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Abstract. 
The purpose of this paper is to investigate the existence of solutions to the following initial value problem for nonlinear fractional differential equation involving Caputo sequential fractional derivative , , , , where ,  are Caputo fractional derivatives, , , , and . Local existence of solutions is established by employing Schauder fixed point theorem. Then a growth condition imposed to  guarantees not only the global existence of solutions on the interval , but also the fact that the intervals of existence of solutions with any fixed initial value can be extended to . Three illustrative examples are also presented. Existence results for initial value problems of ordinary differential equations with -Laplacian on the half-axis follow as a special case of our results.



1. Introduction
This paper deals with the following initial value problem for nonlinear fractional differential equation involving Caputo sequential fractional derivative:where ,  are Caputo fractional derivatives, , , , and , and  is continuous on , . When , the equation in (1) becomes a sequential fractional differential equation. Here, we follow the definition of sequential fractional derivative presented by Podlubny [1]:where the symbol  () means the Riemann-Liouville derivative or the Caputo derivative. It is easy to see that (2) is a generalized expression presented by Miller and Ross in [2].
Fractional differential equations have been of great interest for the past three decades; see the monographs [1–4] and the papers of [5–8]. This is due to the intensive development of the theory of fractional calculus itself as well as its applications. Apart from diverse areas of pure mathematics, fractional differential equations can be used in modeling of various fields of science and engineering such as rheology, self-similar dynamical processes, porous media, fluid flows, viscoelasticity, electrochemistry, control, electromagnetic, and many other branches of science. For details, see [9–12] and the references therein.
Recently, we note that the investigation for the existence of solutions of sequential fractional differential equations associated with a variety of initial and boundary value conditions has attracted the considerable attention of researchers. Here, we mention some works on them. In [13, 14], the authors investigated a class of Riemann-Liouville sequential fractional differential equation and obtained existence, nonexistence, and asymptotic property of the solutions by some nonlinear analysis methods. In [15, 16], the authors considered the existence and uniqueness of the solutions for initial value problems involving Riemann-Liouville sequential fractional derivative by using monotone iterative method and fixed point method. As for sequential fractional differential equations associated with boundary value conditions, we refer the reader to [17–22]. For example, Chen and Tang [21] considered the existence of the solutions for the following Caputo sequential fractional differential equation: with -point boundary value conditions by the coincidence degree continuation theorem. After that, in 2015, Jiang [22] investigated the following Riemann-Liouville sequential fractional differential equations with -Laplacian at resonance: where , . By the extension of the continuous theorem in [23] and constructing suitable operators, they obtained the existence of solutions satisfied integral boundary value conditions.
In view of the facts that the Laplace transform of the Caputo derivative allows utilization of initial values of classical integer-order derivatives and that the Caputo derivative of a constant is 0, sequential fractional differential equations involving the Caputo fractional derivative have more clear physical interpretations than those involving the Riemann-Liouville fractional derivative (see [3, 4]).
To the best of our knowledge, there is no paper dealing with the existence of solutions of Caputo sequential fractional differential equations with initial value conditions. In our latest paper [24], by virtue of uniform Lipschitz continuity of  on  for every , we proved the existence and uniqueness of solutions of problem (1). Now, in this paper, we are concerned with the initial value problem (1) without uniform Lipschitz continuity of . By fractional Taylor expansion theorem, we first obtain an integral equation equivalent to the initial value problem (1), to which local existence of solutions is established utilizing Schauder fixed point theorem. Then a growth condition imposed to  guarantees not only the global existence of solutions on the interval , but also the fact that the intervals of existence of solutions with any fixed initial value can be extended to . In addition, existence results for initial value problems of ordinary differential equations with -Laplacian on the half-axis follow as a special case of our results.
The paper is organized as follows. In Section 2, we present some necessary definitions and preliminary results that will be used in our discussions. The main results and their proofs are given in Section 3. In Section 4, we will give three examples to illustrate our results.
2. Preliminaries
In this section, we introduce some basic definitions and notations (see the monographs [1, 2] for further details) and give several useful preliminary results which are used throughout this paper.
Definition 1. Let . The Riemann-Liouville fractional integral of a function  of order  is given by provided that the right-hand side is pointwise defined on . Here and in what follows  is the Gamma function.
The fractional integration operator  has that the following semigroup property holds for all , .
Definition 2. Let  and let  be the smallest integer that exceeds . The Riemann-Liouville fractional derivative of a continuous function  of order  is given by provided that the right-hand side is pointwise defined on .
Obviously, the Riemann-Liouville fractional differentiation is the left inverse of the Riemann-Liouville fractional integration for continuous function  in the following sense: for . However, it is not the right inverse. More precisely, we have the following fractional Taylor expansion theorem.
Theorem 3.  Let . Assume that  is such that  is absolutely continuous. Then 
Definition 4. Let  and let  be the smallest integer that exceeds . The Caputo fractional derivative of a continuous function  of order  is given by provided that the right-hand side is pointwise defined on .
The definition of solutions of the initial value problem (1) is given as follows.
Definition 5. Let ; a function  is called a solution of (1) on , if (i),  , ;(ii) satisfies problem (1) on .
Definition 6. A function  is called a solution of (1) on , if for any ,  is a solution of problem (1) on .
In order to study the existence of solutions of (1), we should transform problem (1) into an equivalent integral equation. We need the following two lemmas.
Lemma 7.  Let ; then one has 
Lemma 8.  Let . If  is a continuous function defined on , then  is continuous with respect to  in .
Proof. Let  and take . For , we haveSince  is continuous and bounded in the neighborhood of , we conclude thatwhere . Combining (13), (14) with (15), we arrive at In addition, it is easy to see that Therefore,  is continuous with respect to  in .
Remark 9. If , then  is continuous on . According to Lemma 8, the function is also continuous in  and .
Now we are ready to transform problem (1) into an equivalent integral equation. For the reader’s convenience, we list two special notations that will be used in the following paper:  and  for .
Proposition 10.  A function  defined in  is a solution of problem (1) if and only if it satisfies the following integral equation on : where 
Proof. First we prove the necessity. Let  be a solution of problem (1) and define and then  and . According to Definition 4 and Theorem 3, the differential equation of problem (1) can be transformed into the following form: Obviously,  is absolutely continuous on . Combining with Theorem 3, we have That is, Applying Definition 4 and Theorem 3 again, we have Obviously, . Combining with Theorem 3, we have Therefore,  satisfies the integral equation (19).
Next, we prove the sufficiency. Let  be a solution of the integral equation (19). Combining with Definition 1, (19) reduces toFrom Remark 9, we see that  and . That is,  and . Applying the operator  to both sides of (27), we obtain that Then we have  and . By virtue of , we transform the above equation into the following form:Similarly, applying the operator  to both sides of (29), we arrive at Therefore,  is a solution of (1) on . Summing up, we complete the proof of Proposition 10.
Since  can be chosen arbitrarily large in Proposition 10, according to Definition 6, we have the following result.
Corollary 11.  Let ; then  is a solution of problem (1) if and only if it satisfies the integral equation (19) on .
By Corollary 11, we obtain the following two existence results.
Remark 12. If , and  for , then the constant function  is a solution of problem (1).
Remark 13. If  for , then problem (1) has a solution on .
The following fixed point lemma is the main tool in the proofs of our results.
Lemma 14 (Schauder fixed point theorem).  Let  be a closed, convex, and nonempty subset of a Banach space , and let  be a mapping such that  is a relatively compact subset in . Then  has at least one fixed point in .
3. Main Results
In this section, we will give and prove our main results in this paper.
Theorem 15.  For any fixed initial values  and , there exists a sufficiently small constant  such that problem (1) has a solution on .
Proof. For any given positive constant , choose  sufficiently small which will be determined later. Let Obviously,  is a closed, convex, and nonempty subset of . On this set  we define the operator : where According to Proposition 10, in what follows, it suffices to show that the operator  has a fixed point in .
Firstly, we will show that  for any . To this end we begin by noting that for any ,  by Remark 9. Then we obtain that . Furthermore, for  we have where Now we can choose  so small thatwhich means that ; that is,  maps the set  to itself.
Secondly, we will also show that the family of functions  is a relatively compact set. That is to say, we need to show that  is uniformly bounded and equicontinuous on . The uniform boundedness follows from the definition of . As for the equicontinuity, for  and , we see that where  is independent of , , and . Therefore  is uniformly bounded and equicontinuous on , and thus  is a relatively compact subset of . By Lemma 14 there exists  such that  and  is a solution of problem (1) on . The proof is completed.
We have proved the local existence of solutions of problem (1) in Theorem 15. However, maximal intervals of existence of those solutions are not necessarily , which change according to initial values  and . We give an example to illustrate it.
Example 16. Consider the following initial value problem for second-order ordinary differential equationwhere  is a constant. When , it is easy to see that the function is a solution of (38) on  and  is the maximum interval of existence. When , however, the function  is a solution of (38) on  and  is the maximum interval of existence.
Under certain growth condition on the nonlinearity  in (1), we will show that any solutions obtained in Theorem 15 can be extended to the interval  as solutions of problem (1).
Theorem 17.  Suppose that there exist constant  and two nonnegative continuous functions ,  defined on  such that Then maximum intervals of existence of any solutions of (1) obtained in Theorem 15 are .
Proof. Let  be a solution of (1) on  where . By Definition 6, it suffices to prove that for any fixed , there exists a function  as a solution of (1) on  such that  for . The proof will be completed by applying Lemma 14. Choose  which will be determined later and denote Obviously,  is a closed, convex, and nonempty subset of . On this set  we define the operator : where It is easy to see that  for any . Further, by virtue of (40) we have where Since , that is, , we can choose  so large that Then  maps the set  to itself. To apply Lemma 14, we also need to show that the family of functions  is a relatively compact set. That is to say, we need to show that  is uniformly bounded and equicontinuous on . The uniform boundedness follows from the definition of . As for the equicontinuity, we see that, for  and , where  is independent of , , and . Therefore  is uniformly bounded and equicontinuous on , and thus  is a relatively compact subset in . By Lemma 14 there exists  such that . Noting that , we define From the definition of , we see that  is a solution of (1) on , which completes the proof.
In a special case, an estimate of increasing rate for solutions as  is made.
Corollary 18.  Suppose that  is bounded on . Let  be a solution of (1) on ; then   .
Proof. According to Corollary 11, we have Note that and we obtain where  is independent of  and . Since , we conclude that 
4. Example
To illustrate our main results, we will present three examples.
Example 19. Consider the initial value problem for sequential fractional differential equationwhere . Here , , , and . It is easy to see that for . According to Theorem 17, problem (53) has at least one positive solution on  for any fixed . Let  be a positive solution of (53) on . Since  is bounded on  when , we further have an estimate of increasing rate for  by Corollary 18: 
Example 20. Consider the initial value problem for nonlinear fractional differential equationwhere . Here , , and . Choosing , we see that for , where . According to Theorem 17, problem (56) has at least one solution on . Let  be a solution of (56) on . By simple computation similar to that in the proof of Corollary 18, we further have an estimate of increasing rate for : 
Example 21. Consider the initial value problems for ordinary differential equations with -Laplacianwhere . Here  and . Choosing , we see that for . According to Theorem 17, problem (59) has at least one solution on . Let  be a solution of (59) on . By simple computation similar to that in the proof of Corollary 18, we further have an estimate of increasing rate for : 
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