
			

			
				1
				/
				2
				𝛼
			

			

				)
			

			
				2
				𝛼
			

			
				=
				𝑓
				(
				𝜆
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝜇
			

			
				1
				/
				𝛽
			

			

				)
			

			

				𝛽
			

			
				=
				𝑓
				(
				𝜇
				)
			

		
	
. Hence, we have 
	
		
			
				𝑓
				(
				𝜆
				𝜇
				)
				=
				𝑓
				(
				𝜆
				)
				𝑓
				(
				𝜇
				)
			

		
	
 holds for all 
	
		
			
				𝜆
				,
				𝜇
				∈
				[
				0
				,
				1
				]
			

		
	
; that is, 
	
		
			

				𝑓
			

		
	
 is multiplicative.Obviously, by the surjectivity of 
	
		
			

				Φ
			

		
	
, 
	
		
			
				𝑓
				(
				[
				0
				,
				1
				]
				)
				=
				[
				0
				,
				1
				]
			

		
	
. So 
	
		
			

				𝑓
			

		
	
 is continuous on 
	
		
			
				[
				0
				,
				1
				]
			

		
	
. It is well known that every multiplicative continuous bijection 
	
		
			
				𝑔
				∶
				[
				0
				,
				1
				]
				→
				[
				0
				,
				1
				]
			

		
	
 is of the form 
	
		
			
				𝑔
				(
				𝜆
				)
				=
				𝜆
			

			

				𝜌
			

		
	
 (
	
		
			
				𝜌
				>
				0
			

		
	
). Hence there is a 
	
		
			

				𝜌
			

			

				𝑃
			

			
				>
				0
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝜆
				)
				=
				𝜆
			

			

				𝜌
			

			

				𝑃
			

		
	
 for every 
	
		
			
				𝜆
				∈
				[
				0
				,
				1
				]
			

		
	
. It follows that 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝜆
			

			

				𝜌
			

			

				𝑃
			

			

				𝑃
			

		
	

						for every rank one projection 
	
		
			

				𝑃
			

		
	
.We will show that 
	
		
			

				𝜌
			

			

				𝑃
			

		
	
 is independent of 
	
		
			

				𝑃
			

		
	
. For any rank one projections 
	
		
			
				𝑃
				,
				𝑄
			

		
	
 and 
	
		
			
				𝜆
				,
				𝜇
				∈
				[
				0
				,
				1
				]
			

		
	
, we have 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				Φ
				
				𝜆
				𝑃
				𝜇
			

			

				2
			

			
				
				
				𝜆
				𝑄
				𝜆
				𝑃
				=
				Φ
			

			
				(
				1
				/
				𝛼
				)
				𝛼
			

			
				𝑃
				𝜇
			

			
				(
				2
				/
				𝛽
				)
				𝛽
			

			
				𝑄
				𝜆
			

			
				(
				1
				/
				𝛼
				)
				𝛼
			

			
				𝑃
				
				
				𝜆
				=
				𝑓
			

			
				1
				/
				𝛼
			

			

				
			

			
				2
				𝛼
			

			
				𝑓
				
				𝜇
			

			
				2
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				𝑃
				𝑄
				𝑃
				=
				𝜆
			

			
				2
				𝜌
			

			

				𝑃
			

			

				𝜇
			

			
				2
				𝜌
			

			

				𝑄
			

			
				Φ
				
				𝑃
				𝑄
				𝑃
				,
				𝜇
				𝑃
				𝜆
			

			

				2
			

			
				
				
				𝜇
				𝑄
				𝜇
				𝑃
				=
				Φ
			

			
				(
				1
				/
				𝛼
				)
				𝛼
			

			
				𝑃
				𝜆
			

			
				(
				2
				/
				𝛽
				)
				𝛽
			

			
				𝑄
				𝜇
			

			
				(
				1
				/
				𝛼
				)
				𝛼
			

			
				𝑃
				
				=
				𝜇
			

			
				2
				𝜌
			

			

				𝑃
			

			

				𝜆
			

			
				2
				𝜌
			

			

				𝑄
			

			
				𝑃
				𝑄
				𝑃
				.
			

		
	

						If 
	
		
			
				𝑃
				𝑄
				≠
				0
			

		
	
, we get 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝜆
			

			
				2
				𝜌
			

			

				𝑃
			

			

				𝜇
			

			
				2
				𝜌
			

			

				𝑄
			

			
				=
				𝜇
			

			
				2
				𝜌
			

			

				𝑃
			

			

				𝜆
			

			
				2
				𝜌
			

			

				𝑄
			

			

				.
			

		
	

						Letting 
	
		
			
				𝜇
				=
				1
			

		
	
 and comparing two sides of the above equation yield 
	
		
			

				𝜆
			

			

				𝜌
			

			

				𝑃
			

			
				=
				𝜆
			

			

				𝜌
			

			

				𝑄
			

		
	
. So 
	
		
			

				𝜌
			

			

				𝑃
			

			
				=
				𝜌
			

			

				𝑄
			

		
	
. If 
	
		
			
				𝑃
				𝑄
				=
				0
			

		
	
, pick a rank one projection 
	
		
			

				𝑅
			

		
	
 so that 
	
		
			
				𝑃
				𝑅
				𝑃
				≠
				0
			

		
	
 and 
	
		
			
				𝑄
				𝑅
				𝑄
				≠
				0
			

		
	
. Then 
	
		
			
				Φ
				(
				𝜆
				𝑅
				)
				=
				𝜆
			

			

				𝜌
			

			

				𝑅
			

			

				𝑅
			

		
	
. By the fact we just checked, we get 
	
		
			

				𝜌
			

			

				𝑃
			

			
				=
				𝜌
			

			

				𝑅
			

			
				=
				𝜌
			

			

				𝑄
			

		
	
. It follows that there is a common 
	
		
			
				𝜌
				≥
				0
			

		
	
 such that 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝜆
			

			

				𝜌
			

			

				𝑃
			

		
	

						holds for all rank one projection 
	
		
			

				𝑃
			

		
	
 and 
	
		
			
				𝜆
				∈
				[
				0
				,
				1
				]
			

		
	
.We claim that 
	
		
			
				𝜌
				=
				1
			

		
	
. To see this, it is enough to check that 
	
		
			
				𝑓
				(
				𝜆
				+
				𝜇
				)
				=
				𝑓
				(
				𝜆
				)
				+
				𝑓
				(
				𝜇
				)
			

		
	
 whenever 
	
		
			
				𝜆
				+
				𝜇
				≤
				1
			

		
	
, where 
	
		
			
				𝑓
				(
				𝜆
				)
				=
				𝜆
			

			

				𝜌
			

		
	
. Pick unit vectors 
	
		
			
				𝑥
				,
				𝑦
			

		
	
 with 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
				=
				0
			

		
	
 and let 
	
		
			
				𝑃
				=
				𝑥
				⊗
				𝑥
			

		
	
, 
	
		
			
				𝑄
				=
				𝑦
				⊗
				𝑦
			

		
	
, and 
	
		
			
				𝐴
				=
				(
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				)
				⊗
				(
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				)
			

		
	
. Then 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				
				𝜆
				𝐴
				𝑃
				𝐴
				=
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				⊗
				
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				𝑥
				
				𝜆
				⊗
				𝑥
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				⊗
				
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				=
				𝜆
			

			
				1
				/
				2
			

			
				
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				
				𝜆
				⊗
				𝑥
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				⊗
				
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				
				𝜆
				=
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				⊗
				
				𝜆
			

			
				1
				/
				2
			

			
				𝑥
				+
				𝜇
			

			
				1
				/
				2
			

			
				𝑦
				
				=
				𝜆
				𝐴
				.
			

		
	

						Similarly, we have 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝐴
				𝑄
				𝐴
				=
				𝜇
				𝐴
				,
				𝐴
				(
				𝑃
				+
				𝑄
				)
				𝐴
				=
				𝐴
			

			

				2
			

			
				=
				(
				𝜆
				+
				𝜇
				)
				𝐴
				.
			

		
	

						Since 
	
		
			

				Φ
			

		
	
 is orthoadditive on 
	
		
			
				𝒫
				(
				𝐻
				)
			

		
	
, we have
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				
				𝐴
				Φ
				(
				𝐴
				(
				𝑃
				+
				𝑄
				)
				𝐴
				)
				=
				Φ
			

			
				(
				1
				/
				𝛼
				)
				𝛼
			

			
				(
				𝑃
				+
				𝑄
				)
			

			
				(
				1
				/
				𝛽
				)
				𝛽
			

			

				𝐴
			

			
				(
				1
				/
				𝛼
				)
				𝛼
			

			
				
				
				𝐴
				=
				Φ
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				Φ
				
				(
				𝑃
				+
				𝑄
				)
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				Φ
				
				𝐴
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				
				𝐴
				=
				Φ
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				Φ
				
				𝐴
				(
				𝑃
				+
				𝑄
				)
				Φ
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				
				𝐴
				=
				Φ
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				
				𝐴
				(
				Φ
				(
				𝑃
				)
				+
				Φ
				(
				𝑄
				)
				)
				Φ
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				
				𝐴
				=
				Φ
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				Φ
				
				𝑃
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				Φ
				
				𝐴
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				
				𝐴
				+
				Φ
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				Φ
				
				𝑄
			

			
				1
				/
				𝛽
			

			

				
			

			

				𝛽
			

			
				Φ
				
				𝐴
			

			
				1
				/
				𝛼
			

			

				
			

			

				𝛼
			

			
				=
				Φ
				(
				𝐴
				𝑃
				𝐴
				)
				+
				Φ
				(
				𝐴
				𝑄
				𝐴
				)
				.
			

		
	

						Note that 
	
		
			

				𝐴
			

			

				0
			

			
				=
				𝐴
				/
				‖
				𝐴
				‖
			

		
	
 is a rank one projection, and for any 
	
		
			
				𝛿
				∈
				[
				0
				,
				1
				]
			

		
	
, we have 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				𝛿
				Φ
				(
				𝛿
				𝐴
				)
				=
				Φ
				‖
				𝐴
				‖
				𝐴
			

			

				0
			

			
				
				=
				𝑓
				(
				𝛿
				‖
				𝐴
				‖
				)
				𝐴
			

			

				0
			

			
				
				𝐴
				=
				𝑓
				(
				𝛿
				)
				𝑓
				(
				‖
				𝐴
				‖
				)
				Φ
			

			

				0
			

			
				
				=
				𝑓
				(
				𝛿
				)
				Φ
				(
				𝐴
				)
				.
			

		
	

						Thus 
	
		
			
				Φ
				(
				𝛿
				𝐴
				)
				=
				𝑓
				(
				𝛿
				)
				Φ
				(
				𝐴
				)
			

		
	
 and 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑓
				(
				𝜆
				+
				𝜇
				)
				Φ
				(
				𝐴
				)
				=
				Φ
				(
				(
				𝜆
				+
				𝜇
				)
				𝐴
				)
				=
				Φ
				(
				𝐴
				(
				𝑃
				+
				𝑄
				)
				𝐴
				)
				=
				Φ
				(
				𝐴
				𝑃
				𝐴
				)
				+
				Φ
				(
				𝐴
				𝑄
				𝐴
				)
				=
				Φ
				(
				𝜆
				𝐴
				)
				+
				Φ
				(
				𝜇
				𝐴
				)
				=
				𝑓
				(
				𝜆
				)
				Φ
				(
				𝐴
				)
				+
				𝑓
				(
				𝜇
				)
				Φ
				(
				𝐴
				)
				.
			

		
	

						This forces that 
	
		
			
				𝑓
				(
				𝜆
				+
				𝜇
				)
				=
				𝑓
				(
				𝜆
				)
				+
				𝑓
				(
				𝜇
				)
			

		
	
 whenever 
	
		
			
				𝜆
				+
				𝜇
				≤
				1
			

		
	
, and hence, 
	
		
			
				𝜌
				=
				1
			

		
	
.Now, let us show that 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝜆
				𝑃
			

		
	
 holds for all 
	
		
			
				𝜆
				∈
				[
				0
				,
				1
				]
			

		
	
 and all 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
. By the orthoadditivity of 
	
		
			

				Φ
			

		
	
, 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝜆
				𝑃
			

		
	
 holds for every 
	
		
			
				𝜆
				∈
				[
				0
				,
				1
				]
			

		
	
 and every finite rank projection 
	
		
			
				𝑃
				∈
				𝒫
				(
				𝐻
				)
			

		
	
. Assume 
	
		
			

				𝑃
			

		
	
 have infinite rank. For any 
	
		
			
				𝑥
				∈
				r
				a
				n
				(
				𝑃
				)
			

		
	
 with 
	
		
			
				‖
				𝑥
				‖
				=
				1
			

		
	
, we have 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				Φ
				(
				𝜆
			

			

				𝛼
			

			
				𝑃
				𝑥
				⊗
				𝑥
				𝜆
			

			

				𝛼
			

			
				𝑃
				)
				=
				Φ
				(
				𝜆
				𝑃
				)
			

			

				𝛼
			

			
				𝑥
				⊗
				Φ
				(
				𝜆
				𝑃
				)
			

			

				𝛼
			

			
				𝑥
				,
				Φ
				(
				𝜆
			

			

				𝛼
			

			
				𝑃
				𝑥
				⊗
				𝑥
				𝜆
			

			

				𝛼
			

			
				
				𝜆
				𝑃
				)
				=
				Φ
			

			
				2
				𝛼
			

			
				
				𝑥
				⊗
				𝑥
				=
				𝜆
			

			

				2
			

			
				𝑥
				⊗
				𝑥
				.
			

		
	

						It follows that 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
			

			

				𝛼
			

			

				𝑥
			

		
	
 and 
	
		
			

				𝑥
			

		
	
 are linearly dependent; that is, there is a scalar 
	
		
			

				𝑓
			

			

				𝑥
			

			
				(
				𝜆
				)
			

		
	
, dependent on 
	
		
			

				𝑥
			

		
	
 such that 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
			

			

				𝛼
			

			
				𝑥
				=
				𝑓
			

			

				𝑥
			

			
				(
				𝜆
				)
				𝑥
			

		
	
 with 
	
		
			

				𝑓
			

			

				𝑥
			

			
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑥
			

			
				(
				1
				)
				=
				1
			

		
	
. Similarly, for every 
	
		
			
				𝑦
				∈
				r
				a
				n
				(
				𝐼
				−
				𝑃
				)
			

		
	
, we have 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
			

			

				𝛼
			

			
				𝑦
				=
				0
			

		
	
. These entail that there exists a function 
	
		
			

				𝑔
			

			

				𝑃
			

			
				(
				𝑥
				,
				𝜆
				)
			

		
	
 having values in 
	
		
			
				[
				0
				,
				1
				]
			

		
	
 and satisfying 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				𝑥
				=
				𝑓
			

			

				𝑥
			

			
				(
				𝜆
				)
			

			
				1
				/
				𝛼
			

			
				𝑥
				=
				𝑔
			

			

				𝑃
			

			
				(
				𝑥
				,
				𝜆
				)
				𝑃
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				r
				a
				n
				𝑃
			

		
	
 and all 
	
		
			
				𝑥
				∈
				(
				r
				a
				n
				𝑃
				)
			

			

				⟂
			

		
	
. Hence, 
	
		
			

				𝑔
			

			

				𝑃
			

			
				(
				𝑥
				,
				0
				)
				=
				0
			

		
	
 and 
	
		
			

				𝑔
			

			

				𝑃
			

			
				(
				𝑥
				,
				1
				)
				=
				1
			

		
	
. As before, for a fixed 
	
		
			
				𝑥
				∈
				r
				a
				n
				𝑃
			

		
	
, we have that 
	
		
			

				𝑔
			

			

				𝑃
			

			
				(
				𝑥
				,
				𝜆
				)
				=
				𝜆
			

			

				𝛿
			

		
	
 for some positive 
	
		
			

				𝛿
			

		
	
. Next we claim that 
	
		
			
				𝑔
				(
				𝑥
				,
				𝜆
				)
				=
				𝜆
			

		
	
. Taking the rank one projection 
	
		
			
				𝑄
				=
				𝑥
				⊗
				𝑥
			

		
	
 for 
	
		
			
				𝑥
				∈
				r
				a
				n
				𝑃
			

		
	
, so 
	
		
			
				𝑄
				≤
				𝑃
			

		
	
, we have 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝛿
			

			
				
				𝜆
				𝑄
				=
				Φ
				(
				𝑄
				(
				𝜆
				𝑃
				)
				𝑄
				)
				=
				Φ
			

			
				1
				/
				2
			

			
				
				𝜆
				𝑄
				𝑃
			

			
				1
				/
				2
			

			
				𝑄
				
				
				=
				𝜆
				𝑄
				,
			

		
	

						which entails that 
	
		
			

				𝜆
			

			

				𝛿
			

			
				=
				𝜆
			

		
	
. In sum, now we have that 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				𝑥
				=
				0
			

		
	
 for 
	
		
			
				𝑥
				∈
				(
				r
				a
				n
				𝑃
				)
			

			

				⟂
			

		
	
 and 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				𝑥
				=
				𝜆
				𝑃
				𝑥
				=
				𝜆
				𝑥
			

		
	
 for 
	
		
			
				𝑥
				∈
				r
				a
				n
				𝑃
			

		
	
. Let 
	
		
			
				𝐻
				=
				r
				a
				n
				𝑃
				⊕
				(
				r
				a
				n
				𝑃
				)
			

			

				⟂
			

		
	
, since 
	
		
			
				Φ
				(
				𝜆
				𝑃
				)
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎠
				Φ
				(
				𝜆
				𝑃
				)
				=
				𝜆
				0
				0
				0
				=
				𝜆
				𝑃
				.
			

		
	
Finally, we show that 
	
		
			
				Φ
				(
				𝐴
				)
				=
				𝐴
			

		
	
 for every 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
. In fact, letting 
	
		
			
				𝐴
				∈
				ℰ
				(
				𝐻
				)
			

		
	
, for every unit vector 
	
		
			
				𝑥
				∈
				𝐻
			

		
	
, we have 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				𝑥
				⊗
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				𝑥
				=
				Φ
				(
				𝐴
			

			

				𝛼
			

			
				)
				𝑥
				⊗
				𝑥
				Φ
				(
				𝐴
			

			

				𝛼
			

			
				)
				=
				Φ
				(
				𝐴
			

			

				𝛼
			

			
				)
				(
				𝑥
				⊗
				𝑥
				)
			

			

				𝛽
			

			
				Φ
				(
				𝐴
			

			

				𝛼
			

			
				)
				
				𝐴
				=
				Φ
			

			

				𝛼
			

			
				(
				𝑥
				⊗
				𝑥
				)
			

			

				𝛽
			

			

				𝐴
			

			

				𝛼
			

			
				
				=
				𝐴
			

			

				𝛼
			

			
				𝑥
				⊗
				𝐴
			

			

				𝛼
			

			
				𝑥
				.
			

		
	

						Thus there exists a scalar 
	
		
			

				𝜆
			

			

				𝑥
			

		
	
 with 
	
		
			
				|
				𝜆
			

			

				𝑥
			

			
				|
				=
				1
			

		
	
 such that 
	
		
			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				𝑥
				=
				𝜆
			

			

				𝑥
			

			
				𝐴
				𝑥
			

		
	
. This entails that 
	
		
			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				=
				𝑐
				𝐴
			

		
	
 for some scalar 
	
		
			

				𝑐
			

		
	
 with 
	
		
			
				|
				𝑐
				|
				=
				1
			

		
	
. Since both 
	
		
			

				𝐴
			

		
	
 and 
	
		
			
				Φ
				(
				𝐴
				)
			

		
	
 are positive, we see that 
	
		
			
				𝑐
				=
				1
			

		
	
. Hence 
	
		
			
				Φ
				(
				𝐴
				)
			

			

				𝛼
			

			
				=
				𝐴
			

			

				𝛼
			

		
	
 and the uniqueness of the positive root of a positive operator implies that 
	
		
			
				Φ
				(
				𝐴
				)
				=
				𝐴
			

		
	
, as desired.
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