Research Article

Similarity Solutions for Multiterm Time-Fractional Diffusion Equation

A. Elsaid, 1 M. S. Abdel Latif, 1 and M. Maneea 2

1 Mathematics & Engineering Physics Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
2 Mathematics & Engineering Physics Department, Faculty of Engineering, Modern University for Technology and Information, Cairo 11585, Egypt

Correspondence should be addressed to A. Elsaid; a.elsaid@ymail.com

Received 12 January 2016; Revised 19 March 2016; Accepted 29 March 2016

1. Introduction

Fractional differential equations (FDEs) appear in modeling many problems in the fields of science and engineering [1–3]. These problems are modeled using different types of fractional derivative operators which include Riemann-Liouville definition [1], Caputo definition [4], Riesz definition [5], Riesz-Feller definition [6], and the modified Riemann-Liouville definition recently proposed by Jumarie [7].

To obtain analytic solutions to fractional partial differential equations (FPDEs), two methods have been basically used: the first method is the application of both Laplace and Fourier transforms and the second method is the separation of variables technique [1]. But recently several semianalytic methods have been also utilized to present series solution to FPDEs such as Adomian decomposition method [8, 9], homotopy analysis method [10, 11], homotopy perturbation method [12, 13], variational iteration method [14, 15], and fractional differential transformation method [16, 17].

Fractional diffusion models are formulated using fractional derivative operators to replace regular derivatives. Different forms of fractional diffusion equations have been widely researched. For example, a time-fractional diffusion equation has been explicitly introduced in physics by Nigmatullin [18] to describe diffusion in special types of porous media which exhibit a fractal geometry. Giona et al. [19] also presented a time-fractional diffusion equation that describes relaxation phenomena in complex viscoelastic materials. Wyss [20] considered the time-fractional diffusion and wave equations and obtained the solution in closed form in terms of Fox functions. Gorenflo et al. [21] used the similarity method and the Laplace transform method to obtain the scale invariant solution of the time-fractional diffusion-wave equation in terms of the Wright function. Recently, fractional diffusion equations have been modeled and studied via local fractional derivatives as in the work of Liu et al. [22] and Zhao et al. [23].

Fractional diffusion equations have been also utilized to model anomalous diffusion where a particle plume spreads faster than predicted by classical models and may exhibit significant asymmetry. The anomalous diffusion processes differ from regular diffusion in that the dispersion of particles proceeds faster (superdiffusion) or slower (subdiffusion) than for the regular case. Anomalous diffusion is one of the most popular phenomena in the theory of random walks and transport processes [24–26]. Also anomalous diffusion is a vast and exciting topic, in particular for “crowded” biological systems, where the transport of molecules plays a central functional role [27]. Lenzi et al. investigate the solutions for a fractional diffusion equation subjected to boundary conditions.
conditions which can be connected to adsorption-desorption processes; the analytical solutions were obtained using the Green function approach [28]. Prehl et al. in [29] deal with diffusion equation with a focus on space-fractional diffusion equation.

The large number of applications that are modeled via fractional diffusion equations motivated mathematicians to develop and apply several techniques to obtain analytic and approximate solutions to this class of FPDEs. Some examples of this work include studying the existence and uniqueness of solution [30], presenting the fundamental solution to some types of fractional diffusion equations [31, 32], applying Green’s function approach [33], obtaining approximate solution via pseudospectral scheme [34], solution via radial basis functions [35], stochastic solution via Monte Carlo simulation [36], approximate solution based on the shifted Legendre-tau technique [37], solution by integral transform method [38], numerical solution by finite difference scheme [39], approximate analytical solution by homotopy analysis method [40], approximate analytical solution by optimal homotopy analysis method [41], approximate analytical solution via Adomian method [42], approximate analytical solution by variational iteration method [43], and approximate analytical solution via generalized differential transform method [44].

Multiterm FPDEs provide more generalizations to fractional order models. Thus many authors have dealt with them either analytically or numerically. For example, the authors of [45] developed a direct solution technique for solving the linear multiterm FPDEs with constant coefficients using a spectral tau method. In [46], an effective finite element method is presented for the multiterm time-space Riesz fractional advection-diffusion equations. A numerical method is proposed in [47] to reduce the multiterm FDEs to a system of algebraic equations based on Bernstein polynomials basis. Also in [48], the authors present a numerical method for solving the multiterm time-fractional wave-diffusion equations. A study on the nonhomogeneous generalized multiterm fractional heat propagation and fractional diffusion-convection equation in three-dimensional space is presented in [49].

Though symmetry methods have been applied to different types of linear and nonlinear partial differential equations, the research on using these methods for solving FPDEs is still in the initial stage. The work reported on the Riemann-Liouville fractional integral operator of order $\alpha \geq 0$ of a function $f(t) \in C_{\mu}, \mu \geq -1$ is defined as

$$f^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau) d\tau, \quad \alpha > 0, \quad t > 0,$$

(1)

One basic property of Caputo fractional derivative is

$$D^\beta_\alpha f(t) = \left\{ \begin{array}{ll} \frac{d^m}{dt^m} f(t), & m - 1 < \beta < m, \\ \frac{d^m}{dt^m} f(t), & \beta = m. \end{array} \right.$$

(2)

For more details on Caputo fractional derivative see [1, 56, 57].

3. Similarity Method Solution

In this section, we illustrate the technique for using similarity methods in solving multiterm FPDEs with Caputo fractional derivative.

Problem 4. Consider the following problem:

$$\frac{\partial^2 u}{\partial x^2} = \sum_{i=1}^r C_i x^{\alpha_i + 2} D^\beta_\alpha u,$$

(4)
where \(C_i \) are constants, with an initial condition \(u(x, 0) = 0 \). Here \(D^\alpha_i u = (\partial^\alpha_i/\partial t^\alpha_i)u \) denotes the partial fractional derivative of order \(\alpha_i \) of \(u = u(x, t) \) with respect to the time variable \(t \) in the Caputo sense. To solve (4), first we perform its scaling transformation using similarity methods; see [51, 58]. Consider the new independent and dependent variables denoted by \(\tau, \xi, \) and \(\eta \) defined in the following way:

\[
\begin{align*}
 t &= \lambda^\alpha \tau, \\
 x &= \lambda^\beta \xi, \\
 u &= \lambda^\gamma \eta,
\end{align*}
\]

where \(\lambda \) is called the scaling parameter and \(p, q, \) and \(n \) are arbitrary constants to be determined such that (4) remains invariant under this transformation. From Caputo definition for \(0 < \alpha_i \leq 1 \), one may easily verify that

\[
\begin{align*}
 \partial^\alpha_i u &= \frac{1}{\Gamma(1-\alpha_i)} \int_0^t \frac{1}{(t-\tau)^{\alpha_i}} \frac{\partial u(x, \tau)}{\partial \tau} \, d\tau \\
 &= \frac{1}{\Gamma(1-\alpha_i)} \int_0^\tau \frac{\lambda^{\alpha_i}}{(\lambda^{\alpha_i} \eta - \lambda^{\alpha_i} \xi)^{\alpha_i}} \frac{\partial \eta}{\partial \tau} \, d\tau \\
 &= \lambda^{\alpha_i-\alpha} \frac{\partial^\alpha_i \eta}{\partial \tau}, \quad i = 1, 2, \ldots, r,
\end{align*}
\]

where \(\tau = \lambda^\alpha \eta \). Also, for \(\partial^2 u/\partial x^2 \), we have

\[
\partial^2 u = \lambda^{q-2p} \partial^2 \eta.
\]

Hence, by substituting (6) and (7) into (4), we get

\[
\lambda^{q-2p} \frac{\partial^2 \eta}{\partial \xi^2} = \sum_{i=1}^r C_i \lambda^{\alpha_i(\alpha_i+2)} \Gamma(\alpha_i+2) \lambda^{\alpha_i-\alpha} \frac{\partial^\alpha_i \eta}{\partial \tau}.
\]

From (8), it is clear that, by setting \(n = 1 \) and \(p = -1 \), then (4) is invariant under transformation (5). The characteristic equation associated with transformation (5) is given by

\[
\frac{du}{qu} = \frac{dx}{px} = \frac{dt}{nt}.
\]

At \(q = 0 \), this shows that \(u(x, t) \) can be expressed as

\[
u(x, t) = f(\xi),
\]

where \(\xi = tx \).

By using formula (10), we have

\[
\begin{align*}
 \partial^\alpha_i u &= \frac{1}{\Gamma(1-\alpha_i)} \int_0^\xi \frac{1}{(\xi-\tau)^{\alpha_i}} \frac{\partial u(x, \tau)}{\partial \tau} \, d\tau \\
 &= \frac{1}{\Gamma(1-\alpha_i)} \int_0^\xi \frac{f'(\xi) x}{(\xi/x - y/x)^{\alpha_i}} x^{-1} \, dy
\end{align*}
\]

\[
= \frac{1}{\Gamma(1-\alpha_i)} \int_0^\xi \frac{f'((\xi/y)^0 x)}{(\xi/y - y/x)^{\alpha_i}} x^{-1} \, dy
\]

\[
i = 1, 2, \ldots, r,
\]

where \(y = \tau x \).

Again, by using formula (10), we have

\[
\frac{\partial^2 u}{\partial x^2} = \xi^2 \frac{d^2 f}{d\xi^2}.
\]

Substituting (11) and (12) into (4), the resulting FDE is given by

\[
\frac{d^2 f}{d\xi^2} = \sum_{i=1}^r C_i \lambda_i^{\alpha_i} \frac{d^\alpha_i f}{d\xi^\alpha_i},
\]

with the initial condition \(f(0) = 0 \).

4. Power Series Solution

In this section, we develop the series solution of (13). Let

\[
f(\xi) = \sum_{\ell=0}^\infty a_\ell \xi^\ell.
\]

Using (3), we have

\[
\sum_{i=1}^r \frac{d^\alpha_i f}{d\xi^\alpha_i} = \sum_{i=1}^r \frac{\Gamma(2)}{\Gamma(2-\alpha_i)} \xi^{1-\alpha_i} + a_2 \frac{\Gamma(3)}{\Gamma(3-\alpha_i)} \xi^{2-\alpha_i}
\]

\[
+ a_3 \frac{\Gamma(4)}{\Gamma(4-\alpha_i)} \xi^{3-\alpha_i} + \cdots,
\]

\[
\frac{d^2 f}{d\xi^2} = \sum_{\ell=1}^\infty \ell (\ell - 1) a_\ell \xi^{\ell-2}.
\]

Substituting (15) and (16) into (13) and comparing the coefficients of identical powers on both sides, we get

\[
a_{2k} = 0, \quad k = 0, 1, 2, \ldots
\]

\[
a_2 = \frac{1}{3!} \sum_{i=1}^r \frac{\Gamma(2)}{\Gamma(2-\alpha_i)} a_i,
\]

\[
a_3 = \frac{1}{5!} \left(\sum_{i=1}^r \frac{\Gamma(4)}{\Gamma(4-\alpha_i)} \right) \left(\sum_{i=1}^r \frac{\Gamma(2)}{\Gamma(2-\alpha_i)} \right) a_1,
\]

\[
\vdots
\]

For the initial condition \(f(0) = 0 \), we get \(a_0 = 0 \). Hence, \(f(\xi) \) takes the form

\[
f(\xi) = \xi + \sum_{\ell=1}^\infty \frac{1}{(2\ell + 1)!} \xi^{2\ell+1} \prod_{i=1}^r \frac{\Gamma(2i)}{\Gamma(2i - \alpha_i)}.
\]

Based on these results, we propose a definition for multiterm error function with generalized coefficients and discuss its convergence.
Definition 5. A multiterm error function with generalized coefficients is defined in the form
\[
erf(\xi; \tau; \alpha_1, \alpha_2, \ldots, \alpha_r) = \frac{2}{\sqrt{\pi}} \sum_{m=0}^{\infty} a_{2m+1} \chi^{2m+1},
\]
where
\[
a_1 = 1,
\]
\[
a_{2m+1} = \frac{\tau^m}{(2m+1)!} \prod_{i=1}^{r} \sum_{k=1}^{r} C_k \frac{\Gamma(2i)}{\Gamma(2i-\alpha_1)}, \quad n = 1, 2, \ldots.
\]

By this definition, the solution of the ordinary FDE obtained in (13) is given by
\[
f(\zeta) = c_1 + c_2 \operatorname{erf}(\zeta; 1; \alpha_1, \alpha_2, \ldots, \alpha_r),
\]
where \(c_1\) and \(c_2\) are arbitrary constants.

To check the radius of convergence of the multiterm error function with generalized coefficients (19) and (20), we evaluate the following limit:
\[
\lim_{\ell \to \infty} \left| \frac{a_{2\ell+3}}{a_{2\ell+1}} \right| = \lim_{\ell \to \infty} \frac{\xi^{2\ell+3}}{\xi^{2\ell+1}} \cdot \frac{\tau^{\ell+1} (2\ell + 1)! \prod_{k=1}^{r} C_k \Gamma(2i) / \Gamma(2i-\alpha_k)}{\tau^{\ell+3} (2\ell+3)! \prod_{k=1}^{r} C_k \Gamma(2i) / \Gamma(2i-\alpha_k)}
\]
\[
= \lim_{\ell \to \infty} \left| \frac{a_{2\ell+3}}{a_{2\ell+1}} \right| \cdot \frac{\tau \sum_{k=1}^{r} C_k \frac{1}{\Gamma(2\ell+2-\alpha_k)}}{(2\ell+3) \prod_{k=1}^{r} C_k \frac{1}{\Gamma(2\ell+2-\alpha_k)}} = 0.
\]

Hence, the series solution converges for all \(\zeta\).

We consider the case \(r = 3\) in (18). Figures 1, 2, and 3 illustrate the effect of changing the orders of fractional derivatives \(\alpha_1, \alpha_2,\) and \(\alpha_3\) on the behavior of Taylor series representation of the solution function \(f(\zeta)\) at different values of the constants \(C_i, i = 1, 2, 3\).

In the case where \(\sum_{i=1}^{3} C_i = -1/2\) and \(\alpha_1 = \alpha_2 = \cdots = \alpha_r = \alpha_r\) (13) is reduced to
\[
\frac{d^2 f}{d\zeta^2} = \frac{\tau^2}{2} \cdot \frac{d^2 f}{d\zeta^2},
\]
which has a solution of the form
\[
f(\zeta) = k_1 + k_2 \text{erf}(\zeta; \frac{1}{2}; \alpha),
\]
where \(k_1\) and \(k_2\) are arbitrary constants and \(\text{erf}(\zeta; \tau; \alpha)\) is the error function with generalized coefficients defined in the form
\[
erf(\xi; \tau; \alpha) = \frac{2}{\sqrt{\pi}} \sum_{m=0}^{\infty} a_{2m+1} \chi^{2m+1}.
\]
the general solution of the form \(f(\zeta) = k_1 \sin((1/\sqrt{2})\zeta) + k_2 \cos((1/\sqrt{2})\zeta) \), with \(k_2 = 0 \) to satisfy the initial condition \(f(0) = 0 \).

5. Conclusion

The similarity method is used to solve multiterm FPDEs where the fractional derivatives are given in Caputo sense. We considered time-fractional diffusion equation and illustrated that the similarity method successfully transforms this equation with two independent variables into an ordinary FDE in the same fractional derivative sense. Also it is noticed that the obtained FDE inherits the multiterm nature from the original FPDE.

The ordinary FDE is solved using power series expansion. We proved that the obtained series solution has an infinite radius of convergence. Thus, not only the solution obtained satisfies the equation, but also it can provide the exact solution at any point. So, any other semianalytic solution to this problem should be compared to this one.

Based on this series solution, a new definition is proposed for what we call the multiterm error function with generalized coefficients. This function is considered as a generalization of the classical error function and it coincides with it when the orders \(\alpha_i \) of the fractional derivatives approach one and the sum of the coefficients \(C_i \) of the multiterm derivatives equals \(-1/2\), whereas as the orders \(\alpha_i \) approach zero, the function undergoes oscillation that tends to the trigonometric sine function.

The parameters involved in the definition of multiterm error function with generalized coefficients enrich this function. The figures presented in the considered case study illustrate that as the values of these parameters vary, the function exhibits different types of behaviors that can describe a wider range of applied models.

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

