Research Article

Similarity Measures of Sequence of Fuzzy Numbers and Fuzzy Risk Analysis

Zarife Zararsız

Department of Mathematics, Faculty of Art and Science, University of Nevşehir Hacı Bektaş Veli, 50300 Nevşehir, Turkey

Correspondence should be addressed to Zarife Zararsız; zarifezararsiz@nevsehir.edu.tr

Received 18 May 2015; Revised 21 July 2015; Accepted 22 July 2015

Academic Editor: Soheil Salahshour

Copyright © 2015 Zarife Zararsız. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present the methods to evaluate the similarity measures between sequence of triangular fuzzy numbers for making contributions to fuzzy risk analysis. Firstly, we calculate the COG (center of gravity) points of sequence of triangular fuzzy numbers. After, the presented methods to measure the degree of similarity between sequence of triangular fuzzy numbers. Additionally, we give an example to compare the methods mentioned in the text. Furthermore, in this paper, we deal with the (t_1, t_2) type fuzzy number. By defining the algebraic operations on the (t_1, t_2) type fuzzy numbers we can solve the equations in the form x + u(t_1, t_2) = v(t_1, t_2), where u(t_1, t_2) and v(t_1, t_2) are fuzzy number. By this way, we can build an algebraic structure on fuzzy numbers. Additionally, the generalized difference sequence spaces of triangular fuzzy numbers \([c(F_1)]_{\mathbb{R}^2, D}, [c(F_1)]_{\mathbb{R}^2, D}, [c(F_1)]_{\mathbb{R}^2, D}\), consisting of all sequences \(u^* = (u^*_1, u^*_2)\) such that \(\mathcal{B}(\hat{r}, \hat{s})u^*\) is in the spaces \(c(F_1), c(F_1), c(F_1)\), have been constructed, respectively. Furthermore, some classes of matrix transformations from the space \(c(F_1)\) to \(c(F_1)\) and \(c(F_1)\) are characterized, respectively, where \(c(F_1)\) is any sequence space.

1. Preliminaries, Background, and Notation

The concept of fuzzy sets and fuzzy set operations were first introduced by [1]. After his innovation many authors have studied various aspects of the fuzzy set theory and its applications, such as fuzzy topological spaces, similarity relations, and fuzzy mathematical programming. Matloka [2] introduced the class of bounded and convergent sequences of fuzzy numbers with respect to the Hausdorff metric. In [3], Nanda has studied the spaces of bounded and convergent sequences of fuzzy numbers and shown that these spaces are complete metric spaces.

Measuring the similarity between sequences of fuzzy numbers is very important subject of fuzzy decision making [4, 5] and fuzzy risk analysis [6]. In [7], a method for fuzzy risk analysis based on similarity measures of generalized fuzzy numbers is given. In [8], a method for measuring the rate of aggregate risk in software development is presented. Recently, some methods have been introduced to calculate the degree of similarity between fuzzy numbers [4–6]. However, these methods cannot determine the degree of similarity between sequences of fuzzy numbers. By generalizing these methods from fuzzy numbers to sequence of triangular fuzzy numbers, we give the methods to evaluate the similarity measures of sequence of triangular fuzzy numbers. In this paper, we also calculate the COG (center of gravity) points of a sequence of triangular fuzzy numbers.

It will not be right to regard this paper as a copy of classic summability theory because both a big generalization and definitions of fuzzy zero are presented in this paper. Therefore, the readers are advised to take these into consideration while reading the paper.

Some important problems on sequence spaces of fuzzy numbers can be ordered as follows: (1) construct a sequence space of fuzzy numbers and compute \(\alpha\)-dual, \(\beta\)-dual, and \(\gamma\)-dual, (2) find some isomorphic spaces of it, (3) give some theorems about matrix transformations on sequence space of fuzzy numbers, and (4) study some inclusion problems and other properties.

In the present paper, we will define matrix domain of sequence spaces of triangular fuzzy numbers and introduce the sequence spaces of fuzzy numbers \([c(F_1)]_{\mathcal{B}(\hat{r}, \hat{s})}, [c(F_1)]_{\mathcal{B}(\hat{r}, \hat{s})}, [c(F_1)]_{\mathcal{B}(\hat{r}, \hat{s})}\), and \([c(F_1)]_{\mathcal{B}(\hat{r}, \hat{s})}\). Additionally, we redefine fuzzy identity elements according to addition and multiplication.
for constructing an algebraic structure on the \((t_1, t_2)\) type sets of fuzzy numbers.

The rest of our paper is organized as follows.

In Section 2, some basic definitions and theorems related to the fuzzy numbers are given. In Section 3, we have introduced generalized difference sequence space of triangular fuzzy numbers and proved some inclusion relations on these sequence spaces. It is also established in Section 3 that the sequence spaces of triangular fuzzy numbers showed by \(\ell_\infty(F_i), \ell_1(F_i), \text{ and } c_0(F_i)\) are linearly isomorphic to the spaces \(\ell_\infty(F_i), \ell_1(F_i), \text{ and } c_0(F_i)\), respectively. Finally, in Section 3, it is proved that the spaces \(\ell_\infty(F_i), \ell_1(F_i), \text{ and } c_0(F_i)\) are complete. Section 4 is devoted to the calculation of the \(\beta(r)\) and \(\gamma(r)\) measure methods between three sets of sequences of triangular fuzzy numbers. Furthermore, we use an example to compare the similarity measure methods to sequence spaces of all bounded, convergent, null, and absolutely p-summable sequences, respectively. For simplicity in notation, the summation without limits runs from 0 to \(\infty\).

Let us consider any triangular \((t_1, t_2)\) type fuzzy number \(u_{(t_1,t_2)}\), as follows. If the function

\[
u_{(t_1,t_2)}(x) = \begin{cases}
(x - (u - t_1))t_1^{-1}, & x \in [u - t_1, u] \\
((u + t_2) - x)t_2^{-1}, & x \in [u, u + t_2] \\
0, & \text{otherwise}
\end{cases}
\]

is the membership function of the triangular fuzzy number \(u_{(t_1,t_2)}\), then \(u_{(t_1,t_2)}\) can be represented with the notation

\[u_{(t_1,t_2)} = (u - t_1, u, u + t_2), \]

where \(t_1, t_2 \in \mathbb{R}\) and \(t_1 < t_2\). If \(t_1 = t_2\), then the fuzzy number \(u_{(t_1,t_2)}\) is called symmetric fuzzy number and if \(t_1 = 0\), \(t_2 = 0\), then \(u_{(t_1,t_2)}\) is a real number. In general, the fuzzy number \(u_{(t_1,t_2)}\) is called \((t_1, t_2)\)-type fuzzy number. After here, we deal with the set of triangular \((t_1, t_2)\)-type fuzzy numbers represented as \(F_t\) which includes the classic triangular fuzzy numbers, through the text. Any element of the set \(F_t\) will be denoted by \(u_{(t_1,t_2)}\). Additionally, for brevity, we call triangular \((t_1, t_2)\)-type fuzzy numbers triangular fuzzy numbers.

It means that, set of all \((t_1, t_2)\)-type fuzzy number is defined as in the following:

\[F_t = \{(u - t_1, u, u + t_2) : t_1, t_2, u \in \mathbb{R}, t_1 \leq t_2\}. \]

The notations \(u - t_1, u, u + t_2\) are called first, middle, and end points of triangular fuzzy number \(u_{(t_1,t_2)}\), respectively. In addition to this, the notation \(u\) means that the height of the fuzzy number \(u_{(t_1,t_2)}\) is 1 at the point \(u\). For every \(t_1, t_2 \in \mathbb{R}\), the sets \(F_t\) are different from each other and every element in the form \(u_{(t_1,t_2)}\) of these sets belongs to \(F_t\). Another mean of the (4) is that for every \(t_1, t_2 \in \mathbb{R}\), there is no unique set of fuzzy numbers. Furthermore, there are infinitely-many sets of fuzzy numbers and these sets are different from each other according to structure of their elements. So, we can use the most appropriate one of these sets for our problem. In this study, we will take \(t_1, t_2 \in [0, 1]\).

Sometimes, the representation of fuzzy numbers with \(\alpha\)-cut sets induces errors according to algebraic operations. For example, if \(v\) is any fuzzy number, then \(v - v = [v^- (\alpha), v^+ (\alpha)] - [v^- (\alpha), v^+ (\alpha)] = [v^- (\alpha) - v^- (\alpha), v^+ (\alpha) - v^+ (\alpha)], \alpha \in [0, 1]\), is not equal to zero as expected in the classic mean. For avoiding this kind of problems we define fuzzy zero represented by \(\theta\) as in the following section.
2. Algebraic Structure of the Set F_t

Let $u(t_1,t_2), v(t_1,t_2) \in F_t$ and $\alpha \in \mathbb{R}$. Let us define addition, subtraction, multiplication, division, and scalar multiplication on F_t, respectively, as follows:

$$u(t_1,t_2) \oplus v(t_1,t_2) = (u(t_1,t_2), v(t_1,t_2)),$$

$$u(t_1,t_2) \ominus v(t_1,t_2) = (u(t_1,t_2) - v(t_1,t_2)),$$

$$u(t_1,t_2) \otimes \alpha = \alpha \cdot (u(t_1,t_2)).$$

Let $u(t_1,t_2) = (u(t_1,t_2), v(t_1,t_2)) \in F_t$. Then $u(t_1,t_2), v(t_1,t_2) + (0 - t_1, 0 + t_2) = (u(t_1,t_2), v(t_1,t_2) + (0 - t_1, 0 + t_2)).$

It means that $\theta(t_1,t_2) = (0 - t_1, 0 + t_2)$ is considered as the identity element of F_t according to operation which is given in (5). Therefore, we say that the inverse of the fuzzy number $u(t_1,t_2)$ is equal to $-u(t_1,t_2) = (u(t_1,t_2), v(t_1,t_2))$, according to addition and the $-u(t_1,t_2)$ determines a fuzzy number. With this idea, we can solve equations in the form $x_1(t_1,t_2) \oplus u(t_1,t_2) = \theta(t_1,t_2)$. From here fuzzy zeros of the set F_t are as follows:

$$\theta = \theta(t_1,t_2) = (0 - t_1, 0 + t_2).$$

This says to us that fuzzy zero is different for each element of the set F_t.

Theorem 1. All sets in the form F_t are linear spaces according to algebraic operations (5) and (9), where $t_1, t_2 \in \mathbb{R}$ and $t_1 \leq t_2$.

The second important matter is the topology on the set F_t. Şengönül [12] has constructed a topology on F_t by using the metric \overrightarrow{d}.

$$\overrightarrow{d} (u(t_1,t_2), v(t_1,t_2)) = \max \{|u - v - t_1|, |u - v|, |u - v + t_2|\}.$$
\[\ell_p(F_1) = \left\{ u^* = (u^k_{t_1, t_2}) \in \omega(F) : \sum_k \sigma(u^k_{t_1, t_2}, \theta)^p \right\} \]

\[< \infty, \quad 1 \leq p < \infty. \]

We should emphasize here that the sequence spaces of fuzzy numbers \(\ell_{\infty}(F_1), c(F_1), c_0(F_1), \) and \(\ell_p(F_1) \) can be reduced to the classical sequence spaces of real numbers \(\ell_{\infty}, c, c_0, \) and \(\ell_p, \) respectively in the special case \((u^k_{t_1, t_2}) = (u^k_{1,1}), \) where \(u^k \in \mathbb{R} \) and \(u^k_{t_1, t_2} \in F_1. \) So, the properties and results related to the sequence spaces of \(\ell_{\infty}(F_1), c(F_1), c_0(F_1), \) and \(\ell_p(F_1) \) are more general and more useful than the corresponding implications of the spaces \(\ell_{\infty}, c, c_0, \) and \(\ell_p, \) respectively.

Definition 2. Let \(\lambda(F_1) \subset \omega (F_1) ; \theta^* \) is identity element of \(\lambda(F_1) \) according to addition and algebraic operations in the sense of (5) and (9). The function \(\| \cdot \| : \lambda(F_1) \rightarrow \mathbb{R} \) is called norm on the set \(\lambda(F_1) \) if it has the following properties:

\[(9) \quad \| u^* \| = 0 \Leftrightarrow u^* = \theta^*. \]

\[(10) \quad \| au^* \| = \| a \| \| u^* \|, \quad a \in \mathbb{R}. \]

\[(11) \quad \| u^* + v^* \| \leq \| u^* \| + \| v^* \|. \]

If the function \(\| \cdot \| : \lambda(F_1) \rightarrow \mathbb{R} \) satisfies (9)–(11) then \(\lambda(F_1) \) is called normed sequence space of the triangular fuzzy numbers. If \(\lambda(F_1) \) is complete with respect to the norm \(\| \cdot \| \) then \(\lambda(F_1) \) is called complete normed sequence space of the triangular fuzzy numbers.

Lemma 3. The sets \(c(F_1), c_0(F_1), \) and \(\ell_{\infty}(F_1) \) are complete normed sequence spaces with the norm defined as follows:

\[\| u^* \| = \sup_k \max \{|u^k_{t_1, t_2} - v^k_{t_1, t_2}| - t_1, 0\}, \]

\[(4) \quad \| u^* \| = \left\{ u^* = (u^k_{t_1, t_2}) \in \omega(F_1) : \sum_k \sigma(u^k_{t_1, t_2}, \theta)^p \right\} \]

\[\| u^* + v^* \| \leq \| u^* \| + \| v^* \|. \]

Now, let \(\lambda(F_1) \) and \(\mu(F_1) \) be two spaces of triangular fuzzy valued sequences and let \(\sigma^* = (a_{nk}) \) be an infinite matrix of positive real numbers \(a_{nk}, \) where \(n, k \in \mathbb{N}. \) Then, we say that \(\sigma^* \) defines a real-matrix mapping from \(\lambda(F_1) \) to \(\mu(F_1) \) and we denote by writing \(\sigma^* : \lambda(F_1) \rightarrow \mu(F_1), \) if for every sequence \(u^* = (u^k_{t_1, t_2}) \in \lambda(F_1) \) the sequence \(\sigma^* u^* = (\sigma^* u^k_{t_1, t_2})^p \) is in \(\mu(F_1) \) where

\[(\sigma^* u^k_{t_1, t_2}) = \sum_k a_{nk} u^k_{t_1, t_2} \]

and the series \(\sum_k a_{nk} u^k_{t_1, t_2}, \sum_k a_{nk} u^k_{t_2}, \sum_k a_{nk} u^k_{t_2} \) are convergent for all \(n \in \mathbb{N}. \) By \(\lambda(F_1) : \mu(F_1), \) we denote the class of matrices \(\sigma^* \) such that \(\sigma^* : \lambda(F_1) \rightarrow \mu(F_1). \) Thus, \(\sigma^* \in (\lambda(F_1) : \mu(F_1)) \) if and only if the series on the right side of (15) are convergent for each \(n \in \mathbb{N} \) and every \(u \in \lambda(F_1), \) and we have \(\sigma^* u^* = (a_{nk} u^k_{t_1, t_2})^p, \) \(n \in \mathbb{N}, \) \(\mu(F_1) \) for all \(u^* \in \lambda(F_1). \)

Let \(\lambda(F_1) \) be a sequence space of triangular fuzzy numbers. Then, the set \(\{ \lambda(F_1) \}_{\sigma^*} \) of sequences of triangular fuzzy numbers, defined as follows, is called the domain of an infinite matrix \(\sigma^* \) in \(\lambda(F_1). \)

\[\begin{aligned} \{ \lambda(F_1) \}_{\sigma^*} &= \{ u^* = (u^k_{t_1, t_2}) \in \omega(F_1) : \sigma^* u^k_{t_1, t_2} \in \lambda(F_1) \}. \end{aligned} \]

Let \(r^k, s^k \) be nonzero real numbers for each \(k \in \mathbb{N} \) and define the band matrix \(B(\hat{r}, \hat{s}) = \{ b_{nk}(r^k, s^k)^{\infty}_{nk=0} \} \) by

\[b_{nk}(r^k, s^k) = \begin{cases} r^k, & k = n \\ s^k, & k = n - 1 \\ 0, & 0 \leq k < n - 1 \text{ or } k > n; \end{cases} \]

(k, n \in \mathbb{N}).

3. The Generalized Difference Sequence Spaces \([\ell_{\infty}(F_1)], B(\hat{r}, \hat{s})), \quad \{c(F_1), B(\hat{r}, \hat{s}) \}, \quad \text{and} \quad \{c_0(F_1), B(\hat{r}, \hat{s}) \}\)

In this section, we wish to introduce the \([\ell_{\infty}(F_1)], B(\hat{r}, \hat{s})), \quad \{c(F_1), B(\hat{r}, \hat{s}) \}, \quad \text{and} \quad \{c_0(F_1), B(\hat{r}, \hat{s}) \}\) spaces as the set of all sequences such that \(B(\hat{r}, \hat{s}) \)-transforms of them are in the spaces \(\ell_{\infty}(F_1), \quad c(F_1), \quad \text{and} \quad c_0(F_1), \) respectively; that is,

\[[\ell_{\infty}(F_1)]_{B(\hat{r}, \hat{s})} = \{ u^* = (u^k_{t_1, t_2}) \in \omega(F_1) : \}

\[[c(F_1)]_{B(\hat{r}, \hat{s})} = \{ u^* = (u^k_{t_1, t_2}) \in c(F_1) \}, \]

\[[c_0(F_1)]_{B(\hat{r}, \hat{s})} = \{ u^* = (u^k_{t_1, t_2}) \in c_0(F_1) \}. \]

We should emphasize here that the sequence spaces \([\ell_{\infty}(F_1)], B(\hat{r}, \hat{s})), \quad \{c(F_1), B(\hat{r}, \hat{s}) \}, \quad \text{and} \quad \{c_0(F_1), B(\hat{r}, \hat{s}) \}\) of triangular fuzzy numbers can be reduced to the sets \([\ell_{\infty}(F_1)], c(F_1), \quad \text{and} \quad c_0(F_1), \) respectively, in the case \(r^k = 1, \quad s^k = 0 \) for all \(k \in \mathbb{N}, \) in the structure of generalized difference matrix. So, the
properties and results related to the sequence spaces $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$, $[c(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$, and $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ are more general and more extensive than the corresponding consequences of the spaces $\ell_{\infty}(F_{k})$, $c(F_{k})$, and $c_{0}(F_{k})$, respectively.

Let us define the sequence of fuzzy numbers $y = (y^{k}_{(t_{1},t_{2})})$ which will be constantly used as the $\mathcal{B}(\mathcal{F},\mathcal{B})$-transform of a sequence of fuzzy numbers $u^{*} = (u^{k}_{(t_{1},t_{2})})$; that is,

$$y^{k}_{(t_{1},t_{2})} = s^{k-1}u^{k-1}_{(t_{1},t_{2})} + r^{k}u^{k}_{(t_{1},t_{2})},$$

(20)

where $u^{k}_{(t_{1},t_{2})} = \theta, r^{k}, s^{k} \in \mathbb{R} - \{0\}$ for all $k \in \mathbb{N}$.

Now, we may begin with the following theorem which is essential in the text.

Theorem 4. The sequence spaces $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$, $[c(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$, and $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ are linearly isomorphic to the spaces $\ell_{\infty}(F_{k})$, $c(F_{k})$, and $c_{0}(F_{k})$, respectively; that is, $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]} \equiv \ell_{\infty}(F_{k})$, $[c(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]} \equiv c(F_{k})$, and $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]} \equiv c_{0}(F_{k})$.

Proof. Since the others can be similarly proved, we consider only the case $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]} \equiv \ell_{\infty}(F_{k})$. To prove this, we should show the existence of a linear bijection between the spaces $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ and $\ell_{\infty}(F_{k})$. Consider the transformation defined by T, with the notation of (20), from $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ to $\ell_{\infty}(F_{k})$ by $u^{*} \mapsto y^{*} = Tu^{*} = s^{k-1}u^{k-1}_{(t_{1},t_{2})} + r^{k}u^{k}_{(t_{1},t_{2})}$.

The equality $T(u^{*} + w^{*}) = Tu^{*} + Tw^{*}$, where $u^{*}, w^{*} \in [\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$, is clear. Let us suppose that $\alpha \in \mathbb{R}$; then,

$$T(\alpha u^{*}) = s^{k-1}(\alpha u^{k-1}_{(t_{1},t_{2})}) + r^{k}(\alpha u^{k}_{(t_{1},t_{2})}) = \alpha[T(u^{k-1}_{(t_{1},t_{2})}) + r^{k}u^{k}_{(t_{1},t_{2})}] = \alpha Tu^{*},$$

(21)

That is, T has the property homogeneity. Thus, T is linear.

Let us take any $y^{*} \in [\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ and represent the sequence u^{*} using $\mathcal{B}(\mathcal{F},\mathcal{B})$ as follows:

$$u^{*} = (u^{k}_{(t_{1},t_{2})}) = (y^{k}y^{k}_{(t_{1},t_{2})}),$$

(22)

where

$$y^{k} = \sum_{n=0}^{k} (-1)^{k-n} \frac{k!}{n!(k-n)!} s^{n}u^{k-n}_{(t_{1},t_{2})},$$

(23)

Then, we have

$$\|u^{*}\|_{[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}} = \sup_{k} \mathcal{B}(\mathcal{F},\mathcal{B}) u^{k}_{(t_{1},t_{2})}, \theta$$

$$= \sup_{k} \mathcal{B}(\mathcal{F},\mathcal{B}) s^{k-1}u^{k-1}_{(t_{1},t_{2})} + r^{k}u^{k}_{(t_{1},t_{2})}, \theta$$

$$= \sup_{k} \mathcal{B}(\mathcal{F},\mathcal{B}) s^{k-1}y^{k-1}_{(t_{1},t_{2})} + r^{k}y^{k}_{(t_{1},t_{2})}, \theta$$

$$= \sup_{k} \mathcal{B}(\mathcal{F},\mathcal{B}) y^{k}_{(t_{1},t_{2})}, \theta = \|y^{*}\|_{c(F_{k})},$$

(24)

That is, T is norm preserving. Consequently, the spaces $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ and $c(F_{k})$ are linearly isomorphic. It is clear here that if the spaces $[\ell_{\infty}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ and $c(F_{k})$ are, respectively, replaced by the spaces $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ and $c_{0}(F_{k})$, then we obtain the fact that $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]} \equiv c(F_{k})$ and $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]} \equiv c_{0}(F_{k})$. This completes the proof.

Theorem 5. The sets $[c(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$, $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$, and $[c_{0}(F_{k})]_{|[\mathcal{B}(\mathcal{F},\mathcal{B})]}$ are complete normed sequence space of the triangular fuzzy numbers with the norm defined by

$$\|u^{*}\| = \sup_{k} \mathcal{B}(\mathcal{F},\mathcal{B}) \|u^{k}_{(t_{1},t_{2})} - y^{k}_{(t_{1},t_{2})} + t_{1}\|_{\mathcal{B}(\mathcal{F},\mathcal{B})}.$$
we immediately observe that $\mathcal{B}(r, s) v^* \in c_0(F_i)$ which means that $v^* \in [c_0(F_i)]_{\mathcal{B}(r, s)}$. Hence, the inclusion $c_0(F_i) \subset [c_0(F_i)]_{\mathcal{B}(r, s)}$ holds. One can see by analogy that the strict inclusion $c_0(F_i) \subset [c_0(F_i)]_{\mathcal{B}(r, s)}$ also holds. This completes the proof. □

Let $\lambda(F_i), \mu(F_i) \subset \omega(F)$ and $\mathcal{A} = (a_{n,k})$ be an infinite matrix of fuzzy numbers and consider the following expressions:

\[
\sup_n \sum_k \hat{J}(a_{n,k}, \theta) < \infty, \quad (29)
\]

\[
\sup_n \sum_k \left[\hat{J}(a_{n,k}, \theta) \right]^n < \infty, \quad (30)
\]

\[
\lim_n \sum_k \hat{J}(a_{n,k}, \theta) = 0, \quad \text{where } \left(a^k_{(0,0)} \right) \in \omega(F_i), \quad (31)
\]

\[
\lim_n \sum_k \hat{J}(a_{n,k}, \theta) = 0, \quad (32)
\]

\[
\lim_{n} \sum_{k} a_{n,k} = 1, \quad (33)
\]

\[
\lim_{n} a_{n,k} = \theta, \quad k \in \mathbb{N}. \quad (34)
\]

In [16], some matrix classes are characterized by Talo and Başar which are given in the following lemma.

Lemma 8 (see [16]). The following statements hold:

1. $\mathcal{A} \in (\ell_\infty(F) : \ell_\infty(F)), \mathcal{A} \in (c(F) : \ell_\infty(F)), \mathcal{A} \in (c_0(F) : \ell_\infty(F))$ if and only if (29) holds.
2. $\mathcal{A} \in (\ell_\infty(F) : c_0(F))$ if and only if (32) holds.
3. $\mathcal{A} \in (c_0(F) : c(F))$ if and only if (29) and (31) hold.
4. $\mathcal{A} \in (c_0(F) : c_0(F))$ if and only if (29) and (31) hold.
5. $\mathcal{A} \in (c_0(F) : c_0(F))$ if and only if (30) and (31) hold.
6. $\mathcal{A} \in (c_0(F) : c_0(F))$ if and only if (30) and (31) hold.
7. $\mathcal{A} \in (c_0(F) : c_0(F))$ if and only if (30) and (31) hold.
8. $\mathcal{A} \in (c_0(F) : c_0(F))$ if and only if (30) and (31) hold.
9. $\mathcal{A} \in (c_0(F) : c_0(F))$ if and only if (30) and (31) hold.
10. $\mathcal{A} \in (c_0(F) : c_0(F))$ if and only if (30) and (31) hold.

Analogously to Talo and Başar, we can prove the following propositions.

Proposition 9. $A \in (c_0(F) : c_0(F))$ if and only if (29) and (31) hold with $a^k = \theta$ for all $k \in \mathbb{N}$.

4. Real Duals of the Spaces $[\ell_\infty(F_i)]_{\mathcal{B}(r, s)}$, $[c_0(F_i)]_{\mathcal{B}(r, s)}$, and $[c_0(F_i)]_{\mathcal{B}(r, s)}$

In this section, we state and prove the theorems determining the $\beta(r)$- and $\gamma(r)$-duals of the spaces $[\ell_\infty(F_i)]_{\mathcal{B}(r, s)}$, $[c_0(F_i)]_{\mathcal{B}(r, s)}$, and $[c_0(F_i)]_{\mathcal{B}(r, s)}$. For the sequence spaces $\lambda(F_i)$ and $\mu(F_i)$, define the set $S(\lambda(F_i), \mu(F_i))$ by

\[
S(\lambda(F_i), \mu(F_i)) = \{ a^* = (a^k_{(0,0)}) = (a^k) \}
\]

where μ denotes all real valued sequences space. With the notation of (35), $\beta(r)$- and $\gamma(r)$-duals of a sequence space $\lambda(F_i)$, which are respectively denoted by $\lambda^{\beta(r)}(F_i)$ and $\lambda^{\gamma(r)}(F_i)$, are defined by $\lambda^{\beta(r)}(F_i) = S(\lambda(F_i), c_0(F_i))$, and $\lambda^{\gamma(r)}(F_i) = S(\lambda(F_i), b_s(F_i))$. We will use a technique, in the proof of Theorems 10 and 12, which is used in [17–19].

Theorem 10. The $\gamma(r)$-dual of the spaces $[\ell_\infty(F_i)]_{\mathcal{B}(r, s)}$, $[c_0(F_i)]_{\mathcal{B}(r, s)}$, and $[c_0(F_i)]_{\mathcal{B}(r, s)}$ is the set

\[
D_1 = \left\{ a^* = (a^k_{(0,0)}) = (a^k) \in \omega(F_i), \sup_n \sum_{k} a^k_{n,k} \left(\sum_{i,j} (-1)^{i+j} \right) < \infty \right\}.
\]

Proof. Since the proof is similar for the rest of the spaces, we determine only $\gamma(r)$-dual of the set $[c_0(F_i)]_{\mathcal{B}(r, s)}$. Let $a^* \in \omega(\mathbb{R})$ and define the matrix $\mathcal{Z} = (z_{n,k})$ via the sequence (a^k) by

\[
z_{n,k} = \sum_{i,j} (-1)^{i+j} a^k_{i,j}, \quad (0 \leq k \leq n)
\]

\[
z_{n,k} = \begin{cases} 0, & (k > n) \end{cases},
\]

\[(k, j, n \in \mathbb{N}).
\]

Bearing in mind relation (20) we immediately derive that

\[
\sum_{k=0}^{n} a^k_{\mathcal{Z}(r,s)} = \sum_{k=0}^{n} \left(\sum_{i,j} (-1)^{i+j} \right) a^k_{(r,s)} = \left(\mathcal{Z} \gamma(\mathcal{Z}(r,s)) \right)^n, \quad (k, j, n \in \mathbb{N}).
\]

From (38) we realize that $a^* x = (a^k x_{(r,s)}) \in b_s(F_i)$ whenever $x \in [c_0(F_i)]_{\mathcal{B}(r, s)}$ if and only if $\mathcal{Z} \gamma(\mathcal{Z}(r,s)) \in \ell_\infty(F_i)$ whenever $\gamma(\mathcal{Z}(r,s)) \in c_0(F_i)$. Then, by considering Part (12) of Lemma 8, we have

\[
\sup_n \sum_{k=0}^{n} a^k_{\mathcal{Z}(r,s)} \left(\sum_{i,j} (-1)^{i+j} \right) a^k_{(r,s)} < \infty,
\]

which yields the consequence that $[c_0(F_i)]_{\mathcal{B}(r, s)}^{\gamma(r)} = D_1$. □

Lemma 11 (see [20], Theorem 3.1). Let $\mathcal{C} = (c_{n,k})$ be defined via a sequence $a^* = (a^k)$ in ω and the inverse matrix $\mathcal{V}^* = (v_{n,k}^*)$ of the triangle matrix $\mathcal{U} = (u_{n,k})$ by

\[
c_{n,k} = \begin{cases} a^k_{n,k}, & 0 \leq k \leq n, \\
0, & k > n,
\end{cases}
\]
for all \(k, n \in \mathbb{N} \). Then

\[
\{\lambda U\}^\gamma = \{a^* = (a^k) \in w : C \in (\lambda : \ell^\infty)\},
\]

\[
\{\lambda U\}^\beta = \{a^* = (a^k) \in w : C \in (\lambda : c)\}.
\]

\[\text{Theorem 12. Define the sets } D_2 \text{ and } D_3 \text{ by}
\]

\[
D_2 = \left\{ a^* \in w : \lim_{n} \left(\sum_{k=0}^{n} (-1)^{n-k} a^k, \theta \right) = 0 \right\},
\]

\[
D_3 = \left\{ a^* \in w : \lim_{n} \left(\sum_{k=0}^{n} (-1)^{n-k} a^k, \theta \right) = 0, \text{ where } (k_{(0,0)}) \in w(F_i) \right\}.
\]

Then, \(\{c_0(F_i)\}_{\mathcal{F}(t, s)}^\beta = D_1 \cap D_3 \). And \(\{c(F_i)\}_{\mathcal{F}(t, s)}^\beta = D_1 \cap D_2 \).

\[\text{Proof. It is clear from Lemmas 8 and 11.}\]

5. Matrix Transformations

For the first time, Lorentz introduced the concept of dual summability methods for the relation which depends on a Steiltjes integral and passed to the discontinuous matrix methods by means of a suitable step function [21]. Later, many authors, such as Başar [22], Başar and Çolak [23], Kuttner [24], Lorentz and Zeller [25], and Şengül and Başar [19] worked on the dual summability methods.

Let us suppose that the set \(\{\lambda(F_i)\}_{\mathcal{F}(t, s)}^\gamma \) is any of the sets \(\{c_0(F_i)\}_{\mathcal{F}(t, s)}^\gamma \), \(\{c(F_i)\}_{\mathcal{F}(t, s)}^\gamma \), and \(\{\ell\infty(F_i)\}_{\mathcal{F}(t, s)}^\gamma \). In this section, we characterize the matrix mappings from \(\{\lambda(F_i)\}_{\mathcal{F}(t, s)}^\gamma \) into any given sequence space of triangular fuzzy numbers via the concept of the dual summability methods and vice versa, so we call it the sequential generalized difference dual summability methods. Let us suppose that the sequences \(u^* = (u_{i_j}^t) \) and \(v^* = (v_{i_j}^t) \) are connected with (20) and let \(\mathcal{A} \)-transform of the sequence \(u^* = (u_{i_j}^t) \) be \(z^* = (z_{i_j}^t) \) and let the \(\mathcal{B} \)-transform of the sequence \(v^* = (v_{i_j}^t) \) be \(t^* = (t_{i_j}^t) \); that is,

\[
z_{i_j}^t = (\mathcal{A}u_{i_j}^t)^t = \sum_{i} a_{i_j} u_{i_j}^t, \quad (i \in \mathbb{N}),
\]

\[
t_{i_j}^t = (\mathcal{B}v_{i_j}^t)^t = \sum_{i} b_{i_j} v_{i_j}^t, \quad (i \in \mathbb{N}).
\]

It is clear here that the method \(\mathcal{B} \) is applied to the \(\mathcal{B}(\bar{r}, \bar{s}) \)-transform \(v^* = (v_{i_j}^t) = \{(\mathcal{B}(\bar{r}, \bar{s})u^*)\} \) of the sequence \(u^* = (u_{i_j}^t) \) while the method \(\mathcal{A} \) is directly applied to the terms of the sequence \(u^* = (u_{i_j}^t) \). So, the methods \(\mathcal{A} \) and \(\mathcal{B} \) are essentially different (see, [22]).

Let us assume the existence of the matrix product \(\mathcal{B}(\bar{r}, \bar{s}) \) which is a much weaker assumption than the conditions on the matrix \(\mathcal{B} \) belonging to any matrix class, in general. If \(u_{i_j}^t \) becomes \(t_{i_j}^t \) (or \(t_{i_j}^t \) becomes \(u_{i_j}^t \)), under the application of the formal summation by parts, then the methods \(\mathcal{A} \) and \(\mathcal{B} \) in (43) are called sequential generalized difference dual type matrices.

This leads us to the fact that \(\mathcal{B}\mathcal{R}(\bar{r}, \bar{s}) \) exists and is equal to \(\mathcal{A} \) and \(\mathcal{B} \) in \((\mathcal{B}\mathcal{R}(\bar{r}, \bar{s})u_{i_j}^t) = \mathcal{B}\mathcal{R}(\bar{r}, \bar{s})t_{i_j}^t \) formally holds. This statement is equivalent to the following relation between the elements of the matrices \(\mathcal{A} = (a_{i_j}) \) and \(\mathcal{B} = (b_{i_j}) \):

\[
b_{i_j} = \sum_{k=0}^{\infty} (-1)^{k+1} \prod_{j=1}^{i} \frac{k!}{j!} a_{i_j},
\]

and

\[
a_{i_j} = r^i b_{i_j} + s^i b_{i,j+1}
\]

for all \(n, i \in \mathbb{N} \). Furthermore one can see that easily \(\gamma_{i,j}^t \) reduces \(u_{i_j}^t \), as in the following:

\[
\gamma_{i,j}^t = \sum_{i} b_{i_j} y_{i_j}^t = \sum_{i} a_{i_j} u_{i_j}^t (r^i x_j + s^{i-j} x^{i-j}) = u_{i,j}^t.
\]

Now we may give the following theorem concerning to the sequential generalized difference dual matrices.

Theorem 13. Let \(\mathcal{A} = (a_{i_j}) \) and \(\mathcal{B} = (b_{i_j}) \) be the sequential generalized difference dual type matrices and let \(\mu(F_i) \) be any given sequence space. Then, \(\mathcal{A} \in \{c(F_i)\}_{\mathcal{F}(t, s)}^\gamma \) if and only if \((a_{i_j})_{i,j} \in \mathcal{E}_1(F_i) \) and \(\mathcal{B} \in \{c(F_i) : \mu(F_i)\} \).

Proof. Suppose that \(\mathcal{A} = (a_{i_j}) \) and \(\mathcal{B} = (b_{i_j}) \) are sequential generalized difference dual type matrices which means that \(\mathcal{B} \) holds. Additionally, let \(\mu(F_i) \) be any given sequence space and take into account that the spaces \(\{c(F_i)\}_{\mathcal{F}(t, s)}^\gamma \) and \(\mathcal{C}(F_i) \) are linearly isomorphic.

Let \(\mathcal{A} \in \{c(F_i)\}_{\mathcal{F}(t, s)}^\gamma \) and take any \(u^* \in \mathcal{C}(F_i) \). Then, \(\mathcal{B}\mathcal{R}(\bar{r}, \bar{s}) \) is equal to \(\mathcal{A} \) and \((a_{i_j})_{i,j} \in \mathcal{D}_1 \cap D_2 \cap D_3 = \{c(F_i)\}_{\mathcal{F}(t, s)}^\beta \) which yields that \((b_{i_j})_{i,j} \in \mathcal{E}_1(F_i) \) for each \(n \in \mathbb{N} \). Hence \(\mathcal{B}u^* \) exists for each \(u^* \in \mathcal{C}(F_i) \) and we have the following equation;

\[
\sum_{i} b_{i_j} u_{i_j}^t = \sum_{i} a_{i_j} u_{i_j}^t (n \in \mathbb{N}).
\]

Subsequently, it is clear from (44) that \(\mathcal{B}u^* = \mathcal{A}x^* \) which leads us to the consequence that \(\mathcal{B} \in \{c(F_i) : \mu(F_i)\} \).

Conversely, suppose that \(\mathcal{A} \in \{c(F_i)\}_{\mathcal{F}(t, s)}^\gamma \) and take any \(v^* \in \{c(F_i)\}_{\mathcal{F}(t, s)}^\gamma \). Then, \(\mathcal{A}v^* \) exists. Therefore, we obtain from the following equality as \(n \to \infty \) that \(\mathcal{A}v^* = \mathcal{B}u^* \) and this shows that \(\mathcal{A} \in \{c(F_i)\}_{\mathcal{F}(t, s)}^\gamma \):

\[
\sum_{i=0}^{n} a_{i_j} u_{i_j}^t = \sum_{i=0}^{n} \left(\sum_{k=0}^{\infty} (-1)^{k+1} \prod_{j=1}^{i} \frac{k!}{j!} a_{i_j} \right) u_{i_j}^t.
\]

(\(n \in \mathbb{N} \)).

This completes the proof. \(\square\)
Theorem 14. Suppose that the elements of the infinite matrices \(D = (d_{ni}) \) and \(E = (e_{ni}) \) are connected with the relation
\[
e_{ni} = s^{n-1} d_{n-i} + r^n d_{ni}, \quad (n, i \in \mathbb{N})
\]
and \(\mu(F_i) \) is any given sequence space. Then, \(D \in \mu(F_i) : [c(F_i), d(F)] \) if and only if \(E \in \mu(F_i) : c(F_i) \).

Proof. Let \(u^* \in \mu(F_i) \) and consider the following equality:
\[
\left\{ \mathcal{B}(\mathbb{R}, F_i) \left(\mathcal{D}u(t_{1,2}) \right) \right\}^n
= s \left(\mathcal{D}u(t_{1,2}) \right)^{n-1} + r \left(\mathcal{D}u(t_{1,2}) \right)^n
= s^{n-1} \sum_{i=0} d_{n-i} u_{ni}^{(t_{1,2})} + r^n \sum_{i=0} d_{ni} u_{ni}^{(t_{1,2})}
= \sum_{i=0} s^{n-i} n_{n-i} + r^n d_{ni} u_{ni}^{(t_{1,2})} = (\mathcal{E}u(t_{1,2}))^n,
\]
\[(n, i \in \mathbb{N}).\]

Which yields that \(\mathcal{D}u^* \in [c(F_i), d(F)] \) if and only if \(\mathcal{D}u^* \in c(F_i) \). This step completes the proof. \(\square \)

Now, right here, we give the following propositions which are obtained from Lemma 8 and Theorems 13 and 14.

Proposition 15. Let \(A = (a_{ni}) \) be an infinite matrix of real numbers. Then one has the following:

1. \(A = (a_{ni}) \in \{(e_\infty(F_i)) : e_\infty(F_i) \} \) if and only if
\[
(a_{ni})_{i \in \mathbb{N}} \in \{e_\infty(F_i) \}^{(B_r)}(F_i) \text{ for each } n \in \mathbb{N}
\]
holds for all \(i \in \mathbb{N}. \)

2. \(A = (a_{ni}) \in \{(c(F_i)) \}^{(B_r)}(F_i) \) if and only if (50) holds and \((a_{ni})_{i \in \mathbb{N}} \in \{e_\infty(F_i) \}^{(B_r)}(F_i) \) also holds for all \(n \in \mathbb{N} \) and
\[
\lim_{n \rightarrow \infty} \left(\sum_{i=0}^{n} (-1)^{n-i} \frac{1}{r^i} \prod_{j=0}^{i} a_{ni} \theta \right) = 0.
\]

Proposition 16. Let \(A = (a_{ni}) \) be an infinite matrix of real numbers. Then, \(A = (a_{ni}) \in (c_\infty(F_i)) : [c_\infty(F_i)]^{(B_r)}(F_i) \) if and only if
\[
\lim_{n \rightarrow \infty} \left(\sum_{i=0}^{n} (-1)^{n-i} \frac{1}{r^i} \prod_{j=0}^{i} a_{ni} \theta \right) < \infty.
\]

Proposition 17. Let \(A = (a_{ni}) \) be an infinite matrix of real numbers. Then, \(A = (a_{ni}) \in (c(F_i)) : [c(F_i)]^{(B_r)}(F_i) \) if and only if
\[
\lim_{n \rightarrow \infty} \left(\sum_{i=0}^{n} (-1)^{n-i} \frac{1}{r^n} \prod_{j=0}^{i} a_{ni} \theta \right) < \infty.
\]

with \(u_{ki}^{(t_{1,2})} \in F_i \) and \(k \in \mathbb{N} \) holds.

6. Determining the Center of Gravity of Sequence Space of Triangular Fuzzy Numbers and Similarity Measures between Fuzzy Numbers

In this section, we give the COG points of a sequence space of triangular fuzzy numbers by means of [7]. Let us suppose that \((u_{ki}^{(t_{1,2})}) \) is a sequence of triangular fuzzy number. Then, the values \(x_{i}^{(k)} \) and \(y_{i}^{(k)} \) of the COG points of \((u_{ki}^{(t_{1,2})}) \) are presented as follows:
\[
y_{i}^{(k)} = \frac{\lim_{k \rightarrow \infty} \left(\frac{\frac{\frac{u_{ki}^{(t_{1,2})} + u_{ki}^{(t_{1,2})}}{2}}{2}}{2} + \frac{u_{ki}^{(t_{1,2})} - y_{i}^{(k)}}{2} \right) / \left(\frac{u_{ki}^{(t_{1,2})} - y_{i}^{(k)}}{2} + 2 \right)}{6} = \frac{u_{ki}^{(t_{1,2})}}{3}
\]
\[(54)\]
\[
y_{i}^{(k)} = \frac{1}{3},
\]
\[
x_{i}^{(k)} = \lim_{k \rightarrow \infty} \frac{2u_{ki}^{(t_{1,2})} + u_{ki}^{(t_{1,2})} - w_{ki}^{(t_{1,2})}}{2u_{ki}^{(t_{1,2})}}.
\]
\[(55)\]

Based on (54) and (55), we can determine the COG points of a sequence of triangular fuzzy number \((u_{ki}^{(t_{1,2})}) \) as \((x_{i}^{(k)}, y_{i}^{(k)}) \).

Let us suppose that \(u \) and \(v \) are two classical fuzzy numbers where \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \); then the degree of similarity \(S \) between \(u \) and \(v \) is calculated by [6] as in the following:
\[
S(u, v) = 1 - \frac{\sum_{i=1}^{3} |u_i - v_i|}{3},
\]
\[(56)\]

where \(S(u, v) \in [0, 1]. \)

In [5], Lee proposed a similarity measure for classical fuzzy numbers and used the similarity measure to deal with fuzzy opinions for group decision making, where the degree of similarity \(S(u, v) \) between the triangular fuzzy numbers \(u \) and \(v \) can be calculated as follows:
\[
S(u, v) = 1 - \frac{\|u - v\|_p}{\|U\|} \times 3^{1/p},
\]
\[(57)\]

and \(\|U\| = \max(U) - \min(U) \) where \(U \) is the universe of discourse. The larger the value of \(S \), the higher the similarity between the components of \(U \).

In [4], Hsieh and Chen defined a similarity measure method where the degree of similarity \(S(u, v) \) between classical fuzzy numbers \(u \) and \(v \) can be given as in the following:
\[
S(u, v) = \frac{1}{1 + d(u, v)},
\]
\[(58)\]

\[
d(u, v) = \left| \frac{u_1 + 4u_2 + v_1 - 3v_2 + 4v_3}{6} \right|.
\]

where \((u_1 + 4u_2 + v_1)/6 \) and \((v_1 + 4v_2 + v_3)/6 \) represent graded mean integration components of \(u \) and \(v \), respectively.

In addition to these similarity measure methods, S.-J. Chen and S.-M. Chen [7] introduced a simple center of
Advances in Mathematical Physics

7. Similarity Measures between Sequence Spaces of Triangular Fuzzy Numbers

Assume that there are two sequences of triangular fuzzy numbers, \(u^* = (u^k_1 - t_1, u^k, u^k + t_2) \) and \(v^* = (v^k_1 - t_1, v^k, v^k + t_2) \), \(t_1, t_2 \in \mathbb{R}, t_1 \leq t_2; \) then the degree of similarity \(S(u^*, v^*) \) between the sequences of triangular fuzzy numbers \(u^* \) and \(v^* \) can be calculated as in the following:

\[
S(u^*, v^*) = \inf \{ h(u^*) \cdot h(v^*) \} \left[1 - \frac{1}{3} \lim_{n \to \infty} \sum_{k=1}^{3} |u^k_n - v^k_n| \right] ^{\frac{1}{p}}
\]

where \(S(u^*, v^*) \in [0, 1] \) and the notion of \(h(u^*) \) shows the highest membership degree of fuzzy number \(u^k \). For all \(k \in \mathbb{N}, h(u^k) \) is considered as 1 because of the validity of fuzzy number conditions, through all the text. The function \(S : w(F) \times w(F) \to \mathbb{R} \) is called similarity degree between sequences of fuzzy sets \(u^* \) and \(v^* \). If \(S(u^*, v^*) = 1 \), then we say that \(u^* \) is completely similar to the sequence \(v^* \); if \(0 < S(u^*, v^*) = \alpha < 1 \), then we say that the sequence \(u^* \) is \(\alpha \)-similar to the sequence \(v^* \); if \(\alpha \leq 0 \) we can say that \(u^* \) is not similar to \(v^* \).

Next, we deal with three sets of sequence spaces of triangular fuzzy numbers to compare similarity measures mentioned above. The calculation results are listed in Table 1. Now, we write the equations of three sets of sequences of triangular fuzzy numbers as in the following:

| SET I: \(t_1 = 0, t_2 = 0.6 \) |
| \(u_1^k \) |
| \(= \left(\frac{k}{10(k+1) - t_1}, \frac{k}{10(k+1) + t_2}, \frac{k}{10(k+1) + t_2} \right) \) |
| \(u_2^k \) |
| \(= \left(\frac{-k}{10(k+1) - t_1}, \frac{-k}{10(k+1) + t_2}, \frac{-k}{10(k+1) + t_2} \right) \) |

| SET II: \(t_1 = 0, t_2 = 0.6 \) |
| \(u_1^k \) |
| \(= \left(\frac{k}{10(k+1) - t_1}, \frac{k}{10(k+1) + t_2}, \frac{k}{10(k+1) + t_2} \right) \) |
| \(u_2^k \) |
| \(= \left(\frac{4k}{10(k+1) - t_1}, \frac{4k}{10(k+1) + t_2}, \frac{4k}{10(k+1) + t_2} \right) \) |

| SET III: \(t_1 = 0, t_2 = 0 \) |
| \(u_1^k \) |
| \(= \left(0.2 - t_1, 0.2, 0.2 + t_2 \right) \) |
| \(u_2^k \) |
| \(= \left(0.3 - t_1, 0.3, 0.3 + t_2 \right) \) |

We can give a comparison of the computing conclusions of the similarity measures of the above equations with the methods mentioned above as in Table 1.
TABLE 1: A comparison between similarity measure methods.

<table>
<thead>
<tr>
<th>Similarity measures</th>
<th>Sets of sequence of triangular fuzzy numbers</th>
<th>SET I</th>
<th>SET II</th>
<th>SET III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee’s Method [5]</td>
<td></td>
<td>0.333</td>
<td>0.166</td>
<td>0.9</td>
</tr>
<tr>
<td>Chen and Lin’s Method [6]</td>
<td></td>
<td>0.6</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Hsieh and Chen’s Method [7]</td>
<td></td>
<td>0.833</td>
<td>0.769</td>
<td>0.909</td>
</tr>
<tr>
<td>Chen and Chen’s Method [7]</td>
<td></td>
<td>0.48</td>
<td>0.35</td>
<td>0.54</td>
</tr>
</tbody>
</table>

TABLE 2: Linguistic values of W_k^i and R_k^i of the subcomponents A_{k1}^i, A_{k2}^i, and A_{k3}^i.

<table>
<thead>
<tr>
<th>Subcomponents (A_{ki}^i)</th>
<th>Linguistic values of severity of loss (W_k^i)</th>
<th>Linguistic values of probability of failure (R_k^i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{k1}^i</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>A_{k2}^i</td>
<td>Fairly-high</td>
<td>Medium</td>
</tr>
<tr>
<td>A_{k3}^i</td>
<td>Very-low</td>
<td>High</td>
</tr>
</tbody>
</table>

8. Fuzzy Risk Analysis Based on the Similarity Measure of Sequence of Triangular Fuzzy Numbers

Fuzzy weighted mean method is used in [26, 27] for introducing fuzzy risk analysis. According to [26] for every i, subcomponent A_i is measured by two evaluating items represented as R_i and W_i that denote the probability of failure of the subcomponents A_i and severity of loss of the subcomponents A_i, respectively, and $1 \leq i \leq 3$. Kangari and Riggs [26] and Schmucker [27] use the linguistic terms (“absolutely high,” “fairly-high,” “high,” “medium,” “low,” “fairly-low,” and “absolutely-low”) for determining the values of R_i and W_i. In [7], S.-J. Chen and S.-M. Chen use nine-member linguistic terms based on [28, 29] to represent the linguistic terms in their paper. We show the linguistic terms and sequence of triangular fuzzy numbers in Table 3 and generalize R_i and W_i to sequences (R_k^i) and (W_k^i), respectively. In addition to these, we present the algorithm for fuzzy sequence risk analysis by means of [7] as follows:

Step 1. Use the fuzzy weighted mean method to integrate the evaluating items R_k^i and W_k^i of sequence of each subcomponent A_{ki}^i, where $1 \leq i \leq n$, to get the total risk R^* of the sequence of component $A^* = (A_k^i)$ shown as follows:

$$R^* = \lim_{k \to \infty} \frac{\sum_{i=1}^{n} (W_k^i \otimes R_k^i)}{\sum_{i=1}^{n} W_k^i}. \quad (68)$$

Step 2. Use the similarity measure (62) to measure the degree of similarity between the sequences of triangular fuzzy number R^* and Table 3 includes each linguistic term used for classifying the sequence space of triangular fuzzy numbers.

In the following, we use an example presented in [27].

Example 18. Let us consider that the component A_k^i consists of three subcomponents A_{k1}^i, A_{k2}^i, A_{k3}^i, as shown in Figure 1.

Now, we would like to measure the probability of failure R^* of the component $A^* = (A_k^i)$. Table 2 shows the linguistic values of the two evaluating items R_k^i and W_k^i, respectively, similar to [27], where the linguistic values are shown by sequence of triangular fuzzy numbers in Table 3.

In the following, we use the proposed fuzzy risk analysis method to consider the fuzzy risk analysis problem.

Step 1. By considering \otimes, \oplus, \ominus, (68), and Tables 2 and 3, the probability of failure $R^* = (R_k^i)$ of the component $A^* = (A_k^i)$ can be measured as in Table 3.

Consider $R^* = (R_k^i) = \lim_{k \to \infty} (R_k^i \otimes W_k^i \oplus R_k^i \ominus low \otimes low \oplus medium \oplus fairly-high \oplus high \oplus very-low) = (0.5148 - t_1, 0.5148, 0.5148 + t_2) = (0.5148, 0.5148, 1.1148).

Step 2. We determine COG points of the nine-member linguistic term set shown in Table 4 by using (54) and (55) and by using (64) we obtain the base S of all the sequences of triangular fuzzy numbers as $t_2 + t_1$. In the same way, we can get the COG point of the sequence of triangular fuzzy number R_k^i, where $COG(R_k^i) = (0.5096 + t_2 - t_1, 0.33, 0.33) = (0.7096, 0.33)$. Based on (63) and Table 4, we can see that the values $B(S_{R_k^i}, S_{absolutely-low})$, $B(S_{R_k^i}, S_{very-low})$, $B(S_{R_k^i}, S_{low})$, $B(S_{R_k^i}, S_{fairly-low})$, $B(S_{R_k^i}, S_{medium})$, $B(S_{R_k^i}, S_{fairly-high})$, $B(S_{R_k^i}, S_{high})$, $B(S_{R_k^i}, S_{very-high})$, and $B(S_{R_k^i}, S_{absolutely-high})$ are equal to 1. And $S_{absolutely-low} = S_{very-low} = S_{low} = S_{fairly-low} = S_{medium} = S_{fairly-high} = S_{high} = S_{very-high} = S_{absolutely-high} = t_2 + t_1 = 0.6$.

By using (62), the degree of similarity between the sequence of triangular fuzzy number $R^* = (R_k^i)$ and the linguistic terms shown in Table 2 can be evaluated as follows: $S(R^*, absolutely-low) = 0.1383$, $S(R^*, very-low) = 0.1541$, $S(R^*, low) = 0.909$, and $S(R^*, medium) = 0.753$.
Table 4: Linguistic terms and correspondence to COG Terms.

<table>
<thead>
<tr>
<th>Linguistic terms</th>
<th>COG points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolutely-low</td>
<td>COG (absolutely-low) = (0.2, 0.33)</td>
</tr>
<tr>
<td>Very-low</td>
<td>COG (very-low) = (0.22, 0.33)</td>
</tr>
<tr>
<td>Low</td>
<td>COG (low) = (0.38, 0.33)</td>
</tr>
<tr>
<td>Fairly-low</td>
<td>COG (fairly-low) = (0.56, 0.33)</td>
</tr>
<tr>
<td>Medium</td>
<td>COG (medium) = (0.78, 0.33)</td>
</tr>
<tr>
<td>Fairly-high</td>
<td>COG (fairly-high) = (1, 0.33)</td>
</tr>
<tr>
<td>High</td>
<td>COG (high) = (1.12, 0.33)</td>
</tr>
<tr>
<td>Very-high</td>
<td>COG (very-high) = (1.18, 0.33)</td>
</tr>
<tr>
<td>Absolutely-high</td>
<td>COG (absolutely-high) = (1.2, 0.33)</td>
</tr>
</tbody>
</table>

\[S(R^*, \text{low}) = 0.3094, S(R^*, \text{fairly-low}) = 0.5453, S(R^*, \text{medium}) = 0.7275, S(R^*, \text{fairly-high}) = 0.5038, S(R^*, \text{high}) = 0.3955, S(R^*, \text{very-high}) = 0.3449, S(R^*, \text{absolutely-high}) = 0.3285. \]

Because \(S(R^*, \text{medium}) = 0.9018 \) has the largest value, the sequence of triangular fuzzy number \(R^* = (A_1^*) \) is translated into the linguistic term “medium,” where the degree of similarity is 0.9018. That is, the probability of failure of the component \(A^* = (A_1^*) \) is medium.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

