Research Article

Tight K-g-Frame and Its Novel Characterizations via Atomic Systems

Yongdong Huang and Dingli Hua

School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China

Correspondence should be addressed to Yongdong Huang; nxhyd74@126.com

Received 2 November 2015; Revised 5 January 2016; Accepted 6 January 2016

Abstract

Frame theory has been widely used in filter theory [3], image processing [4], numerical analysis, and other areas. We refer to [5–8] for an introduction to frame theory in Hilbert space and its application. With the deepening of research on frame theory, various generalizations of frames have been proposed; see [9–12]. Atomic systems for subspaces were first introduced by Feichtinger and Werther in [13] based on examples arising in sampling theory. In 2011, Gavrut¸a [14] introduced atomic systems for subspaces were first introduced by Duffin and Schaeffer [1] to deal with nonharmonic Fourier series and reintroduced in 1986 by Daubechies et al. [2]. Since then the frame theory began to be more wildly studied. Today, frame theory has been widely used in filter theory [3], image processing [4], numerical analysis, and other areas. We refer to [5–8] for an introduction to frame theory in Hilbert space and its application.

With the deepening of research on frame theory, various generalizations of frames have been proposed; see [9–12]. Atomic systems for subspaces were first introduced by Feichtinger and Werther in [13] based on examples arising in sampling theory. In 2011, Găvruţa [14] introduced K-frame in Hilbert spaces to study atomic decomposition systems and discussed some properties of them. In [15–18], some conclusions of K-frame were given. With the extensive research of K-frame and g-frame in Hilbert space, Zhu et al. [19, 20] began to study K-g-frame, which was limited to the range of a bounded linear operator in Hilbert space and had gained greater flexibility in practical application relative to g-frame. K-g-frame, as a more general frame than g-frame and K-frame, has become one of the most active fields in frame theory in recent years. In [20, 21], several properties and characterizations of K-g-frame were obtained. However, many problems of K-g-frame have not been studied. Based on these important results of K-g-frame, we extend tight g-frame to K-g-frame and put forward the concept of tight K-g-frame. In this paper, we give equivalent characterizations and necessary conditions of tight K-g-frame are given. Finally, by means of methods and techniques of frame theory, several properties of tight K-g-frame are given.

1. Introduction

Frame in Hilbert space was first introduced in 1952 by Duffin and Schaeffer [1] to deal with nonharmonic Fourier series and reintroduced in 1986 by Daubechies et al. [2]. Since then the frame theory began to be more wildly studied. Today, frame theory has been widely used in filter theory [3], image processing [4], numerical analysis, and other areas. We refer to [5–8] for an introduction to frame theory in Hilbert space and its application. Throughout this paper, H is separable Hilbert space and I is the identity operator. $L(H_1, H_2)$ is a collection of all bounded linear operators from H_1 to H_2, where H_1 and H_2 are two Hilbert spaces. In particular, $L(H)$ is a collection of all bounded linear operators from H to H. For any $T \in L(H_1, H_2)$, $R(T)$ is the range of T and T^* is the adjoint operator of T. $\{H_j : j \in J\}$ is a sequence of closed subspaces of H, where J is a subset of integers \mathbb{Z}. $F^2(\{H_j\}_{j \in J})$ is defined by

$$i^2(\{H_j\}_{j \in J}) = \left\{ \{a_j\}_{j \in J} : a_j \in H_j, \sum_{j \in J} \|a_j\|^2 < +\infty \right\}, \quad (1)$$

and characterizations of K-g-frame were obtained. However, many problems of K-g-frame have not been studied. Based on these important results of K-g-frame, we extend tight g-frame to K-g-frame and put forward the concept of tight K-g-frame. In this paper, we give equivalent characterizations and necessary conditions of tight K-g-frame for Hilbert space. We also obtain the necessary and sufficient condition of tight K-g-frame to be tight g-frame. Finally, we present several properties of tight K-g-frame for Hilbert space.
with the inner product given by
\[
\langle \{a_j\}_{j \in J}, \{b_j\}_{j \in J} \rangle = \sum_{j \in J} \langle a_j, b_j \rangle_{H_j}.
\] (2)

It is clear that \(\tilde{P}(\{H_j\}_{j \in J})\) is a complex Hilbert space.

2. Preliminaries

In this section, some necessary definitions and lemmas are introduced.

Definition 1 (see [9, Definition 1.1]). A sequence \(\{\Lambda_j\}_{j \in J} \subset L(H, H_j) : j \in J\) is called a g-frame for \(H\) with respect to \(\{H_j\}_{j \in J}\) if there exist two positive constants \(A\) and \(B\) such that, for all \(f \in H\),
\[
A \|f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B \|f\|^2.
\] (3)

The constants \(A\) and \(B\) are called the lower and upper bounds of \(g\)-frame, respectively. If the right inequality is satisfied, then \(\{\Lambda_j\}_{j \in J}\) is said to be a \(g\)-Bessel sequence for \(H\) with respect to \(\{H_j\}_{j \in J}\).

If \(A = B = 1\), we call this \(g\)-frame a tight \(g\)-frame, and if \(A = B = 1\), it is called a Parseval \(g\)-frame.

For a \(g\)-Bessel sequence \(\{\Lambda_j\}_{j \in J}\), \(T : \tilde{P}(\{H_j\}_{j \in J}) \to H\) defines a bounded linear operator, that is,
\[
T(\{g_j\}_{j \in J}) = \sum_{j \in J} \Lambda_j^* g_j, \quad \forall \{g_j\}_{j \in J} \in \tilde{P}(\{H_j\}_{j \in J}).
\] (4)

The adjoint operator \(T^* : H \to \tilde{P}(\{H_j\}_{j \in J})\) is given by
\[
T^* f = \{\Lambda_j f\}_{j \in J}, \quad \forall f \in H.
\] (5)

By composing \(T\) with its adjoint \(T^*\), we obtain the bounded linear operator
\[
S : H \to H, \quad S f = TT^* f = T \{\Lambda_j f\}_{j \in J} = \sum_{j \in J} \Lambda_j^* \Lambda_j f, \quad \forall f \in H.
\] (6)

We call \(T, T^*\), and \(S\) the preframe operator, analysis operator, and frame operator of \(g\)-Bessel sequence, respectively.

Definition 2 (see [22, Definition 2.6]). We say \(\{\Lambda_j\}_{j \in J} \subset L(H, H_j)_{j \in J}\) is \(g\)-orthonormal basis for \(H\) with respect to \(\{H_j\}_{j \in J}\), if it is \(g\)-biorthonormal with itself, that is, \(\langle \Lambda_j^* g_j, \Lambda_i^* g_i \rangle = \delta_{ji} \langle g_j, g_i \rangle, \forall j, i \in J, g_j \in H_j, g_i \in H_i\), and for any \(f \in H\) one has \(\sum_{j \in J} \|\Lambda_j f\|^2 = \|f\|^2\).

Definition 3 (see [21, Theorem 2.5]). Let \(K \in L(H)\) and \(\Lambda_j \in L(H, H_j)\) for any \(j \in J\). A sequence \(\{\Lambda_j\}_{j \in J}\) is called a \(K\)-g-frame for \(H\) with respect to \(\{H_j\}_{j \in J}\) if there exist constants \(A, B > 0\) such that
\[
A \|K^* f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B \|f\|^2, \quad \forall f \in H.
\] (7)

The constants \(A\) and \(B\) are called the lower and upper bounds of \(K\)-g-frame, respectively.

Remark 4. Every \(K\)-g-frame is a \(g\)-Bessel sequence for \(H\) with respect to \(\{H_j\}_{j \in J}\). If \(K = I\), then \(K\)-g-frame is just the ordinary \(g\)-frame.

Motivated by the definition of tight \(g\)-frame, we give the following definition of tight \(K\)-g-frame.

Definition 5. Let \(K \in L(H)\) and \(\Lambda_j \in L(H, H_j)\) for any \(j \in J\). A sequence \(\{\Lambda_j\}_{j \in J}\) is called a tight \(K\)-g-frame for \(H\) with respect to \(\{H_j\}_{j \in J}\) if there exists constant \(A > 0\) such that
\[
A \|K^* f\|^2 = \sum_{j \in J} \|\Lambda_j f\|^2, \quad \forall f \in H.
\] (8)

The constant \(A\) is called the bound of tight \(K\)-g-frame. If \(A = 1\), we call this tight \(K\)-g-frame a Parseval \(K\)-g-frame for \(H\) with respect to \(\{H_j\}_{j \in J}\).

Remark 6. If \(K = I\), then tight \(K\)-g-frame and Parseval \(K\)-frame are tight \(g\)-frame and Parseval \(g\)-frame, respectively.

Definition 7. Let \(K \in L(H)\). An operator \(K\) is said to be left-invertible if there exists an operator \(P \in L(H)\) such that \(PK = I\). The operator \(P\) is called a left-inverse of \(K\); that is, \(K_P = P\). Similarly, an operator \(K\) is said to be right-invertible if there exists an operator \(P \in L(H)\) such that \(KP = I\). The operator \(P\) is called a right-inverse of \(K\); that is, \(K_P = P\).

Lemma 8 (see [23, Theorem 1]). Let \(T_1 \in L(H_1, H)\) and \(T_2 \in L(H, H_2, H)\). The following conditions are equivalent:

1. \(R(T_1) \subset R(T_2)\).
2. There exists \(\lambda > 0\) such that \(T_1^* T_2 \lambda \leq \lambda T_2^* T_1\).
3. There exists a bounded operator \(X \in L(H_1, H_2)\) so that \(T_1 = T_2 X\).

Lemma 9 (see [21, Theorem 2.5]). Let \(K \in L(H)\). Then the following statements are equivalent:

1. \(\{\Lambda_j\}_{j \in J}\) is a \(K\)-g-frame for \(H\) with respect to \(\{H_j\}_{j \in J}\).
2. \(\{\Lambda_j\}_{j \in J}\) is a \(g\)-Bessel sequence for \(H\) with respect to \(\{H_j\}_{j \in J}\) and there exists a \(g\)-Bessel sequence for \(H\) with respect to \(\{H_j\}_{j \in J}\) such that
\[
Kf = \sum_{j \in J} \Lambda_j^* T_j f, \quad \forall f \in H.
\] (9)

3. Properties of Tight \(K\)-g-Frame for Hilbert Space

In this section, we first give characterizations of tight \(K\)-g-frame and then give several properties of tight \(K\)-g-frame.

Theorem 10. Let \(K \in L(H)\); \(\Lambda_j \in L(H, H_j)\), and let \(T^*\) be the preframe operator of \(\{\Lambda_j\}_{j \in J}\). Then the following statements are equivalent:

1. \(\{\Lambda_j\}_{j \in J}\) is a tight \(K\)-g-frame for \(H\) with respect to \(\{H_j\}_{j \in J}\) with bound \(A\).
(2) There exists constant \(A > 0 \) such that \(A\|K^* f\|^2 = \|T^* f\|^2 \) for any \(f \in H \).

(3) There exists constant \(A > 0 \) such that \(AK^* = TT^* \).

Proof. (1) \(\Rightarrow \) (2). Suppose that \(\{\Lambda_j\}_{j \in J} \) is a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A \). By the definition of tight \(K^* \)-frame, we get

\[
A\|K^* f\|^2 = \sum_{j \in J} \|\Lambda_j f\|^2, \quad \forall f \in H. \tag{10}
\]

Since \(T \) is the preframe operator of \(\{\Lambda_j\}_{j \in J} \), we have

\[
\sum_{j \in J} \|\Lambda_j f\|^2 = \left\langle \sum_{j \in J} \Lambda_j^* f, f \right\rangle = \langle TT^* f, f \rangle = \|T^* f\|^2, \quad \forall f \in H. \tag{11}
\]

This implies that \(A\|K^* f\|^2 = \|T^* f\|^2 \) for any \(f \in H \).

(2) \(\Rightarrow \) (3). If there exists constant \(A > 0 \) such that \(A\|K^* f\|^2 = \|T^* f\|^2 \) for any \(f \in H \), then we obtain

\[
\left\langle AKK^* f, f \right\rangle = \left\langle K^* f, f \right\rangle = A\|K^* f\|^2 = \|T^* f\|^2 = \left\langle TT^* f, f \right\rangle, \quad \forall f \in H. \tag{12}
\]

Hence \(AKK^* = TT^* \).

(3) \(\Rightarrow \) (1). If there exists constant \(A > 0 \) such that \(AKK^* = TT^* \), then \(\langle AKK^* f, f \rangle = \langle TT^* f, f \rangle, \forall f \in H \). That is,

\[
A\|K^* f\|^2 = \|T^* f\|^2 = \sum_{j \in J} \|\Lambda_j f\|^2, \quad \forall f \in H. \tag{13}
\]

Therefore, \(\{\Lambda_j\}_{j \in J} \) is a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A \). The proof of Theorem 10 is completed.

\[\square\]

Corollary 11. Suppose that \(\{\Lambda_j\}_{j \in J} \) is a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A \), \(T \) is the preframe operator of \(\{\Lambda_j\}_{j \in J} \), and \(S \) is the frame operator of \(\{\Lambda_j\}_{j \in J} \), then

(1) \(R(K) = R(T) \);

(2) \(S = AKK^* \);

(3) \(\|T\| = \sqrt{A}\|K\| \).

Proof. Theorem 10 together with Lemma 8 shows that (1) and (2) are satisfied. We only need to prove that (3) holds. Assume that \(\{\Lambda_j\}_{j \in J} \) is a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A \). By Theorem 10, we have \(A\|K^* f\|^2 = \|T^* f\|^2 \), \(\forall f \in H \). Therefore,

\[
\|T\| = \|T^*\| = \sup_{\|f\|=1, f \in H} \|T^* f\| = \sup_{\|f\|=1, f \in H} \sqrt{A}\|K^* f\| \tag{14}
\]

\[
= \sqrt{A}\|K\|.
\]

The proof of Corollary 11 is completed.

\[\square\]

Lemma 9 gives an equivalent characterization of \(K^* \)-frame; does the tight \(K^* \)-frame have the similar characterization? Clearly, if \(\{\Lambda_j\}_{j \in J} \) is a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \), then there exists a \(g \)-Bessel sequence \(\{\Gamma_j\}_{j \in J} \) for \(H \) with respect to \(\{H_j\}_{j \in J} \) such that \(Kf = \sum_{j \in J} \Lambda_j^* \Gamma_j f \), \(\forall f \in H \). The theorem below gives a necessary condition of tight \(K^* \)-frame.

Theorem 12. Let \(K \in L(H) \). Suppose that \(\{\Lambda_j\}_{j \in J} \) is a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A \). Then there exists a \(g \)-Bessel sequence \(\{\Gamma_j\}_{j \in J} \) for \(H \) with respect to \(\{H_j\}_{j \in J} \) such that \(Kf = \sum_{j \in J} \Lambda_j^* \Gamma_j f \), \(\forall f \in H \), and \(AB \geq 1 \).

Proof. Let \(\{\Lambda_j\}_{j \in J} \) be a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \). By Lemma 9, there exists a \(g \)-Bessel sequence \(\{\Gamma_j\}_{j \in J} \) for \(H \) with respect to \(\{H_j\}_{j \in J} \) such that \(Kf = \sum_{j \in J} \Lambda_j^* \Gamma_j f \), \(\forall f \in H \). For any \(f, g \in H \), we have

\[
\left\langle K^* f, g \right\rangle = \langle f, K g \rangle = \left\langle f, \sum_{j \in J} \Lambda_j^* \Gamma_j g \right\rangle = \left\langle \sum_{j \in J} \Gamma_j^* \Lambda_j f, g \right\rangle. \tag{15}
\]

Via (15),

\[
K^* f = \sum_{j \in J} \Gamma_j^* \Lambda_j f, \quad \forall f \in H. \tag{16}
\]

Since \(\{\Lambda_j\}_{j \in J} \) is a tight \(K^* \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A \), we get

\[
A\|K^* f\|^2 = \sum_{j \in J} \|\Lambda_j f\|^2, \quad \forall f \in H. \tag{17}
\]

Furthermore,

\[
\sum_{j \in J} \|\Lambda_j f\|^2 = A\|K^* f\|^2 = A\left\| \sum_{j \in J} \Gamma_j^* \Lambda_j f \right\|^2 \\
= A \sup_{\|g\|=1, g \in H} \left\| \sum_{j \in J} \left(\frac{\langle \Lambda_j f, \Gamma_j g \rangle}{\|\Gamma_j\|^2} \right) g \right\|^2 \\
= A \sup_{\|g\|=1, g \in H} \left\| \sum_{j \in J} \left(\frac{\langle \Lambda_j f, \Gamma_j g \rangle}{\|\Gamma_j\|^2} \right) g \right\|^2 \\
\leq A \sup_{\|g\|=1, g \in H} \left\| \sum_{j \in J} \|\Lambda_j f\|^2 \right\| \sum_{j \in J} \|\Gamma_j g\|^2 \\
\leq A \sup_{\|g\|=1, g \in H} \left\| \sum_{j \in J} \|\Lambda_j f\|^2 \right\| B \|g\|^2 \\
= AB \sum_{j \in J} \|\Lambda_j f\|^2.
\]

Therefore, \(AB \geq 1 \). The proof of Theorem 12 is completed.

\[\square\]
Note that when \(K = I \), tight \(K-g \)-frame is tight \(g \)-frame. One may wonder whether \(K = I \) when tight \(K-g \)-frame is tight \(g \)-frame as well. In fact, the answer is negative. The following example demonstrates this.

Example 13. Suppose that \(H = \mathbb{R}^2; J = \{1, 2, 3\} \). Let \(\{e_j\}_{j \in J} \) be an orthonormal basis of \(H \), and let \(H_j = \text{span}(e_j) \). Now define \(\{\Lambda_j\}_{j \in J} \) and \(\{\Gamma_j\}_{j \in J} \) as follows:

\[
\Lambda_j : H \rightarrow H,
\Lambda_j f = (f, e_1) e_1,
\Lambda_2 f = (f, e_2) e_2,
\Lambda_3 f = (f, e_3) e_3;
\Gamma_j : H \rightarrow H_j,
\Gamma_1 f = \frac{1}{\sqrt{2}} ((f, e_1) + (f, e_2)) e_1,
\Gamma_2 f = \frac{1}{\sqrt{2}} ((f, e_1) - (f, e_2)) e_2,
\Gamma_3 f = (f, e_3) e_3.
\]

By a simple calculation, we have

\[
\Lambda_1^*: H_1 \rightarrow H,
\Lambda_1^* (a_1 e_1) = a_1 e_1,
\Lambda_2^*: H_2 \rightarrow H,
\Lambda_2^* (a_2 e_2) = a_2 e_2,
\Lambda_3^*: H_3 \rightarrow H,
\Lambda_3^* (a_3 e_3) = a_3 e_3;
\Gamma_1^*: H_1 \rightarrow H,
\Gamma_1^* (a_1 e_1) = \frac{1}{\sqrt{2}} a_1 e_1 + \frac{1}{\sqrt{2}} a_2 e_2,
\Gamma_2^*: H_2 \rightarrow H,
\Gamma_2^* (a_2 e_2) = \frac{1}{\sqrt{2}} a_2 e_1 - \frac{1}{\sqrt{2}} a_2 e_2,
\Gamma_3^*: H_3 \rightarrow H,
\Gamma_3^* (a_3 e_3) = a_3 e_3.
\]

For any \(f = (c_1, c_2, c_3) \in H \), we have

\[
\sum_{j \in J} \|\Lambda_j f\|^2 = c_1^2 + c_2^2 + c_3^2 = \|f\|^2;
\sum_{j \in J} \|\Gamma_j f\|^2 = \frac{1}{2} (c_1 + c_2)^2 + \frac{1}{2} (c_1 - c_2)^2 + c_3^2 = \|f\|^2.
\]

Obviously, \(\{\Lambda_j\}_{j \in J} \) and \(\{\Gamma_j\}_{j \in J} \) are Parseval \(g \)-frames for \(H \) with respect to \(\{H_j\}_{j \in J} \).

Define the bounded linear operator \(K \) as follows:

\[
K : H \rightarrow H,
Kf = \sum_{j \in J} \Lambda_j^* \Gamma_j f, \quad \forall f \in H.
\]

Now we prove that \(\{\Lambda_j\}_{j \in J} \) is a tight \(K-g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \). For any \(f, g \in H \), we have

\[
\langle K^* f, g \rangle = \langle f, Kg \rangle = \left\langle f, \sum_{j \in J} \Lambda_j^* \Gamma_j g \right\rangle = \left\langle \sum_{j \in J} \Gamma_j^* \Lambda_j f, g \right\rangle.
\]

Hence, \(K^* f = \sum_{j \in J} \Gamma_j^* \Lambda_j f \). It follows that

\[
\|K^* f\|^2 = \left\| \sum_{j \in J} \Gamma_j^* \Lambda_j f \right\|^2
= \left\| \Gamma_1^* c_1 e_1 + \Gamma_2^* c_2 e_2 + \Gamma_3^* c_3 e_3 \right\|^2
= \frac{1}{\sqrt{2}} \left[\left| c_1 + c_2 \right|^2 + \left| c_1 - c_2 \right|^2 + c_3^2 \right]
= \|K^* f\|^2, \quad \forall f \in H.
\]

Therefore, for any \(f \in H \), we have \(\sum_{j \in J} \|\Lambda_j f\|^2 = \|f\|^2 = \|K^* f\|^2 \). Via the definition of tight \(K-g \)-frame, \(\{\Lambda_j\}_{j \in J} \) is a tight \(K-g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \). For any \(f = (c_1, c_2, c_3) \in H \), we have \(Kf = \sum_{j \in J} \Lambda_j^* \Gamma_j f = ((1/\sqrt{2})(c_1 + c_2), (1/\sqrt{2})(c_1 - c_2), c_3) \neq f \).

Example 13 shows that if a tight \(K-g \)-frame is tight \(K \)-frame, then \(K \) cannot be \(I \). In the following theorem, we state a necessary and sufficient condition for a tight \(K-g \)-frame being a tight \(g \)-frame.

Theorem 14. Let \(K \in L(H) \) and \(A_1, A_2 > 0 \). Suppose that \(\{\Lambda_j\}_{j \in J} \) is a tight \(K-g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A_1 \). Then \(\{\Lambda_j\}_{j \in J} \) is a tight \(g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A_2 \) if and only if \(K \) is right-invertible and the right-invertible operator is \(K^{-1} = (A_1/A_2)K^* \).

Proof. First, we prove the sufficient condition. Since \(\{\Lambda_j\}_{j \in J} \) is a tight \(K-g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A_1 \), we have

\[
A_1 \|K^* f\|^2 = \sum_{j \in J} \|\Lambda_j f\|^2, \quad \forall f \in H.
\]

Assume that \(\{\Lambda_j\}_{j \in J} \) is a tight \(g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bound \(A_2 \). Then, for any \(f \in H \), we get

\[
\sum_{j \in J} \|\Lambda_j f\|^2 = A_2 \|f\|^2.
\]
By (25) and (26), $A_1\|K^*f\|^2 = A_2\|f\|^2$ for any $f \in H$, implying that $\|K^*f\|^2 = (A_2/A_1)\|f\|^2$. Then, for any $f \in H$, we have $(KK^*f, f) = (A_2/A_1, f, f)$. This implies that $K((A_1/A_2)K^*) = I$. So K is right-invertible and the right-invertible operator is $K_r^{-1} = (A_1/A_2)K^*$.

Next, we prove the necessary condition. Suppose that K is right-invertible and the right-invertible operator is $K_r^{-1} = (A_1/A_2)K^*$. Then $KK_r^{-1} = K((A_1/A_2)K^*) = I$; that is, $KK^* = (A_2/A_1)I$. So

$$\langle KK^*f, f \rangle = \left(\frac{A_2}{A_1} f, f \right), \quad \forall f \in H. \quad (27)$$

That is,

$$\|K^*f\|^2 = \frac{A_2}{A_1} \|f\|^2. \quad (28)$$

Since $\{\Lambda_j\}_{j \in J}$ is a tight g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A_1, we have

$$\sum_{j \in J} \|\Lambda_j f\|^2 = A_1 \|K^*f\|^2 = A_2 \|f\|^2. \quad (29)$$

This implies that $\{\Lambda_j\}_{j \in J}$ is a tight g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A_2. The proof of Theorem 14 is completed.

In the following, we will verify whether the K_r^{-1} in Example 13 is equal to K^*. For any $f = (c_1, c_2, c_3) \in H$, we have

$$KK^* f = \sum_{j \in J} \Gamma_j K^* f = \sum_{j \in J} \Gamma_j \left(\sum_{j \in J} \Gamma_j^* \Lambda_j f \right)$$

$$= \sum_{j \in J} \Gamma_j \left(\frac{1}{\sqrt{2}} (c_1 + c_2), \frac{1}{\sqrt{2}} (c_1 - c_2), c_3 \right)$$

$$= \Gamma_1^* \left(\frac{1}{2} (c_1 + c_2) + \frac{1}{2} (c_1 - c_2) \right) e_1$$

$$+ \Gamma_2^* \left(\frac{1}{2} (c_1 + c_2) - \frac{1}{2} (c_1 - c_2) \right) e_2$$

$$+ \Gamma_3^* (c_3 e_3)$$

$$= \Gamma_1^* (c_1 e_1) + \Gamma_2^* (c_2 e_2) + \Gamma_3^* (c_3 e_3) = f. \quad (30)$$

It follows that $KK^* = I$. This implies that K is right-invertible and the right-invertible operator is $K_r^{-1} = K^*$.

Theorem 16. Let $K \in L(H)$. If $\{\Lambda_j\}_{j \in J}$ is a tight g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A, then $\{\Lambda_j K^*\}_{j \in J}$ is a tight K-g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A.

Proof. Since $\{\Lambda_j\}_{j \in J}$ is a tight g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A, we have

$$\sum_{j \in J} \|\Lambda_j f\|^2 = A \|f\|^2, \quad \forall f \in H. \quad (31)$$

Again, for any $f \in H$, we have $K^* f \in H$; then

$$\sum_{j \in J} \|\Lambda_j K^* f\|^2 = A \|K^* f\|^2, \quad \forall f \in H. \quad (32)$$

Therefore, $\{\Lambda_j K^*\}_{j \in J}$ is a tight K-g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A. The proof of Theorem 16 is completed.

Corollary 17. Let $K \in L(H)$. If $\{\Lambda_j\}_{j \in J}$ is a g-orthonormal basis for H with respect to $\{H_j\}_{j \in J}$, then $\{\Lambda_j K^*\}_{j \in J}$ is a tight K-g-frame for H with respect to $\{H_j\}_{j \in J}$.

Theorem 18. Let $T, K \in L(H)$. If $\{\Lambda_j\}_{j \in J}$ is a tight K-g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A, then $\{\Lambda_j T^*\}_{j \in J}$ is a tight TK-g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A.

Proof. Since $\{\Lambda_j\}_{j \in J}$ is a tight K-g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A, we have

$$A \|K^* f\|^2 = \sum_{j \in J} \|\Lambda_j f\|^2, \quad \forall f \in H. \quad (33)$$

And, for any $f \in H$, we have $T^* f \in H$; then

$$\sum_{j \in J} \|\Lambda_j T^* f\|^2 = A \|K^* T^* f\|^2 = A \|(TK)^* f\|^2, \quad (34) \forall f \in H.$$

So $\{\Lambda_j T^*\}_{j \in J}$ is a tight TK-g-frame for H with respect to $\{H_j\}_{j \in J}$ with bound A. The proof of Theorem 18 is completed.

Corollary 19. Let $K \in L(H)$. If $\{\Lambda_j\}_{j \in J}$ is a tight K-g-frame for H with respect to $\{H_j\}_{j \in J}$, then $\{\Lambda_j (K^*)^N\}_{j \in J}$ is a tight K^{N+1}-g-frame for H with respect to $\{H_j\}_{j \in J}$, where N is a given positive integer.

Theorem 20. Let $K_1, K_2 \in L(H)$, and let $gF_K(H)$ be the collection of all tight K-g-frames for H with respect to $\{H_j\}_{j \in J}$. Then $gF_K(H) \subset gF_{K_2}(H)$ if and only if there exists $A > 0$ such that $K_1 K_2^* = AK_2 K_2^*.$

Proof. If $\{\Lambda_j\}_{j \in J}$ is a g-orthonormal basis for H with respect to $\{H_j\}_{j \in J}$, by Corollary 17, we get that $\{\Lambda_j K_1^*\}_{j \in J}$ is a tight K_1-g-frame for H with respect to $\{H_j\}_{j \in J}$. Since $gF_K(H) \subset gF_{K_2}(H)$, we have that $\{\Lambda_j K_2^*\}_{j \in J}$ is a tight K_2-g-frame for H with respect to $\{H_j\}_{j \in J}$. Assume that the bound
of tight $K_2\cdot g$-frame $\{\Lambda_j K_1^*\}_j \in \mathcal{J}$ is A. By the definition of tight $K\cdot g$-frame, we obtain
\begin{equation}
\sum_{j \in \mathcal{J}} \|\Lambda_j K_1^* f\|^2 = A \|K_1^* f\|^2, \quad \forall f \in \mathcal{H}.
\end{equation}
Since $\{\Lambda_j\}_j \in \mathcal{J}$ is a g-orthonormal basis for \mathcal{H} with respect to $\{H_j\}_j \in \mathcal{J}$, we have $K_1^* f \in \mathcal{H}$ for any $f \in \mathcal{H}$. By the definition of g-orthonormal basis, we get
\begin{equation}
\sum_{j \in \mathcal{J}} \|\Lambda_j K_1^* f\|^2 = \|K_1^* f\|^2, \quad \forall f \in \mathcal{H}.
\end{equation}
By (35) and (36), we get $\|K_1^* f\|^2 = A \|K_1^* f\|^2$ for any $f \in \mathcal{H}$. So $K_1 K_1^* = AK_1^*$. Suppose that $\{\Lambda_j\}_j \in \mathcal{J}$ is a tight $K_1\cdot g$-frame for \mathcal{H} with respect to $\{H_j\}_j \in \mathcal{J}$ with bound A_1; then
\begin{equation}
\sum_{j \in \mathcal{J}} \|\Lambda_j f\|^2 = A_1 \|K_1^* f\|^2, \quad \forall f \in \mathcal{H}.
\end{equation}
Under this assumption, there exists $A > 0$ such that $K_1 K_1^* = AK_1^*$. So for any $f \in \mathcal{H}$, we have $\|K_1^* f\|^2 = A \|K_1^* f\|^2$. Hence
\begin{equation}
A_1 A \|K_1^* f\|^2 = A_1 \|K_1^* f\|^2 = \sum_{j \in \mathcal{J}} \|\Lambda_j f\|^2, \quad \forall f \in \mathcal{H}.
\end{equation}
Therefore, $\{\Lambda_j\}_j \in \mathcal{J}$ is a tight $K_2\cdot g$-frame for \mathcal{H} with respect to $\{H_j\}_j \in \mathcal{J}$ with bound A_1A. The proof of Theorem 20 is completed.

Corollary 21. Let $K_1, K_2 \in L(\mathcal{H})$ and let $PgF_{K_2}(\mathcal{H})$ be the collection of all Parseval $K_2\cdot g$-frames for \mathcal{H} with respect to $\{H_j\}_j \in \mathcal{J}$. Then $PgF_{K_2}(\mathcal{H}) = PgF_{K_1}(\mathcal{H})$ if and only if $K_1 K_1^* = K_2 K_2^*$.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grants nos. 61261043 and 10961001) and Natural Science Foundation of Ningxia (Grant no. NZ13084).

References

Submit your manuscripts at
http://www.hindawi.com