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Abstract. 
We consider the compressible flows of liquid crystals arising in a variety of scientific examples. We here study the incompressible limit of weak solutions of the compressible flows of nematic liquid crystals in the whole space .



1. Introduction
Liquid crystals flows can be found in the natural world and in technological applications with a variety of examples in the area of many proteins, cell membranes and solutions of soap, and various related detergents, as well as the tobacco mosaic virus. We here consider the compressible flows of liquid crystals. Consider the following:where  is the vector field,  is the density,  is the macroscopic average of the nematic liquid crystal orientation field, and , and  are viscosities. We use the following scalings: and, for the viscosity coefficients, with the convergence of the viscosity coefficients: With this scaling, system (1) readsLet us introduce the history of incompressible limit problems. For the case of , incompressible limit problems have been investigated by many authors, starting with the work by Klainerman and Majda [1] for the Euler equations and Lions and Masmoudi [2] for the isentropic Navier-Stokes equations. Similar results in the spirit of the analysis, presented by Lions and Masmoudi [2], are the recent progress by Feireisl and Novotný [3, 4] for the full Navier-Stokes Fourier system. For the liquid crystals flows, there is recent progress by Wang and Yu [5] based on the spectral analysis and Duhamel’s principle to control difficulties arising in the boundary of bounded domains. In this paper, we will use an abstract result of Kato [6] to show that the energy of acoustic waves decays to zero and this method was used in Feireisl [7] for the full Navier-Stokes Fourier system in order to derive rigorous limit of low Mach number for compressible flows of nematic liquid crystals in the whole space . As an application of this idea, we can also see one work by Kwon and Trivisa [8] for the full magnetohydrodynamic flows.
The outline of this paper is as follows. In Section 1 we present the initial boundary value problem and introduce the notion of weak solutions for the problem. In Section 2 we present the main results of the paper on the low Mach number problem in the whole space. In Section 3 we give the rigorous proof of the low Mach number problem for the flows of nematic liquid crystals in the whole space.
We now introduce the notion of global weak solutions. We first propose the initial data and boundary conditions for the existence of global existence: where  and 
1.1. Weak Solutions
Definition 1. We say that a quantity  is a weak solution of the compressible flows of liquid crystals (5) supplemented with the initial data  provided that the following hold.(i)The regularity holds:  where , , ,  is an any compact subset of , and  represents a renormalized solution of (1) on ; that is, the integral identity holds for any test function  and any  such that (ii)The balance of momentum holds in distributional sense; namely, for any test function , where  is defined by (iii)The total energy of the system holds as follows:  holds for a.e. , where  and we assume .(iv)The equation of direction field verifies for all .
Remark 2. There are global weak solutions for compressible flows of nematic liquid crystals in two dimensions and the result is provided in Jiang et al. [9].
We now introduce the weak solutions of the target system.
Definition 3. A couple  is said to be a weak solution of the target system of the compressible flows of liquid crystals supplemented with the initial conditions if the following conditions hold: (i), and the integral identity holds for any test function (ii), , and the integral identity for all .
2. Main Results
In this section we mention the main result.
Theorem 4.  Let  be a family of weak solutions to the compressible flow of liquid crystals system in the sense of Definition 1 with . Assume the initial condition as follows:  
Then, up to subsequence, where  is a weak solution of the incompressible flows of liquid crystals in the sense of Definition 3 with the initial data where Helmholtz’s projection , .
3. Proof of Theorem 4
In this section we are going to give a rigorous proof of Theorem 4. To begin with we derive some uniform estimates from the energy inequality.
3.1. Uniform Bounds
In this section we are going to derive some estimates on the sequence . Notice that the function is strictly convex in  and it has global minimum at . We now rewrite the energy equality intowhereIn accordance with assumptions (21), we get  is uniformly bounded for . From the energy inequality (25), we obtain
For the convenient presentation, we now introduce the set of the essential and residual values: where , , and  is defined as follows: 
Following the estimate of the fifth line in (27) and the convexity property of function in (24), we get 
We now derive the estimate of the velocity. Notice that with  and for any  where we have used the Sobolev embedding inequality. Thus we get and the estimates in (32) and (27) imply for any .
3.2. Convergence of Continuity Equation
For the proof of this section, we will use the uniform estimate (33) to deduce up to a subsequence of  and for any . In accordance with (30), we obtain and so we can take the limit of  in the continuity equation (9) to get for all .
3.3. Convergence of Moment and Direction Field Equation
This section is devoted to proving the convergence of moment and direction field equation which is based on some uniform estimates of the directional vector fields  in the result of global weak solutions in Jiang et al. [9]. We first use the estimates of (32) and (35) in the previous section to obtain that for any . Hence, it follows that for any test function , where  means the weak limit of . To complete the proof, we need to show  in the weak sense thanks to the oscillations of the gradient component of the velocity field and we postpone showing this part to handle the oscillations of the gradient component in the next section. To do this, we will use the estimate of the directional field  obtained in Jiang et al. [9]. We recall a basic estimate given in [10]. Consider the following.
Lemma 5.  Let ,  be positive numbers. Then there exists  such that if  with  and , then one has 
To apply the Aubin-Lions lemma, let us compute the uniform estimate of  with (5) and it follows thatwhere we have used Poincare’s inequality, Holder’s inequality, and estimate (27). Applying Aubin-Lions lemma together with (40) implies for any . Thus we get in the sense of distribution and . Consequently, using the estimates of  implies that for all .
We are now able to identify the limit problem of the moment equation (11). Let us take the limit  in the moment equation (11) and we getfor any test function where we have assumed In general we do not expect but our aim is to show that (47) holds in the weak sense; namely, for any 
3.4. Strong Convergence of the Velocity
In this section, our aim is to show that (48) holds. To do this we will follow the framework of Feireisl [7]. Indeed, it is sufficient to show that which is equivalent to the following convergence: for any , where , and we have here used the embedding  for any compact subset  and the convergence of (37). For the proof, we will apply Kato’s result [6], Theorem 6.
Theorem 6 (see Reed and Simon [11]).  Let  be a closed densely defined linear operator and  a self-adjoint densely defined operator in a Hilbert space . For , let  denote the resolvent of . Suppose that Then 
We next study the acoustic equations. The acoustic equations are used to describe the time evolution of fast acoustic waves in the compressible models in order to handle the oscillation of . To begin with, we rewrite the equations in (5): for any  andfor any , where and  can be written by satisfying
We now introduce the Helmholtz decomposition and the following material may be found in most of the text books of fluid mechanics.
Theorem 7.  A vector function  is written as where 
We now apply the Helmholtz projection to (54) and (55) in order to obtain (51) with the test function  verifying such that the initial value problem (54) and (55) can be written as follows: for any  where  andWe rewrite the system (63) in a single differential operator in order to apply Theorem 6 in the space . Denote some notations by and  by for  and the spectral resolution associated with the operator  in . We show that, for given  in (61), is a bounded linear functional for by the norm estimates of , . We apply the Riezs representation theorem to the system (62) and (63) by putting  in order to obtain the following system:for all  and for any test function Consequently, the system (68) and (69) can formally be written intowith the initial conditions , .
From Duhamel’s formula solving the initial boundary value problem (71), we getDuhmel’s formula (72) can rigorously be represented byfor any .
In the sprite of Feireisl [7], we can prove (51) for the gradient part  together with applying Theorem 6 with , , , , and .
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