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Abstract. 
The power of one qubit deterministic quantum processor (DQC1) (Knill and  Laflamme (1998)) generates a nonclassical correlation known as quantum discord. The DQC1 algorithm executes in an efficient way with a characteristic time given by 
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,  where 
	
		
			

				𝑈
			

			

				𝑛
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 qubit unitary gate. For pure states, quantum discord means entanglement while for mixed states such a quantity is more than entanglement. Quantum discord can be thought of as the mutual information between two systems. Within the quantum discord approach the role of time in an efficient evaluation of 
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 is discussed. It is found that the smaller the value of 
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 is, where 
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 is the time of execution of the DQC1 algorithm and 
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 is the scale of time where the nonclassical correlations prevail, the more efficient the calculation of 
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 is. A Mösbauer nucleus might be a good processor of the DQC1 algorithm while a nuclear spin chain would not be efficient for the calculation of 
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.


The relation between nonclassical correlation and entanglement has been extensively studied in the past and it is not clear yet what are their common elements [1–4]. The systems used in the literature are diverse and they consist either of two qubits [1], four qubits [3], stochastic systems of qubits [2], or a few quantum dots [4]. In [5] a study on multipartite entanglement was done within the framework of the generalized Schmidt-correlated states. In such a work entanglement measures of negativity, concurrence, and relative entropy were investigated and concluded that valuable information can be extracted from such quantities. However, in spite of such considerable efforts, a complete understanding of entanglement in quantum information processing (QIP) is an open question. On the other hand, there are suggestions within the context of macroscopic quantum correlations that new tools are required to define and quantify entanglement, beyond the traditional microscopic point of view [2]. In such a direction it has been suggested that mixed-states quantum computation leads to exponential speedup over the best classical algorithms [6, 7]. In particular, in [6] the power of one qubit deterministic quantum processor was introduced, known also as DQC1 which executes with a characteristic time 
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, where 
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 qubit unitary gate which means it is efficient. In the DQC1 algorithm the mixed states play a fundamental role due to the fact that they are coupled to a single control qubit with a given degree of impurity [8]. It has been proposed that DQC1 generates nonclassical correlations, from which entanglement is a particular case [9]. Such correlations present interesting computational advantages over the traditional approaches [10]. A notable nonclassical correlation of such a kind is the so-called quantum discord which is related both to the information on a classical system and its accessibility without perturbing the state for independent observers [11]. For pure states, quantum discord means entanglement but for mixed states is more than entanglement [10]. A key quantity for defining the measure of correlations between two systems 
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One advantage of DQC1 is that this evaluates efficiently the normalized trace of a unitary matrix [10]. The respective quantum circuit performing the above consists of a control qubit with the following degree of impurity:
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			At this stage, it is worth emphasizing that within the several different approaches essayed so far for evaluating the normalized trace of a unitary matrix, there is scarce information about the time of execution of such algorithm. In other words, the common approaches are within the static point of view where the time of execution of such algorithm does not elapse. By the above reason, the purpose of the present paper is to discuss the role of time in the efficient evaluation of 
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. In order to do the above, we are assuming that the time evolution is accounted in an approximated way by the changes in the control qubit. That is, the control qubit reflects the changes on the 
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 target qubits when these are subjected to a unitary gate 
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. Another assumption that we will make is that the changes in time of the control qubit are manifested through changes in the purity.
According to the static approach of the algorithm under discussion, the control qubit is initially subjected to a Hadamard operation. Furthermore, with the control qubit there is a collection of 
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; that is the larger the impurity the less the quantum discord. It is worth mentioning that quantum correlations can be characterized by the quantum discord. This has been confirmed in two experiments to date: measurement of the discord in a two-qubit optics setup using full-state tomography [10] and a four-qubit NMR implementation [14]. Let us discuss a simple example that illustrates the difference between the traditional static approach where the time does not elapse and the time-dependent approach introduced in the present work. Take for instance a single-qubit unitary operator 
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Figure 1: Quantum discord of (4) as a function of the impurity 
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Concerning the quantity 
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 in (4) and (5) it is important to pinpoint here that in [8] a given constant value of 
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 was employed through all of the execution of the algorithm. Such an assumption limits the knowledge about the execution time of the algorithm which must be less than 
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			In the particular case where the nonclassical correlation means entanglement, the quantity 
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Table 1: Values of the minimum time required to execute one quantum gate for several different devices. The employed data is the same of [17]. The time 
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 is approximately the scale of time where the nonclassical correlations prevail.
	

	Quantum system 	
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 (sec) 
	

	Mösbauer nucleus 	
	
		
			
				1
				0
			

			
				−
				1
				9
			

		
	

	Electrons-GaAs 	
	
		
			
				1
				0
			

			
				−
				1
				3
			

		
	

	Electrons-Au 	
	
		
			
				1
				0
			

			
				−
				1
				4
			

		
	

	Trapped ions-In 	
	
		
			
				1
				0
			

			
				−
				1
				4
			

		
	

	Electron-spin 	
	
		
			
				1
				0
			

			
				−
				7
			

		
	

	Electron-quantum-dot 	
	
		
			
				1
				0
			

			
				−
				6
			

		
	

	Nuclear spin 	
	
		
			
				1
				0
			

			
				−
				3
			

		
	

	




To substitute (7) and (8) into (4) and (5) we obtain the DQC1 discord 
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 should be the Mösbauer nucleus. However, the electrons-GaAs, electrons-Au, and trapped ions-In devices might also be good for an efficient calculation of 
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. On the other hand, from such a figure we can see that quantum dots and nuclear spin chains technologies are not appropriate for an efficient calculation of 
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Figure 2: Quantum discord of (4) as a function of the 
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 where 
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 is the time and 
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 is the scale of time where the nonclassical correlations prevail. The interval considered is 
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 and the value of the impurity is given by (7).


As a conclusion, we have related the quantum discord with the scales of time where the nonclassical correlations prevail for several different quantum devices. From Figure 1 one can conclude that, for values of the purity of (3) close to unit, the nonclassical correlations become important. Within the DQC1 model the nonclassical correlations are given by the quantum discord whose value is given by (4) providing that 
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 is small. The above might indicate that the larger the value of the quantum discord the smaller the value of 
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. In other words, the nonclassical correlations are important for an efficient calculation of 
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. This fact is accounted by (7) and (8) that reflect that when 
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 becomes close to unit (i.e., a larger quantum discord), the value of 
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 is small. Finally, we have found that a Mösbauer nucleus might be a good processor of the DQC1 algorithm while a nuclear spin chains quantum device would not be efficient for the calculation of 
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