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Abstract. 
We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.


1. Introduction
Let 
	
		
			

				Ω
			

		
	
 be a bounded domain in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
 with smooth boundary 
	
		
			

				Γ
			

		
	
. It is assumed that 
	
		
			

				Γ
			

		
	
 consists of two parts 
	
		
			

				Γ
			

			

				1
			

		
	
 and 
	
		
			

				Γ
			

			

				2
			

			
				(
				Γ
				=
				Γ
			

			

				1
			

			
				∪
				Γ
			

			

				2
			

			

				)
			

		
	
 with 
	
		
			

				Γ
			

			

				2
			

			
				≠
				∅
				,
			

			
				
			
			

				Γ
			

			

				1
			

			

				∩
			

			
				
			
			

				Γ
			

			

				2
			

			
				=
				∅
			

		
	
. Define 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝒜
				𝑢
				=
				−
				d
				i
				v
				𝐴
				(
				𝑥
				)
				∇
				𝑢
				f
				o
				r
				𝑢
				∈
				𝐻
			

			

				1
			

			
				(
				Ω
				)
				,
			

		
	

					where 
	
		
			
				d
				i
				v
			

		
	
 is the divergence operator of the standard metric of 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
. 
	
		
			
				𝐴
				(
				𝑥
				)
				=
				(
				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				)
			

		
	
 is symmetric, positively definite matrices for each 
	
		
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑥
				)
			

		
	
 are smooth functions on 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
.
We consider the stabilization of the wave equations with variable coefficients and time-varying delay in the dissipative boundary feedback as follows:
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑡
				𝑡
			

			
				|
				|
				+
				𝒜
				𝑢
				=
				0
				(
				𝑥
				,
				𝑡
				)
				∈
				Ω
				×
				(
				0
				,
				+
				∞
				)
				,
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			

				Γ
			

			

				2
			

			
				=
				0
				𝑡
				∈
				(
				0
				,
				+
				∞
				)
				,
				𝜕
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				
				+
				𝜙
				(
				𝑡
				)
				𝜇
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				)
				+
				𝜆
				𝑔
			

			

				2
			

			
				
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				
				
				=
				0
				(
				𝑥
				,
				𝑡
				)
				∈
				Γ
			

			

				1
			

			
				×
				∈
				(
				0
				,
				+
				∞
				)
				,
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑢
			

			

				0
			

			
				(
				𝑥
				)
				,
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				0
				)
				=
				𝑢
			

			

				1
			

			
				𝑢
				(
				𝑥
				)
				𝑥
				∈
				Ω
				,
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				0
				)
				)
				=
				𝑓
			

			

				0
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				0
				)
				)
				(
				𝑥
				,
				𝑡
				)
				∈
				Γ
			

			

				1
			

			
				×
				(
				0
				,
				𝜏
				(
				0
				)
				)
				,
			

		
	

					where 
	
		
			
				𝜏
				(
				𝑡
				)
			

		
	
 satisfies
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				0
				≤
				𝜏
				(
				𝑡
				)
				≤
				𝜏
			

			

				0
			

			
				,
				𝑑
			

			

				0
			

			
				≤
				𝜏
			

			

				′
			

			
				(
				𝑡
				)
				≤
				𝑑
				<
				1
				∀
				𝑡
				≥
				0
				,
			

		
	

					where 
	
		
			

				𝜏
			

			

				0
			

			
				>
				0
			

		
	
 and 
	
		
			

				𝑑
			

			

				0
			

		
	
 and 
	
		
			

				𝑑
			

		
	
 are constants. 
	
		
			

				𝑔
			

			

				1
			

			
				∈
				𝐶
				(
				ℝ
				)
			

		
	
 and there exist positive constants 
	
		
			

				𝑐
			

			

				1
			

			
				,
				𝑝
				≥
				1
			

		
	
 such that
						
	
 		
 			
				(
				4
				)
			
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑔
			

			

				1
			

			
				(
				0
				)
				=
				0
				,
				𝑠
				𝑔
			

			

				1
			

			
				(
				𝑠
				)
				≥
				|
				𝑠
				|
			

			

				2
			

			
				|
				|
				𝑔
				f
				o
				r
				𝑠
				∈
				ℝ
				,
			

			

				1
			

			
				|
				|
				(
				𝑠
				)
				≤
				𝑐
			

			

				1
			

			
				𝑠
				|
				𝑠
				|
				f
				o
				r
				|
				𝑠
				|
				>
				1
				,
			

			

				2
			

			
				+
				
				𝑔
			

			

				1
			

			
				
				(
				𝑠
				)
			

			

				2
			

			
				≤
				𝑐
			

			

				1
			

			
				
				𝑠
				𝑔
			

			

				1
			

			
				
				(
				𝑠
				)
			

			
				1
				/
				𝑝
			

			
				f
				o
				r
				|
				𝑠
				|
				≤
				1
				.
			

		
	

	
		
			

				𝑔
			

			

				2
			

			
				(
				𝑠
				)
				∈
				𝐶
				(
				ℝ
				)
			

		
	
 satisfies
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝑔
			

			

				2
			

			
				
				(
				𝑠
				)
			

			

				2
			

			
				≤
				𝑠
				𝑔
			

			

				1
			

			
				(
				𝑠
				)
				f
				o
				r
				𝑠
				∈
				ℝ
				,
			

		
	

					and 
	
		
			
				𝜙
				(
				𝑡
				)
				∈
				𝐶
				(
				[
				−
				𝜏
				(
				0
				)
				,
				+
				∞
				)
				)
			

		
	
 satisfies
						
	
 		
 			
				(
				7
				)
			
 			
				(
				8
				)
			
 		
	

	
		
			
				0
				<
				𝜙
				(
				𝑡
				)
				≤
				𝜙
			

			

				0
			

			
				𝑐
				∀
				𝑡
				≥
				−
				𝜏
				(
				0
				)
				,
			

			

				2
			

			
				𝜙
				(
				𝑡
				)
				≤
				𝜙
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				≤
				𝑐
			

			

				3
			

			
				𝜙
				(
				𝑡
				)
				∀
				𝑡
				≥
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			
				𝐹
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				=
				0
				,
			

		
	

					where 
	
		
			

				𝜙
			

			

				0
			

		
	
, 
	
		
			

				𝑐
			

			

				2
			

		
	
, and 
	
		
			

				𝑐
			

			

				3
			

		
	
 are positive constants and 
	
		
			
				𝐹
				(
				𝑡
				)
				=
				1
				/
				i
				n
				f
				{
				𝜙
				(
				𝜌
				)
				∣
				0
				≤
				𝜌
				≤
				𝑡
				}
			

		
	
.

	
		
			
				𝜕
				𝑢
				/
				𝜕
				𝜈
			

			

				𝒜
			

		
	
 is the conormal derivative
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				=
				⟨
				𝐴
				(
				𝑥
				)
				𝑢
				,
				𝜈
				⟩
				,
			

		
	

					where 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 denotes the standard metric of the Euclidean space 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			
				𝜈
				(
				𝑥
				)
			

		
	
 is the outside unit normal vector for each 
	
		
			
				𝑥
				∈
				Γ
			

		
	
. Moreover, 
	
		
			
				𝜇
				>
				0
			

		
	
, 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
, 
	
		
			
				𝜆
				≠
				0
			

		
	
, and the initial data 
	
		
			
				(
				𝑢
			

			

				0
			

			
				,
				𝑢
			

			

				1
			

			
				,
				𝑓
			

			

				0
			

			
				,
				𝑤
			

			

				0
			

			
				,
				𝑤
			

			

				1
			

			
				,
				ℎ
			

			

				0
			

			

				)
			

		
	
 belongs to a suitable space.
There is a specific example for 
	
		
			
				𝜙
				(
				𝑡
				)
			

		
	
. Let 
	
		
			

				𝜙
			

			

				1
			

			
				>
				0
			

		
	
 be a constant. If 
	
		
			
				𝜙
				(
				𝑡
				)
			

		
	
 satisfies
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝜙
			

			

				1
			

			
				≤
				𝜙
				(
				𝑡
				)
				≤
				𝜙
			

			

				0
			

			
				∀
				𝑡
				≥
				0
				,
			

		
	

					then
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝜙
			

			

				1
			

			
				
			
			

				𝜙
			

			

				0
			

			
				𝜙
				𝜙
				(
				𝑡
				)
				≤
				𝜙
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				≤
			

			

				0
			

			
				
			
			

				𝜙
			

			

				1
			

			
				𝜙
				(
				𝑡
				)
				∀
				𝑡
				≥
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			
				𝐹
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				≤
				𝜙
			

			

				0
			

			
				
			
			
				𝑡
				=
				0
				.
			

		
	

					Conditions (7) and (8) hold.
In absence of delay (
	
		
			
				𝜆
				=
				0
			

		
	
), the problem (2) was studied by [1–8] and many others. The decay rate of the energy (when 
	
		
			

				𝑡
			

		
	
 goes to infinity) depends on the function 
	
		
			

				𝜙
			

		
	
 and the growth of 
	
		
			

				𝑔
			

			

				1
			

		
	
.
The system (2) with constant coefficient (the case: 
	
		
			
				𝐴
				(
				𝑥
				)
			

		
	
 is a constant matrix on 
	
		
			
				
			
			

				Ω
			

		
	
) was studied by [9–11] and many other authors. For the system (2) with variable coefficients, the main tools to cope with the system (2) are the differential geometrical methods which were introduced by [12] and have been applied in many papers. See [13–22] and references cited therein. For a survey on the differential geometric methods, see [23, 24].
The authors in [11] considered the system (2) with constant coefficients operator and dissipative boundary conditions of time dependent delay and proved the exponential decay of the energy by combining the multiplier method with the use of suitable integral inequalities. Different from this paper, 
	
		
			

				𝑔
			

			

				1
			

		
	
 is assumed to be linearly bounded and 
	
		
			

				𝜙
			

		
	
 is assumed to be a constant function in the paper [11].
Based on [11], the purpose of this paper is to solve the stability of the system (2) with variable coefficients and time-varying, weakly nonlinear terms. To obtain our stabilization result, we assume that 
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				2
				𝑐
			

			

				2
			

			
				+
				1
			

			
				
			
			
				2
				
				|
				|
				𝜆
				|
				|
			

			
				
			
			

				√
			

			
				
			
			
				1
				−
				𝑑
				<
				𝜇
				,
			

		
	

					where 
	
		
			

				𝑐
			

			

				2
			

		
	
 is defined in (8).
Define the energy of the system (2) by
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				1
				𝐸
				(
				𝑡
				)
				=
			

			
				
			
			
				2
				
			

			

				Ω
			

			
				
				𝑢
			

			
				2
				𝑡
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑎
			

			
				𝑖
				𝑗
			

			

				𝑢
			

			

				𝑥
			

			

				𝑖
			

			

				𝑢
			

			

				𝑥
			

			

				𝑗
			

			
				
				
				𝑑
				𝑥
				+
				𝜉
			

			
				𝑡
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

			

				
			

			

				Γ
			

			

				1
			

			
				𝜙
				(
				𝜌
				)
				𝑢
			

			

				𝜌
			

			
				(
				𝑥
				,
				𝜌
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝜌
			

			
				
				(
				𝑥
				,
				𝜌
				)
				𝑑
				Γ
				𝑑
				𝜌
				,
			

		
	

					where 
	
		
			

				𝜉
			

		
	
 is a positive constant satisfying 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				𝜆
				|
				|
			

			
				
			
			
				2
				𝑐
			

			

				2
			

			

				√
			

			
				
			
			
				|
				|
				𝜆
				|
				|
				1
				−
				𝑑
				<
				𝜉
				<
				𝜇
				−
			

			
				
			
			
				2
				√
			

			
				
			
			
				.
				1
				−
				𝑑
			

		
	

We define 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑔
				=
				𝐴
			

			
				−
				1
			

			
				(
				𝑥
				)
				f
				o
				r
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	

					as a Riemannian metric on 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
 and consider the couple 
	
		
			
				(
				ℝ
			

			

				𝑛
			

			
				,
				𝑔
				)
			

		
	
 as a Riemannian manifold with an inner product 
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				⟨
				𝑋
				,
				𝑌
				⟩
			

			

				𝑔
			

			
				=
				
				𝐴
			

			
				−
				1
			

			
				
				,
				|
				|
				𝑋
				|
				|
				(
				𝑥
				)
				𝑋
				,
				𝑌
			

			
				2
				𝑔
			

			
				=
				⟨
				𝑋
				,
				𝑋
				⟩
			

			

				𝑔
			

			
				𝑋
				,
				𝑌
				∈
				ℝ
			

			
				𝑛
				𝑥
			

			

				.
			

		
	

Let 
	
		
			

				𝐷
			

			

				𝑔
			

		
	
 denote the Levi-Civita connection of the metric 
	
		
			

				𝑔
			

		
	
. For the variable coefficients, the main assumptions are as follows.
Assumption A. There exists a vector field 
	
		
			

				𝐻
			

		
	
 on 
	
		
			
				
			
			

				Ω
			

		
	
 and a constant 
	
		
			

				𝜌
			

			

				0
			

			
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑔
			

			
				𝐻
				(
				𝑋
				,
				𝑋
				)
				≥
				𝜌
			

			

				0
			

			
				|
				|
				𝑋
				|
				|
			

			
				2
				𝑔
			

			
				f
				o
				r
				𝑋
				∈
				ℝ
			

			
				𝑛
				𝑥
			

			
				𝑥
				∈
			

			
				
			
			
				Ω
				.
			

		
	

						Moreover, we assume that
							
	
 		
 			
				(
				1
				8
				)
			
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑥
				∈
			

			
				
			
			

				Ω
			

			
				d
				i
				v
				𝐻
				<
				i
				n
				f
			

			
				𝑥
				∈
			

			
				
			
			

				Ω
			

			
				d
				i
				v
				𝐻
				+
				2
				𝜌
			

			

				0
			

			
				,
				𝐻
				⋅
				𝜈
				≤
				0
				𝑥
				∈
				Γ
			

			

				2
			

			
				,
				𝐻
				⋅
				𝜈
				≥
				𝛿
				𝑥
				∈
				Γ
			

			

				1
			

			

				,
			

		
	

						where 
	
		
			

				𝛿
			

		
	
 is a positive constant.
Assumption (17) was introduced by [12] as a checkable assumption for the exact controllability of the wave equation with variable coefficients. Assumption A is also useful for the controllability and the stabilization of the quasilinear wave equation [15]. For the examples of the condition, see [12, 23].
Based on Assumption (17), Assumption A was given by [22] to study the stabilization of the wave equation with variable coefficients and boundary condition of memory type. The authors in [22] also constructed some examples of the condition based on the assumption that 
	
		
			
				𝐴
				(
				𝑥
				)
				=
				𝑎
				(
				𝑥
				)
				𝐼
			

		
	
 or 
	
		
			
				𝐴
				(
				𝑥
				)
			

		
	
 is a perturbation of a symmetric positive definite matrix 
	
		
			

				𝐴
			

		
	
.
Define 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝐻
			

			
				1
				Γ
			

			

				2
			

			
				
				(
				Ω
				)
				=
				𝑢
				∈
				𝐻
			

			

				1
			

			
				(
				Ω
				)
				∣
				𝑢
				|
			

			

				Γ
			

			

				2
			

			
				
				.
				=
				0
			

		
	

					To obtain the stabilization of the system (2), we assume that the system (2) is well posed such that 
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑢
				∈
				𝐶
			

			

				1
			

			
				
				[
				0
				,
				+
				∞
				)
				,
				𝐿
			

			

				2
			

			
				
				
				[
				(
				Ω
				)
				∩
				𝐶
				0
				,
				+
				∞
				)
				,
				𝐻
			

			
				1
				Γ
			

			

				2
			

			
				
				𝑢
				(
				Ω
				)
			

			

				𝑡
			

			
				
				[
				∈
				𝐶
				0
				,
				+
				∞
				)
				,
				𝐿
			

			

				2
			

			
				
				Γ
			

			

				1
			

			
				.
				×
				(
				𝑡
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				
				
			

		
	

The main result of this paper is the following.
Theorem 1.  Let Assumption A hold true. Then, there exists a constant 
	
		
			

				𝐶
			

		
	
, such that
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				𝐸
				𝐸
				(
				𝑡
				)
				≤
				𝐶
			

			
				1
				/
				𝑝
			

			
				(
				0
				)
			

			
				
			
			
				
				𝑡
				+
				𝜏
			

			

				0
			

			

				
			

			
				1
				/
				𝑝
			

			
				+
				𝐹
				
				𝑡
				+
				𝜏
			

			

				0
			

			

				
			

			
				
			
			
				𝑡
				+
				𝜏
			

			

				0
			

			
				
				𝐸
				(
				0
				)
				𝑡
				>
				0
				.
			

		
	

Remark 2. If 
	
		
			
				𝑝
				=
				1
			

		
	
 and 
	
		
			
				𝜙
				(
				𝑡
				)
			

		
	
 satisfies
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝜙
			

			

				1
			

			
				≤
				𝜙
				(
				𝑡
				)
				≤
				𝜙
			

			

				0
			

			
				∀
				𝑡
				≥
				0
				,
			

		
	

						where 
	
		
			

				𝜙
			

			

				0
			

		
	
 and 
	
		
			

				𝜙
			

			

				1
			

		
	
 are positive constants, then it follows from (13) that there exist constants 
	
		
			

				𝑇
			

			

				0
			

			
				>
				0
			

		
	
 and 
	
		
			
				0
				<
				𝐶
			

			

				0
			

			
				<
				1
			

		
	
 such that
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝐸
				
				𝑇
			

			

				0
			

			
				
				≤
				𝐶
			

			

				0
			

			
				𝐸
				(
				0
				)
				.
			

		
	

						Then, the decay of the energy 
	
		
			
				𝐸
				(
				𝑡
				)
			

		
	
 is exponential. Methods in [21, 22] are useful for Theorem 1.
2. Basic Inequality of the System 
In this section, we work on 
	
		
			

				Ω
			

		
	
 with two metrics at the same time: the standard dot metric 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 and the Riemannian metric 
	
		
			
				𝑔
				=
				⟨
				⋅
				,
				⋅
				⟩
			

			

				𝑔
			

		
	
 given by (15).
If 
	
		
			
				𝑓
				∈
				𝐶
			

			

				1
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
, we define the gradient 
	
		
			

				∇
			

			

				𝑔
			

			

				𝑓
			

		
	
 of 
	
		
			

				𝑓
			

		
	
 in the Riemannian metric 
	
		
			

				𝑔
			

		
	
, via the Riesz representation theorem, by 
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				
				∇
				𝑋
				(
				𝑓
				)
				=
			

			

				𝑔
			

			
				
				𝑓
				,
				𝑋
			

			

				𝑔
			

			

				,
			

		
	

					where 
	
		
			

				𝑋
			

		
	
 is any vector field on 
	
		
			
				(
				ℝ
			

			

				𝑛
			

			
				,
				𝑔
				)
			

		
	
. The following lemma provides further relations between the two metrics; see [12], Lemma 3.
Lemma 3.  Let 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			

				)
			

		
	
 be the natural coordinate system in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
. Let 
	
		
			

				𝑓
			

		
	
, 
	
		
			

				ℎ
			

		
	
 be functions and let 
	
		
			

				ℋ
			

		
	
, 
	
		
			

				𝑋
			

		
	
 be vector fields. Then, (a)
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				⟨
				𝐻
				(
				𝑥
				)
				,
				𝐴
				(
				𝑥
				)
				𝑋
				(
				𝑥
				)
				⟩
			

			

				𝑔
			

			
				=
				⟨
				(
				𝑥
				)
				,
				𝑋
				(
				𝑥
				)
				⟩
				,
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			

				;
			

		
	
(b)
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				∇
			

			

				𝑔
			

			
				𝑓
				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				𝑓
			

			

				𝑥
			

			

				𝑗
			

			
				
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				=
				𝐴
				(
				𝑥
				)
				∇
				𝑓
				,
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			

				,
			

		
	
 where 
	
		
			
				∇
				𝑓
			

		
	
 is the gradient of 
	
		
			

				𝑓
			

		
	
 in the standard metric;(c)
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				∇
			

			

				𝑔
			

			
				
				∇
				𝑓
				(
				ℎ
				)
				=
			

			

				𝑔
			

			
				𝑓
				,
				∇
			

			

				𝑔
			

			
				ℎ
				
			

			

				𝑔
			

			
				=
				⟨
				∇
				𝑓
				,
				𝐴
				(
				𝑥
				)
				∇
				ℎ
				⟩
				,
				𝑥
				∈
				ℝ
			

			

				𝑛
			

			

				,
			

		
	
 where the matrix 
	
		
			
				𝐴
				(
				𝑥
				)
			

		
	
 is given in formula (1).
To prove Theorem 1, we still further need several lemmas. Define 
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝐸
			

			

				0
			

			
				1
				(
				𝑡
				)
				=
			

			
				
			
			
				2
				
			

			

				Ω
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				+
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				𝑑
				𝑥
				.
			

		
	

					Then, we have 
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐸
				(
				𝑡
				)
				=
				𝐸
			

			

				0
			

			
				
				(
				𝑡
				)
				+
				𝜉
			

			
				𝑡
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

			

				
			

			

				Γ
			

			

				1
			

			

				𝑢
			

			
				2
				𝑡
			

			
				(
				𝑥
				,
				𝜌
				)
				𝑑
				Γ
				𝑑
				𝜌
				.
			

		
	

Lemma 4.  Suppose that condition (14) holds true. Let 
	
		
			
				(
				𝑢
				,
				𝑤
				)
			

		
	
 be the solution of system (2). Then, there exist constants 
	
		
			

				𝐶
			

			

				1
			

		
	
, 
	
		
			

				𝐶
			

			

				2
			

			
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝐸
				(
				0
				)
				−
				𝐸
				(
				𝑇
				)
				≥
				𝐶
			

			

				1
			

			

				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
				𝜙
				(
				𝑡
				)
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				)
				+
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				×
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				
				
				𝑑
				Γ
				𝑑
				𝑡
				,
			

		
	

						where 
	
		
			
				𝑇
				≥
				0
			

		
	
. Assertion (31) implies that 
	
		
			
				𝐸
				(
				𝑡
				)
			

		
	
 is decreasing.
Proof. Differentiating (13), we obtain
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝐸
			

			

				′
			

			
				
				(
				𝑡
				)
				=
			

			

				Ω
			

			
				
				𝑢
			

			

				𝑡
			

			

				𝑢
			

			
				𝑡
				𝑡
			

			
				+
				∇
			

			

				𝑔
			

			
				𝑢
				⋅
				∇
				𝑢
			

			

				𝑡
			

			
				
				+
				
				𝑑
				𝑥
			

			

				Γ
			

			

				1
			

			
				𝜉
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				−
				
				(
				𝑥
				,
				𝑡
				)
				𝑑
				Γ
			

			

				Γ
			

			

				1
			

			
				
				𝜉
				𝜙
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				1
				−
				𝜏
			

			

				′
			

			
				
				𝑢
				(
				𝑡
				)
			

			

				𝑡
			

			
				×
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				.
			

		
	
Applying Green’s formula and by integrating by parts with (3) and (8), we arrive at
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝐸
			

			

				′
			

			
				
				(
				𝑡
				)
				=
			

			

				Γ
			

			

				1
			

			
				
				𝜙
				(
				𝑡
				)
				−
				𝜇
				𝑢
			

			

				𝑡
			

			

				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				−
				𝜆
				𝑢
			

			

				𝑡
			

			

				𝑔
			

			

				2
			

			
				
				𝑢
			

			

				𝑡
			

			
				+
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				
				
				𝑑
				Γ
			

			

				Γ
			

			

				1
			

			
				𝜉
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				−
				
				(
				𝑥
				,
				𝑡
				)
				𝑑
				Γ
			

			

				Γ
			

			

				1
			

			
				
				𝜉
				𝜙
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				1
				−
				𝜏
			

			

				′
			

			
				
				𝑢
				(
				𝑡
				)
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				×
				
				𝑢
			

			

				𝑡
			

			
				
				≤
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
			

			

				Γ
			

			

				1
			

			
				
				𝜙
				(
				𝑡
				)
				−
				𝜇
				𝑢
			

			

				𝑡
			

			

				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				+
				|
				|
				𝜆
				|
				|
			

			
				
			
			
				2
				√
			

			
				
			
			
				𝑢
				1
				−
				𝑑
			

			
				2
				𝑡
			

			
				+
				𝜉
				𝑢
			

			

				𝑡
			

			

				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
				+
				
				𝑑
				Γ
			

			

				Γ
			

			

				1
			

			
				
				𝜙
				(
				𝑡
				)
				−
				𝑐
			

			

				2
			

			
				(
				1
				−
				𝑑
				)
				𝜉
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				×
				
				𝑢
			

			

				𝑡
			

			
				
				+
				√
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
			

			
				
			
			
				|
				|
				𝜆
				|
				|
				1
				−
				𝑑
			

			
				
			
			
				2
				𝑔
			

			
				2
				2
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				.
			

		
	

						It follows from (3), (4), (12), and (14) that
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝐸
			

			

				′
			

			
				
				(
				𝑡
				)
				≤
				−
				𝐶
				𝜙
				(
				𝑡
				)
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				)
				+
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				×
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				
				
				𝑑
				Γ
				,
			

		
	

						where 
	
		
			
				𝐶
				>
				0
			

		
	
 satisfies 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				|
				|
				𝜆
				|
				|
				𝐶
				=
				m
				i
				n
				𝜇
				−
			

			
				
			
			
				2
				√
			

			
				
			
			
				1
				−
				𝑑
				−
				𝜉
				,
				𝑐
			

			

				2
			

			
				√
				(
				1
				−
				𝑑
				)
				𝜉
				−
			

			
				
			
			
				|
				|
				𝜆
				|
				|
				1
				−
				𝑑
			

			
				
			
			
				2
				
				.
			

		
	

						Then, inequality (31) follows directly from (34) integrating from 
	
		
			

				0
			

		
	
 to 
	
		
			

				𝑇
			

		
	
.
3. Proofs of Theorem 1
From Proposition 2.1 in [12], we have the following identities.
Lemma 5.  Suppose that 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 solves equation 
	
		
			

				𝑢
			

			
				𝑡
				𝑡
			

			
				+
				𝒜
				𝑢
				=
				0
				,
				(
				𝑥
				,
				𝑡
				)
				∈
				Ω
				×
				(
				0
				,
				+
				∞
				)
			

		
	
 and that 
	
		
			

				ℋ
			

		
	
 is a vector field defined on 
	
		
			
				
			
			

				Ω
			

		
	
. Then, for 
	
		
			
				𝑇
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				1
				ℋ
				(
				𝑢
				)
				𝑑
				Γ
				𝑑
				𝑡
				+
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				−
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				=
				
				𝑢
				ℋ
				⋅
				𝜈
				𝑑
				Γ
				𝑑
				𝑡
			

			

				𝑡
			

			
				
				|
				|
				,
				ℋ
				(
				𝑢
				)
			

			
				𝑇
				0
			

			
				+
				
			

			
				𝑇
				0
			

			

				
			

			

				Ω
			

			

				𝐷
			

			

				𝑔
			

			
				ℋ
				
				∇
			

			

				𝑔
			

			
				𝑢
				,
				∇
			

			

				𝑔
			

			
				𝑢
				
				+
				1
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			

				
			

			

				Ω
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				−
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				d
				i
				v
				ℋ
				𝑑
				𝑥
				𝑑
				𝑡
				.
			

		
	
 Moreover, assume that 
	
		
			
				𝑃
				∈
				𝐶
			

			

				1
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
. Then,
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				
			

			

				Ω
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				−
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				=
				
				𝑢
				𝑃
				𝑑
				𝑥
				𝑑
				𝑡
			

			

				𝑡
			

			
				
				|
				|
				,
				𝑢
				𝑃
			

			
				𝑇
				0
			

			
				+
				1
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			

				
			

			

				Ω
			

			

				∇
			

			

				𝑔
			

			
				𝑃
				
				𝑢
			

			

				2
			

			
				
				−
				
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			
				𝑃
				𝑢
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				𝑑
				Γ
				𝑑
				𝑡
				.
			

		
	

Lemma 6.  Suppose that all assumptions in Theorem 1 hold true. Let 
	
		
			

				𝑢
			

		
	
 be the solution of the system (2). Then, there exists a positive constant 
	
		
			

				𝐶
			

		
	
 for which
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				𝐸
				(
				𝑡
				)
				𝑑
				𝑡
				≤
				𝐶
				𝐸
			

			

				0
			

			
				
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
				+
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				+
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				×
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				𝑑
				𝑡
				,
			

		
	

						where 
	
		
			
				𝑇
				≥
				0
			

		
	
.
Proof. Let 
	
		
			

				𝜃
			

		
	
 be a positive constant satisfying 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				s
				u
				p
			

			
				𝑥
				∈
			

			
				
			
			

				Ω
			

			
				1
				d
				i
				v
				𝐻
				<
				𝜃
				<
			

			
				
			
			
				2
				i
				n
				f
			

			
				𝑥
				∈
			

			
				
			
			

				Ω
			

			
				d
				i
				v
				𝐻
				+
				𝜌
			

			

				0
			

			

				.
			

		
	

						Set 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				ℋ
				=
				𝐻
				,
				𝑃
				=
				𝜃
				−
				𝜌
			

			

				0
			

			

				.
			

		
	

						Substituting identity (37) into identity (36), we have
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				Π
			

			

				Γ
			

			
				=
				
				𝑢
			

			

				𝑡
			

			
				
				|
				|
				,
				𝐻
				(
				𝑢
				)
				+
				𝑃
				𝑢
			

			
				𝑇
				0
			

			
				+
				
			

			
				𝑇
				0
			

			

				
			

			

				Ω
			

			
				
				𝐷
			

			

				𝑔
			

			
				𝐻
				
				∇
			

			

				𝑔
			

			
				𝑢
				,
				∇
			

			

				𝑔
			

			
				𝑢
				
				−
				𝜌
			

			

				0
			

			
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				+
				
				𝑑
				𝑥
				𝑑
				𝑡
			

			
				𝑇
				0
			

			

				
			

			

				Ω
			

			
				1
				
				
			

			
				
			
			
				2
				d
				i
				v
				𝐻
				+
				𝜌
			

			

				0
			

			
				
				𝑢
				−
				𝜃
			

			
				2
				𝑡
			

			
				+
				
				1
				𝜃
				−
			

			
				
			
			
				2
				
				|
				|
				∇
				d
				i
				v
				𝐻
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				𝑑
				𝑥
				𝑑
				𝑡
				,
			

		
	

						where
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				Π
			

			

				Γ
			

			
				=
				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				+
				1
				(
				𝐻
				(
				𝑢
				)
				+
				𝑢
				𝑃
				)
				𝑑
				Γ
				𝑑
				𝑡
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				−
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				𝐻
				⋅
				𝜈
				𝑑
				Γ
				𝑑
				𝑡
				.
			

		
	
We decompose 
	
		
			

				Π
			

			

				Γ
			

		
	
 as 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				Π
			

			

				Γ
			

			
				=
				Π
			

			

				Γ
			

			

				1
			

			
				+
				Π
			

			

				Γ
			

			

				2
			

			

				.
			

		
	

						Since 
	
		
			
				𝑢
				|
			

			

				Γ
			

			

				2
			

			
				=
				0
			

		
	
, we obtain 
	
		
			

				∇
			

			

				Γ
			

			
				𝑢
				|
			

			

				Γ
			

			

				2
			

			
				=
				0
			

		
	
; that is, 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				∇
			

			

				𝑔
			

			
				𝑢
				=
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				𝜈
			

			

				𝒜
			

			
				
			
			
				|
				|
				𝜈
			

			

				𝒜
			

			
				|
				|
			

			
				2
				𝑔
			

			
				f
				o
				r
				𝑥
				∈
				Γ
			

			

				2
			

			

				.
			

		
	

						Similarly, we have 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				
				𝐻
				(
				𝑢
				)
				=
				𝐻
				,
				∇
			

			

				𝑔
			

			
				𝑢
				
			

			

				𝑔
			

			
				=
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				𝐻
				⋅
				𝜈
			

			
				
			
			
				|
				|
				𝜈
			

			

				𝒜
			

			
				|
				|
			

			
				2
				𝑔
			

			
				f
				o
				r
				𝑥
				∈
				Γ
			

			

				2
			

			

				.
			

		
	

						Using formulas (44) and (45) in formula (42) on the portion 
	
		
			

				Γ
			

			

				2
			

		
	
, with (19), we obtain
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				Π
			

			

				Γ
			

			

				2
			

			
				=
				1
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				2
			

			
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				𝐻
				⋅
				𝜈
			

			
				
			
			
				|
				|
				𝜈
			

			

				𝒜
			

			
				|
				|
			

			
				2
				𝑔
			

			
				𝑑
				Γ
				𝑑
				𝑡
				≤
				0
				.
			

		
	

						From (19), we have
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				Π
			

			

				Γ
			

			

				1
			

			
				=
				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				+
				1
				(
				𝐻
				(
				𝑢
				)
				+
				𝑢
				𝑃
				)
				𝑑
				Γ
				𝑑
				𝑡
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				−
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				𝐻
				⋅
				𝜈
				𝑑
				Γ
				𝑑
				𝑡
				≤
				𝐶
			

			

				𝜀
			

			

				
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝜀
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			

				2
			

			
				+
				|
				|
				∇
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				+
				
				𝑑
				Γ
				𝑑
				𝑡
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝐶
				𝑢
			

			
				2
				𝑡
			

			
				|
				|
				∇
				−
				𝛿
			

			

				𝑔
			

			
				𝑢
				|
				|
			

			
				2
				𝑔
			

			
				
				
				𝑑
				Γ
				𝑑
				𝑡
				≤
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝜀
				𝐸
			

			

				0
			

			
				
				(
				𝑡
				)
				+
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			

				𝑢
			

			
				2
				𝑡
			

			
				𝑑
				Γ
				𝑑
				𝑡
				.
			

		
	
Substituting formulas (46) and (47) into formula (41), with (39), we obtain
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				𝐸
			

			

				0
			

			
				
				𝐸
				(
				𝑡
				)
				𝑑
				𝑡
				≤
				𝐶
			

			

				0
			

			
				(
				0
				)
				+
				𝐸
			

			

				0
			

			
				
				
				(
				𝑇
				)
				+
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				+
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				
				𝑑
				Γ
				𝑑
				𝑡
				.
			

		
	

						Let 
	
		
			
				𝜚
				=
				𝜌
				−
				𝜏
				(
				𝜌
				)
			

		
	
, and from (3), (7), (8), and (30), we have
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				𝐸
			

			

				0
			

			
				+
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				×
				
				𝑢
			

			

				𝑡
			

			
				
				≥
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				𝑑
				𝑡
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				𝐸
			

			

				0
			

			
				1
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				
			
			

				𝜏
			

			

				0
			

			

				
			

			
				𝑇
				0
			

			

				
			

			
				𝑡
				+
				𝜏
			

			

				0
			

			

				𝑡
			

			

				
			

			

				Γ
			

			

				1
			

			
				𝜙
				(
				𝜌
				)
				𝑢
			

			

				𝜌
			

			
				×
				(
				𝑥
				,
				𝜌
				−
				𝜏
				(
				𝜌
				)
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				=
				
				(
				𝑥
				,
				𝜌
				−
				𝜏
				(
				𝜌
				)
				)
				𝑑
				Γ
				𝑑
				𝜌
				𝑑
				𝑡
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				𝐸
			

			

				0
			

			
				1
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				
			
			

				𝜏
			

			

				0
			

			

				
			

			
				𝑇
				0
			

			

				
			

			
				𝑡
				+
				𝑇
			

			

				1
			

			
				−
				𝜏
				(
				𝑡
				+
				𝜏
			

			

				0
			

			
				)
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

			

				
			

			

				Γ
			

			

				1
			

			
				𝜙
				(
				𝜌
				)
				𝑢
			

			

				𝑟
			

			
				ℎ
				𝑜
				(
				𝑥
				,
				𝜚
				)
				𝑔
			

			

				1
			

			
				×
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝜚
				)
				𝑑
				Γ
				𝑑
				𝜚
			

			
				
			
			
				1
				−
				𝜏
			

			

				′
			

			
				≥
				
				(
				𝜌
				)
				𝑑
				𝑡
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				𝐸
			

			

				0
			

			
				𝑐
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			

				2
			

			
				
			
			
				
				1
				−
				𝑑
			

			

				0
			

			
				
				𝜏
			

			

				0
			

			

				
			

			
				𝑇
				0
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

			

				
			

			

				Γ
			

			

				1
			

			
				𝜙
				(
				𝜚
				)
				𝑢
			

			

				𝜚
			

			
				(
				𝑥
				,
				𝜚
				)
				𝑔
			

			

				1
			

			
				×
				
				𝑢
			

			

				𝑡
			

			
				
				
				𝑐
				(
				𝑥
				,
				𝜚
				)
				𝑑
				Γ
				𝑑
				𝜚
				𝑑
				𝑡
				≥
				m
				i
				n
				1
				,
			

			

				2
			

			
				
			
			
				
				1
				−
				𝑑
			

			

				0
			

			
				
				𝜏
			

			

				0
			

			
				
				
			

			
				𝑇
				0
			

			
				𝐸
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

						Since
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝐸
			

			

				0
			

			
				(
				0
				)
				=
				𝐸
			

			

				0
			

			
				
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				−
				
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			

				𝑢
			

			

				𝑡
			

			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			
				𝑑
				Γ
				𝑑
				𝑡
				≤
				𝐸
			

			

				0
			

			
				
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				+
				1
			

			
				
			
			
				2
				
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				+
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				𝑑
				Γ
				𝑑
				𝑡
				,
			

		
	

						substituting formula (49) into formula (48), we obtain
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				𝐸
				(
				𝑡
				)
				𝑑
				𝑡
				≤
				𝐶
				𝐸
			

			

				0
			

			
				
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
				+
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				+
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				
				+
				
				𝑑
				Γ
				𝑑
				𝑡
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				×
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				𝑑
				𝑡
				.
			

		
	

						Inequality (38) holds.
Proof of Theorem 1. Since 
	
		
			
				𝐸
				(
				𝑡
				)
			

		
	
 is decreasing, from (38), for sufficiently large 
	
		
			

				𝑇
			

		
	
, we have
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				
				𝑇
				𝐸
				(
				𝑇
				)
				≤
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
			

			
				2
				𝑡
			

			
				+
				
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝜈
			

			

				𝒜
			

			

				
			

			

				2
			

			
				
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				𝑑
				𝑡
				≤
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				(
				𝜙
				(
				𝑡
				)
				)
			

			

				2
			

			
				
				
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
			

			

				2
			

			
				+
				
				𝑔
			

			

				2
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
			

			

				2
			

			
				
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			

				𝑢
			

			
				2
				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				)
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				𝑑
				𝑡
				≤
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				(
				𝜙
				(
				𝑡
				)
				)
			

			

				2
			

			
				
				
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
			

			

				2
			

			
				+
				
				𝑔
			

			

				2
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
			

			

				2
			

			
				
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
				𝐹
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			
				2
				𝑡
			

			
				(
				
				𝑥
				,
				𝑡
				)
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				(
				𝑥
				,
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
				𝑑
				Γ
				𝑑
				𝑡
				,
			

		
	

						where 
	
		
			
				𝐹
				(
				𝑡
				)
			

		
	
 is defined in (8). With (4)–(8) and (31), we deduce that
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				
				𝑇
				𝐸
				(
				𝑇
				)
				≤
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑠
				𝜙
				(
				𝑡
				)
			

			

				2
			

			
				+
				
				𝑔
			

			

				1
			

			
				
				(
				𝑠
				)
			

			

				2
			

			
				
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
				𝐹
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
				
				𝐸
				(
				0
				)
				−
				𝐸
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
				
				≤
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			
				{
				𝑥
				∈
				Γ
			

			

				1
			

			
				,
				|
				𝑢
			

			

				𝑡
			

			
				(
				𝑥
				,
				𝑡
				)
				|
				≤
				1
				}
			

			
				
				𝑢
				𝜙
				(
				𝑡
				)
			

			

				𝑡
			

			

				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
			

			
				1
				/
				𝑝
			

			
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
				𝐹
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
				
				𝐸
				(
				0
				)
				−
				𝐸
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
				
				≤
				𝐶
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				
				𝑢
				𝜙
				(
				𝑡
				)
			

			

				𝑡
			

			

				𝑔
			

			

				1
			

			
				
				𝑢
			

			

				𝑡
			

			
				
				
			

			
				1
				/
				𝑝
			

			
				
				𝑑
				Γ
				𝑑
				𝑡
				+
				𝐶
				𝐹
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				
				
				𝐸
				(
				0
				)
				−
				𝐸
				𝑇
				+
				𝜏
			

			

				0
			

			
				
				Γ
				
				
				≤
				𝐶
				m
				e
				a
				s
			

			

				1
			

			
				
				
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			
				⋅
				
				1
				𝜙
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				
			
			
				
				Γ
				m
				e
				a
				s
			

			

				1
			

			
				
				∫
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			
				×
				
				𝜙
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑇
				+
				𝜏
			

			

				0
			

			

				0
			

			

				
			

			

				Γ
			

			

				1
			

			
				𝜙
				(
				𝑡
				)
				𝑢
			

			

				𝑡
			

			
				𝑔
				
				𝑢
			

			

				𝑡
			

			
				
				
				𝑑
				Γ
				𝑑
				𝑡
			

			
				1
				/
				𝑝
			

			
				
				+
				𝐶
				𝐹
				𝑇
				+
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 is decreasing; estimate (22) holds.
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