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Abstract. 
The concepts of (generalized) 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations and (generalized) Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations on a Lie superalgebra are introduced. It is proved that Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations (resp., generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations) are 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations (resp., generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations) on a Lie superalgebra under some conditions. In particular, Jordan 
	
		
			

				𝜃
			

		
	
-prederivations are 
	
		
			

				𝜃
			

		
	
-prederivations on a Lie superalgebra.


1. Introduction
Derivations and generalized derivations are interesting subjects both in mathematics and physics, and there has been a great deal of work concerning them. Leger and Luks investigated the structure of the generalized derivations of Lie algebras systematically (cf. [1]). Generalized derivations on rings were studied in [2, 3]. Generalized derivations also play a key role in Benoist's study of Levi factors in derivation algebras of nilpotent Lie algebras (cf. [4]). In 1969, Herstein showed that a Jordan derivation of a prime ring of characteristic not 2 must be a derivation (cf. [5]). Brešar together with Vukman generalized Herstein's result to Jordan 
	
		
			
				(
				Θ
				,
				𝜑
				)
			

		
	
-derivations (cf. [6]). In [7], the authors proved that, in a 2-torsion free noncommutative prime ring 
	
		
			

				𝑅
			

		
	
, a generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-derivation is a generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-derivation when 
	
		
			

				𝜃
			

		
	
 is an automorphism of 
	
		
			

				𝑅
			

		
	
. We gave some results on generalized derivations of Lie color algebras in [8]. Moreover, Jordan 
	
		
			

				𝜃
			

		
	
-derivations and generalized Jordan derivations of Lie triple systems were studied in [3, 9, 10].
Prederivations (or Lie triple derivations) of Lie algebras were first introduced by Müller to study bi-invariant semi-Riemannian metrics on Lie groups. Let 
	
		
			

				𝐺
			

		
	
 be a Lie group with a bi-invariant semi-Riemannian metric and 
	
		
			

				𝑔
			

		
	
 its Lie algebra. Then the Lie algebra of the group of isometries of 
	
		
			

				𝐺
			

		
	
 fixing the identity element is a subalgebra of the prederivation algebra of 
	
		
			

				𝑔
			

		
	
 (cf. [11]). Bajo proved that a real or complex Lie algebra admitting a nonsingular prederivation is necessarily nilpotent (cf. [12]). Moens generated this result to Lie algebras over any field of characteristic zero in [13]. Burde showed that the existence of nonsingular prederivations is useful for the construction of the affine structure on Lie algebras (cf. [14]). In recent years, there has been an increasing interest in investigating prederivations (cf. [2, 15–20]).
Lie superalgebras are the natural generalization of Lie algebras and have important applications both in mathematics and in physics. Lie superalgebras are also interesting from a purely mathematical point of view. So it is reasonable to extend the notion of prederivations to Lie superalgebras, which may do the same work in the structure of Lie superalgebras as the prederivations of Lie algebras did. In this paper, we introduce the concepts of (generalized) 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations and (generalized) Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations for a Lie superalgebra and obtain some results concerning Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations (resp., generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations) and 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations (resp., generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

		
	
-prederivations) on a Lie superalgebra.
Throughout this paper, the base field 
	
		
			

				𝐅
			

		
	
 is assumed to be of characteristic not equal to 
	
		
			

				3
			

		
	
. We now recall some elementary definitions.
Definition 1 (see [12, 19]). A prederivation (Lie triple derivation) of a Lie algebra 
	
		
			

				𝐿
			

		
	
 is a linear mapping 
	
		
			
				𝐷
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
							
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				𝐷
				]
				]
				+
				]
				]
				+
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				(
				𝑥
				)
				,
				𝑦
				,
				𝑧
				[
				[
				𝑥
				,
				𝐷
				(
				𝑦
				)
				,
				𝑧
				[
				[
				𝑥
				,
				𝑦
				,
				𝐷
				(
				𝑧
				)
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
				.
			

		
	

Definition 2 (see [21]). A Jordan prederivation (Jordan triple derivation) of a Lie algebra 
	
		
			

				𝐿
			

		
	
 is a linear mapping 
	
		
			

				𝐷
			

			

				
			

			
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝐷
			

			

				
			

			
				(
				]
				]
				𝐷
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				=
				
				
			

			

				
			

			
				
				
				+
				(
				𝑥
				)
				,
				𝑦
				,
				𝑥
				
				
				𝑥
				,
				𝐷
			

			

				
			

			
				
				
				+
				
				[
				]
				(
				𝑦
				)
				,
				𝑥
				𝑥
				,
				𝑦
				,
				𝐷
			

			

				
			

			
				
				(
				𝑥
				)
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐿
				.
			

		
	

2. Main Results
Definition 3. Let 
	
		
			

				𝐿
			

		
	
 be a Lie superalgebra and let 
	
		
			
				𝐷
				,
				𝜃
				,
				𝜑
				∶
				𝐿
				→
				𝐿
			

		
	
 be homogeneous linear mappings, where 
	
		
			
				𝑑
				(
				𝜃
				)
				=
				𝑑
				(
				𝜑
				)
				=
				0
			

		
	
. One denotes by 
	
		
			
				𝑑
				(
				𝐷
				)
			

		
	
 the 
	
		
			

				𝐙
			

			

				𝟐
			

		
	
-graded degree of a homogeneous linear mapping 
	
		
			

				𝐷
			

		
	
 of 
	
		
			

				𝐿
			

		
	
.(1)
	
		
			

				𝐷
			

		
	
is called a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation if 
										
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				𝐷
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
				.
			

		
	
(2)
	
		
			

				𝐷
			

		
	
 is called a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation if 
										
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				𝐷
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
				.
			

		
	
(3)
	
		
			

				𝐷
			

		
	
 is called a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation if 
										
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				𝐷
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
				.
			

		
	

          In particular, 
	
		
			
				∀
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
, a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation 
	
		
			

				𝐷
			

		
	
 is called a 
	
		
			

				𝜃
			

		
	
-prederivation if 
	
		
			
				𝜃
				=
				𝜑
			

		
	
. It is clear that a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation is a prederivation when 
	
		
			
				𝜃
				=
				𝜑
				=
				1
			

			

				𝑇
			

		
	
.
Definition 4. Let 
	
		
			

				𝐿
			

		
	
 be a Lie superalgebra and let 
	
		
			
				𝐷
				,
				𝜃
				,
				𝜑
				∶
				𝐿
				→
				𝐿
			

		
	
 be homogeneous linear mappings, where 
	
		
			
				𝑑
				(
				𝜃
				)
				=
				𝑑
				(
				𝜑
				)
				=
				0
			

		
	
. (1)
	
		
			

				𝐷
			

		
	
 is called a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation if 
										
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				𝐷
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				=
				[
				[
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑥
				)
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐿
				.
			

		
	
(2)
	
		
			

				𝐷
			

		
	
 is called a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation if 
										
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				𝐷
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				=
				[
				[
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑥
				)
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐿
				.
			

		
	
(3)
	
		
			

				𝐷
			

		
	
 is called a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation if 
										
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				𝐷
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				=
				[
				[
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑥
				)
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐿
				.
			

		
	

          In particular, 
	
		
			
				∀
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
, a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation 
	
		
			

				𝐷
			

		
	
 is called a Jordan 
	
		
			

				𝜃
			

		
	
-prederivation if 
	
		
			
				𝜃
				=
				𝜑
			

		
	
. It is clear that a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation is a Jordan prederivation when 
	
		
			
				𝜃
				=
				𝜑
				=
				1
			

			

				𝑇
			

		
	
.
It is clear that if 
	
		
			

				𝐷
			

			

				𝑖
			

		
	
 is a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
, then 
	
		
			

				𝐷
			

			

				𝑖
			

		
	
 is a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
, where 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
.
In this section, 
	
		
			

				𝐿
			

		
	
 is a Lie superalgebra and 
	
		
			
				𝜃
				,
				𝜑
			

		
	
 are defined to be homogeneous linear mappings of 
	
		
			

				𝐿
			

		
	
 satisfying 
	
		
			
				𝑑
				(
				𝜃
				)
				=
				𝑑
				(
				𝜑
				)
				=
				0
			

		
	
.
Theorem 5.  
	
		
			

				𝐷
			

		
	
 is a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 such that (i)
	
		
			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
				=
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
,(ii)
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐴
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				0
			

		
	
, 
          where 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
 and 
	
		
			
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝜑
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				]
				,
				𝜑
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
.
Proof. Assume that 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
. Clearly, 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 and 
	
		
			
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				]
				,
				𝑧
				]
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐷
				(
				[
				[
				𝑦
				,
				𝑥
				]
				,
				𝑧
				]
				)
			

		
	
; note that 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑦
				,
				𝑥
				,
				𝑧
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				=
				[
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑧
				)
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				;
				]
				]
				)
				=
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				,
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
			

		
	

						then (i) follows. Since 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
, we have 
	
		
			
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				]
				,
				𝑧
				]
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
; hence 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐴
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑦
				,
				𝑧
				,
				𝑥
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				)
				
				𝐷
				(
				[
				[
				𝑧
				,
				𝑥
				,
				𝑦
				=
				𝐷
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝑦
				,
				𝑧
				,
				𝑥
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				
				[
				[
				𝑧
				,
				𝑥
				,
				𝑦
				=
				0
				.
			

		
	
Conversely, let 
	
		
			

				𝐷
			

		
	
 be a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 for which (i) and (ii) hold. Then 
	
		
			
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				]
				,
				𝑥
				]
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑥
				)
			

		
	
. It follows that 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝐷
				(
				]
				]
				)
				]
				]
				]
				]
				)
				]
				]
				]
				]
				)
				]
				]
				]
				]
				]
				]
				)
				[
				[
				𝑥
				+
				𝑧
				,
				𝑦
				,
				𝑥
				+
				𝑧
				=
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				+
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				+
				𝐷
				(
				[
				[
				𝑧
				,
				𝑦
				,
				𝑥
				)
				+
				𝐷
				(
				[
				[
				𝑧
				,
				𝑦
				,
				𝑧
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑥
				)
				+
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑧
				,
				𝑦
				,
				𝑥
				)
				,
				𝐷
				(
				[
				[
				𝑥
				+
				𝑧
				,
				𝑦
				,
				𝑥
				+
				𝑧
				=
				𝐴
				(
				𝑥
				+
				𝑧
				,
				𝑦
				,
				𝑥
				+
				𝑧
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑥
				)
				+
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				+
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑧
				)
				.
			

		
	

						Thus we obtain 
							
	
		
			
				𝐷
				(
				]
				]
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				.
			

			
				(
				∗
				)
			

		
	

	
		
			
				𝐷
				(
				]
				]
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑧
				,
				𝑦
				,
				𝑥
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				.
			

		
	
By (i), 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝐴
				=
				]
				]
				(
				𝑦
				,
				𝑥
				,
				𝑧
				)
				[
				[
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				.
			

		
	

						This implies that 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				]
				]
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑦
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑦
				,
				𝑥
				,
				𝑦
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐴
				(
				𝑦
				,
				𝑥
				,
				𝑦
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑦
				)
				.
			

		
	

						A similar argument proves 
							
	
		
			
				𝐷
				(
				]
				]
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑥
				,
				𝑧
				,
				𝑦
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑥
				,
				𝑧
				,
				𝑦
				)
				.
			

			
				(
				∗
				∗
				)
			

		
	

	
		
			
				𝐷
				(
				]
				]
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑥
				,
				𝑧
				,
				𝑦
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑥
				,
				𝑧
				,
				𝑦
				)
				.
			

		
	

						By 
	
		
			
				(
				∗
				)
			

		
	
  
	
		
			

				×
			

		
	
 
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			

				+
			

		
	
 
	
		
			
				(
				∗
				∗
				)
			

		
	
 
	
		
			
				×
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

		
	
, we have 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				]
				]
				(
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑧
				,
				𝑦
				,
				𝑥
				)
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				]
				]
				(
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐷
				(
				[
				[
				𝑥
				,
				𝑧
				,
				𝑦
				)
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑥
				,
				𝑧
				,
				𝑦
				)
				)
				;
			

		
	

						then 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑦
				,
				𝑥
				,
				𝑧
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				𝐴
				(
				𝑥
				,
				𝑧
				,
				𝑦
				)
				)
				;
			

		
	

						that is,
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				
				]
				]
				)
				=
				
				×
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				
				×
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐴
				(
				𝑥
				,
				𝑧
				,
				𝑦
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				=
				
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				
				×
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑧
				,
				𝑦
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐴
				(
				𝑥
				,
				𝑧
				,
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				=
				
				𝐴
				(
				𝑦
				,
				𝑥
				,
				𝑧
				)
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				
				×
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				,
			

		
	

						where the last equality uses (ii). Since ch
	
		
			
				𝐅
				≠
				3
			

		
	
, we have 
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				≠
				0
			

		
	
, and so 
	
		
			
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				]
				,
				𝑧
				]
				)
				=
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
; that is, 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
.
Corollary 6.  
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
.
Proof. If 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
, then (i) follows immediately. (ii) holds because 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐴
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐴
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑦
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				×
				𝜃
				]
				]
				[
				[
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝐷
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑧
				)
			

			
				×
				
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑧
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑥
				)
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑥
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝐷
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				×
				
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑧
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				×
				
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				[
				[
				𝐷
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				=
				0
				.
			

		
	

						Therefore, 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 by Theorem 5.
Theorem 7.  
	
		
			

				𝐷
			

		
	
 is a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 such that (i)
	
		
			
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				(
				𝜑
				−
				𝜃
				)
				(
				𝑧
				)
				]
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				]
				,
				(
				𝜑
				−
				𝜃
				)
				(
				𝑧
				)
				]
			

		
	
,(ii)
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐴
			

			

				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			

				𝐴
			

			

				
			

			
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐴
			

			

				
			

			
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				0
			

		
	
, 
          where 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
 and 
	
		
			

				𝐴
			

			

				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				]
				,
				𝜑
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
.
Proof. Let 
	
		
			

				𝐷
			

		
	
 be a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
. Use the fact that 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				]
				]
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				𝐷
				(
				[
				[
				𝑦
				,
				𝑥
				,
				𝑧
				)
				,
			

		
	

						as well as the fact that 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑦
				,
				𝑥
				,
				𝑧
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				=
				]
				]
				[
				[
				𝜑
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑧
				)
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				;
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
			

		
	

						then we have 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝐷
				]
				]
				[
				[
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				=
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				;
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
			

		
	

						that is, 
	
		
			
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				(
				𝜑
				−
				𝜃
				)
				(
				𝑧
				)
				]
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				]
				,
				(
				𝜑
				−
				𝜃
				)
				(
				𝑧
				)
				]
			

		
	
. It is routine to prove (ii).Suppose, conversely, that 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 satisfying (i) and (ii). Note that 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝐴
			

			

				
			

			
				=
				]
				]
				(
				𝑦
				,
				𝑥
				,
				𝑧
				)
				[
				[
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜑
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			

				𝐴
			

			

				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				.
			

		
	

						In the same way, we can get equalities 
	
		
			
				(
				∗
				)
			

		
	
 and 
	
		
			
				(
				∗
				∗
				)
			

		
	
. The rest of the proof is the same as the corresponding proof of Theorem 5.
A similar argument proves the following result.
Theorem 8.  
	
		
			

				𝐷
			

		
	
 is a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 such that (i)
	
		
			
				[
				[
				𝐷
				(
				𝑥
				)
				,
				(
				𝜃
				−
				𝜑
				)
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				(
				𝜃
				−
				𝜑
				)
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
			

		
	
,(ii)
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐴
			

			
				
				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			

				𝐴
			

			
				
				
			

			
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐴
			

			
				
				
			

			
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				0
			

		
	
, 
          where 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
 and 
	
		
			

				𝐴
			

			
				
				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				𝐷
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
.
Remark 9. Corollary 6 can also be concluded from Theorem 7 or Theorem 8 since, for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
, 
	
		
			
				𝐴
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝐴
			

			

				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝐴
			

			
				
				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
 when 
	
		
			

				𝐷
			

		
	
 is a Jordan 
	
		
			

				𝜃
			

		
	
-prederivation.
Definition 10. Let 
	
		
			

				𝐿
			

		
	
 be a Lie superalgebra.(1)A generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation 
	
		
			

				𝛿
			

			

				1
			

		
	
 is a homogeneous linear mapping 
	
		
			

				𝐷
			

			

				1
			

			
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝐷
			

			

				1
			

			
				)
				=
				𝑑
				(
				𝛿
			

			

				1
			

			

				)
			

		
	
 and 
										
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝐷
			

			

				1
			

			
				(
				]
				]
				𝛿
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				
				
			

			

				1
			

			
				
				
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				1
			

			
				)
				𝑑
				(
				𝑥
				)
			

			
				
				
				𝜃
				(
				𝑥
				)
				,
				𝛿
			

			

				1
			

			
				
				
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				1
			

			
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				
				[
				]
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
			

			

				1
			

			
				(
				
				𝑧
				)
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
				.
			

		
	
(2)A generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation 
	
		
			

				𝛿
			

			

				2
			

		
	
 is a homogeneous linear mapping 
	
		
			

				𝐷
			

			

				2
			

			
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝐷
			

			

				2
			

			
				)
				=
				𝑑
				(
				𝛿
			

			

				2
			

			

				)
			

		
	
 and 
										
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝐷
			

			

				2
			

			
				(
				]
				]
				𝛿
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				
				
			

			

				2
			

			
				
				
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				2
			

			
				)
				𝑑
				(
				𝑥
				)
			

			
				
				
				𝜃
				(
				𝑥
				)
				,
				𝛿
			

			

				2
			

			
				
				
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				2
			

			
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				
				[
				]
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
			

			

				2
			

			
				(
				
				𝑧
				)
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
				.
			

		
	
(3)A generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation 
	
		
			

				𝛿
			

			

				3
			

		
	
 is a homogeneous linear mapping 
	
		
			

				𝐷
			

			

				3
			

			
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝐷
			

			

				3
			

			
				)
				=
				𝑑
				(
				𝛿
			

			

				3
			

			

				)
			

		
	
 and 
										
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝐷
			

			

				3
			

			
				(
				]
				]
				𝛿
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				
				
			

			

				3
			

			
				
				
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				3
			

			
				)
				𝑑
				(
				𝑥
				)
			

			
				
				
				𝜑
				(
				𝑥
				)
				,
				𝛿
			

			

				3
			

			
				
				
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				3
			

			
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				
				[
				]
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
			

			

				3
			

			
				(
				
				𝑧
				)
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
				.
			

		
	

          In particular, 
	
		
			
				∀
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
, a generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation 
	
		
			

				𝐷
			

		
	
 is called a generalized 
	
		
			

				𝜃
			

		
	
-prederivation with respect to a 
	
		
			

				𝜃
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 if 
	
		
			
				𝜃
				=
				𝜑
			

		
	
. It is clear that 
	
		
			

				𝐷
			

		
	
 is a generalized prederivation when 
	
		
			
				𝜃
				=
				𝜑
				=
				1
			

			

				𝑇
			

		
	
 and 
	
		
			

				𝛿
			

		
	
 is a prederivation.
Definition 11. Let 
	
		
			

				𝐿
			

		
	
 be a Lie superalgebra.(1)A generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation with respect to a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation 
	
		
			

				𝛿
			

			

				1
			

		
	
 is a homogeneous linear mapping 
	
		
			

				𝐷
			

			

				1
			

			
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝐷
			

			

				1
			

			
				)
				=
				𝑑
				(
				𝛿
			

			

				1
			

			

				)
			

		
	
 and 
										
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝐷
			

			

				1
			

			
				(
				]
				]
				𝛿
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				=
				
				
			

			

				1
			

			
				
				
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				1
			

			
				)
				𝑑
				(
				𝑥
				)
			

			
				
				
				𝜃
				(
				𝑥
				)
				,
				𝛿
			

			

				1
			

			
				
				
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				1
			

			
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				
				[
				]
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
			

			

				1
			

			
				(
				
				𝑥
				)
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐿
				.
			

		
	
(2)A generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation with respect to a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation 
	
		
			

				𝛿
			

			

				2
			

		
	
 is a homogeneous linear mapping 
	
		
			

				𝐷
			

			

				2
			

			
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝐷
			

			

				2
			

			
				)
				=
				𝑑
				(
				𝛿
			

			

				2
			

			

				)
			

		
	
 and 
										
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝐷
			

			

				2
			

			
				(
				]
				]
				𝛿
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				=
				
				
			

			

				2
			

			
				
				
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				2
			

			
				)
				𝑑
				(
				𝑥
				)
			

			
				
				
				𝜃
				(
				𝑥
				)
				,
				𝛿
			

			

				2
			

			
				
				
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				2
			

			
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				
				[
				]
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
			

			

				2
			

			
				(
				
				𝑥
				)
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐿
				.
			

		
	
(3)A generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation with respect to a Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation 
	
		
			

				𝛿
			

			

				3
			

		
	
 is a homogeneous linear mapping 
	
		
			

				𝐷
			

			

				3
			

			
				∶
				𝐿
				→
				𝐿
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝐷
			

			

				3
			

			
				)
				=
				𝑑
				(
				𝛿
			

			

				3
			

			

				)
			

		
	
 and 
										
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝐷
			

			

				3
			

			
				(
				]
				]
				𝛿
				[
				[
				𝑥
				,
				𝑦
				,
				𝑥
				)
				=
				
				
			

			

				3
			

			
				
				
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				3
			

			
				)
				𝑑
				(
				𝑥
				)
			

			
				
				
				𝜑
				(
				𝑥
				)
				,
				𝛿
			

			

				3
			

			
				
				
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
			

			

				3
			

			
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				
				[
				]
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
			

			

				3
			

			
				(
				
				𝑥
				)
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐿
				.
			

		
	

          In particular, 
	
		
			
				∀
				𝑖
				=
				1
				,
				2
				,
				3
			

		
	
, a generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				𝑖
			

		
	
-prederivation 
	
		
			

				𝐷
			

		
	
 is called a generalized Jordan 
	
		
			

				𝜃
			

		
	
-prederivation with respect to a Jordan 
	
		
			

				𝜃
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 if 
	
		
			
				𝜃
				=
				𝜑
			

		
	
. It is clear that 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan prederivation when 
	
		
			
				𝜃
				=
				𝜑
				=
				1
			

			

				𝑇
			

		
	
 and 
	
		
			

				𝛿
			

		
	
 is a Jordan prederivation.
Theorem 12.  
	
		
			

				𝐷
			

		
	
 is a generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 such that (i)
	
		
			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
				=
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
,(ii)
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐵
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐵
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				0
			

		
	
, 
          where 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
 and 
	
		
			
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝜑
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				]
				,
				𝜑
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
.
Proof. Suppose that 
	
		
			

				𝐷
			

		
	
 is a generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
. Clearly, 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 and 
	
		
			
				𝐷
				(
				[
				𝑥
				,
				𝑦
				,
				𝑧
				]
				)
			

		
	
 
	
		
			
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐷
				(
				[
				𝑦
				,
				𝑥
				,
				𝑧
				]
				)
			

		
	
. (i) follows from the fact that
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑦
				,
				𝑥
				,
				𝑧
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝛿
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				=
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑧
				)
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				.
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
			

		
	

						Since 
	
		
			

				𝐷
			

		
	
 is a generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to 
	
		
			

				𝛿
			

		
	
, we have 
	
		
			
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				]
				,
				𝑧
				]
				)
				=
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
; hence 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐵
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐵
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				)
				𝐷
				(
				[
				[
				𝑦
				,
				𝑧
				,
				𝑥
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				)
				
				𝐷
				(
				[
				[
				𝑧
				,
				𝑥
				,
				𝑦
				=
				𝐷
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝑥
				,
				𝑦
				,
				𝑧
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝑦
				,
				𝑧
				,
				𝑥
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				
				[
				[
				𝑧
				,
				𝑥
				,
				𝑦
				=
				0
				.
			

		
	
Conversely, if 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				1
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 satisfying (i) and (ii), then refer to the proof of Theorem 5; it suffices to prove 
	
		
			
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐵
				(
				𝑦
				,
				𝑥
				,
				𝑧
				)
			

		
	
. In fact, 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐵
				=
				]
				]
				(
				𝑦
				,
				𝑥
				,
				𝑧
				)
				[
				[
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝛿
				(
				𝑥
				)
				,
				𝜑
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑥
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				,
				𝜑
				(
				𝑧
				)
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				×
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				=
				−
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				.
			

		
	

						This completes the proof.
Corollary 13.  
	
		
			

				𝐷
			

		
	
 is a generalized 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			

				𝜃
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a Jordan 
	
		
			

				𝜃
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 such that 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑧
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑥
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				(
				𝐷
				−
				𝛿
				)
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				(
				𝐷
				−
				𝛿
				)
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				(
				𝐷
				−
				𝛿
				)
				(
				𝑦
				)
				=
				0
				.
			

		
	

Proof. If 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
, then (i) follows immediately. (ii) holds because 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				𝐵
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				𝐵
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝐷
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝛿
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑦
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝐷
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝐷
				(
				𝑦
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝛿
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝛿
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑦
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝛿
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑧
				)
			

			
				×
				
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑧
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑥
				)
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑥
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝛿
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				×
				
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑧
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			
				]
				]
				
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				,
				𝜃
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑦
				)
			

			
				×
				
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝛿
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				(
				𝑑
				(
				𝐷
				)
				+
				𝑑
				(
				𝑧
				)
				)
			

			
				]
				]
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				,
				𝛿
				(
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			
				]
				]
				
				[
				[
				𝜃
				(
				𝑦
				)
				,
				𝛿
				(
				𝑧
				)
				,
				𝜃
				(
				𝑥
				)
				=
				0
				.
			

		
	

						Note that 
	
		
			

				𝛿
			

		
	
 is a 
	
		
			

				𝜃
			

		
	
-prederivation by Corollary 6. Therefore, 
	
		
			

				𝐷
			

		
	
 is a generalized 
	
		
			

				𝜃
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			

				𝜃
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 by Theorem 12.
As before, one can prove the following theorems.
Theorem 14.  
	
		
			

				𝐷
			

		
	
 is a generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				2
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 such that (i)
	
		
			
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				(
				𝜑
				−
				𝜃
				)
				(
				𝑧
				)
				]
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝛿
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				]
				,
				(
				𝜑
				−
				𝜃
				)
				(
				𝑧
				)
				]
			

		
	
,(ii)
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐵
			

			

				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			

				𝐵
			

			

				
			

			
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐵
			

			

				
			

			
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				0
			

		
	
, 
          where 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
 and 
	
		
			

				𝐵
			

			

				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜃
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				]
				,
				𝜑
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
.
Theorem 15.  
	
		
			

				𝐷
			

		
	
 is a generalized 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 if and only if 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation of 
	
		
			

				𝐿
			

		
	
 with respect to a 
	
		
			
				(
				𝜃
				,
				𝜑
				)
			

			

				3
			

		
	
-prederivation 
	
		
			

				𝛿
			

		
	
 such that (i)
	
		
			
				[
				[
				𝛿
				(
				𝑥
				)
				,
				(
				𝜃
				−
				𝜑
				)
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				=
				(
				−
				1
				)
			

			
				𝑑
				(
				𝛿
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				(
				𝜃
				−
				𝜑
				)
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
			

		
	
,(ii)
	
		
			
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐵
			

			
				
				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑥
				)
				𝑑
				(
				𝑦
				)
			

			

				𝐵
			

			
				
				
			

			
				(
				𝑦
				,
				𝑧
				,
				𝑥
				)
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝑦
				)
				𝑑
				(
				𝑧
				)
			

			

				𝐵
			

			
				
				
			

			
				(
				𝑧
				,
				𝑥
				,
				𝑦
				)
				=
				0
			

		
	
, 
          where 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
 and 
	
		
			

				𝐵
			

			
				
				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				[
				[
				𝛿
				(
				𝑥
				)
				,
				𝜃
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝛿
				)
				𝑑
				(
				𝑥
				)
			

			
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝛿
				(
				𝑦
				)
				]
				,
				𝜃
				(
				𝑧
				)
				]
				+
				(
				−
				1
				)
			

			
				𝑑
				(
				𝐷
				)
				(
				𝑑
				(
				𝑥
				)
				+
				𝑑
				(
				𝑦
				)
				)
			

			
				[
				[
				𝜑
				(
				𝑥
				)
				,
				𝜑
				(
				𝑦
				)
				]
				,
				𝐷
				(
				𝑧
				)
				]
			

		
	
.
Remark 16. Corollary 13 can also be concluded from Theorem 14 or Theorem 15 since, for any 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝐿
			

		
	
, 
	
		
			
				𝐵
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝐵
			

			

				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				=
				𝐵
			

			
				
				
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
			

		
	
 when 
	
		
			

				𝐷
			

		
	
 is a generalized Jordan 
	
		
			

				𝜃
			

		
	
-prederivation.
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