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Abstract. 
The bound-state solution of s-wave Klein-Gordon equation is calculated for Woods-Saxon potential by using the asymptotic iteration method (AIM). The energy eigenvalues and eigenfunctions are obtained for the required condition of bound-state solutions.



1. Introduction
In relativistic quantum mechanics, the Klein-Gordon (KG) equation has a wide range of applications. Recently, there have been many studies on KG equation with various types of potentials by using different methods to describe the corresponding relativistic physical systems, namely, asymptotic iteration method [1], formal variable separation method [2], supersymmetric quantum mechanics [3–7], algebraic method [8–13], and Nikiforov-Uvarov method [14]. Most of these studies have been considered for equal or pure scalar  and vector potentials  cases. In this study, to have a bound-state solution, we use the proposed transformation in [15] with parameters  which adjust the relation between scalar and vector Woods-Saxon potentials. Woods-Saxon potential [16] is a short range nuclear potential and it is important in all branches of physics. The bound-state solution of KG equation for Woods-Saxon potential has been of a great interest in the last decades with different methods [17–21]. It has been solved with Nikiforov-Uvarov method by using the Pekeris approximation to the centrifugal potential for any l-states for constant mass [22, 23] and for effective mass [24, 25].
In this paper, we use an alternative method which is called the asymptotic iteration method (AIM) [26] for obtaining the whole spectra of Woods-Saxon potentials. AIM has been used in many physical systems to obtain the corresponding eigenvalues and eigenfunctions [26–31]. Still, there are a few applications on KG equation with AIM [32–34] with a general transformation between vector and scalar potentials. To obtain the corresponding potential the vector potential is chosen in exponential potential form. Therefore, the KG equation reduces to Schrödinger-like equation with Woods-Saxon potential.
The organization of this paper is as follows: Section 2 deals with the formalism of the one-dimensional KG equation with scalar potential greater than vector potential. A general description of AIM is outlined in Section 3. The solution of Woods-Saxon potential in KG equation is treated in the subsequent section by means of AIM. Finally, Section 5 is devoted to conclusions.
2. Formalism of the Klein-Gordon Equation
Generally, the s-wave Klein-Gordon equation with scalar potential  and vector potential  can be written as [9]where  represents the energy and  represents the mass of the particle. In this equation, the radial wave function is expressed as . We know that when the relation between vector and scalar potentials , it yields real bound-state solutions. In this work, we consider the relation between potentials in the condition for bound-state solution which was introduced in [15] aswhere  parameter is arbitrary constant. When , the scalar potential leads to case of ,  (purely vector potential), and  (equal potentials), respectively. When , we get the required condition for the case of . Substituting (2) into (1) yieldswhere the effective potential is
Now, the final equation is the transformed KG equation in the condition of unequal vector and scalar potentials. The following section deals with the corresponding method to solve the KG equation.
3. Asymptotic Iteration Method
The AIM is proposed to solve the second-order differential equations and the details can be found in [26]. First, we consider the following second-order homogeneous differential equation of the formwhere  and  are functions and  and  denote derivatives of  with respect to . It is easy to show that th derivative of the function  can be written asThe functions  and  are given by the recurrence relationsFor sufficiently large , the ratio of the functions satisfies the following equations:then the solution of (5) can be written as [26]In calculating the parameters in (7), for , we take the initial conditions as  and  [29] and  forwhere  is the termination condition in (8).
If the second-order homogeneous linear differential equation can be written in the form of [27]using the function generator of AIM, it has an exact solution for  [27] aswith the defined parameters , and 
4. Solution for Woods-Saxon Potential
Let us consider the Woods-Saxon vector potentialAfter substituting these potentials into (3) and changing the variables , we obtain the second-order differential equationwith the corresponding parameters As we expected, (13) is transformed to the suitable form to apply the AIM. Therefore, (14) should have a solution in the form of “normalized” wave functionswith  Substituting (16) into (14), one obtainsWithin the framework of procedures of AIM, the functions  and  can be written by comparing (17) with (5). It can be seen that  and  functions are obtained by using the termination relation in (10) as By substituting these functions into the quantization condition, we get Generalizing the above expressions, it is possible to write the general formula of  asUsing the definitions of parameters  and , it can be shown thatRearranging this expression, we get a more explicit expression for eigenvalueswhich is exactly the same as with the eigenvalue equation obtained in [21] through a proper choice of parameters.
4.1. Calculation of Eigenfunction
To get the normalized wave function, we have to compare (17) with the differential equation defined in (11). After some algebraic calculations, we get the required parameters asThus, these parameters yield a solution in the form ofwith the Gamma function  and the Gauss hypergeometric function  With the aid of (24), the corresponding radial function becomeswhere the normalization constant isSubstituting the values of  in (25), the total radial differential equation transforms toAfter rearranging the parameters, this result is exactly the same as with those of calculated for Woods-Saxon potentials in literature [17–19, 21].
5. Conclusion
In this study, we have obtained the whole spectrum of Woods-Saxon potential for s-wave KG equation by using AIM method. During the calculation, we have used the adjusting parameter  between scalar and vector potentials to obey the bound-state solution condition. The eigenvalues and eigenfunction are calculated directly and exactly by using the procedure of AIM in simple way.
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