Research Article

Description of the Magnetic Field and Divergence of Multisolenoid Aharonov-Bohm Potential

Araz R. Aliev, Elshad H. Eyvazov, Said F. M. Ibrahim, and Hassan A. Zedan

1Azerbaijan State University of Oil and Industry, 1010 Baku, Azerbaijan
2Baku State University, 1148 Baku, Azerbaijan
3Institute of Mathematics and Mechanics of ANAS, 1141 Baku, Azerbaijan
4Jeddah University, Jeddah 21895, Saudi Arabia
5Kafr El-Sheikh University, Kafr El-Sheikh 33516, Egypt

Correspondence should be addressed to Araz R. Aliev; alievaraz@yahoo.com

Received 1 September 2015; Accepted 11 January 2016

Academic Editor: Emilio Elizalde

Copyright © 2016 Araz R. Aliev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential are obtained; the mathematical essence of this potential is explained. It is shown that the magnetic field and divergence of this potential are very singular generalized functions concentrated at a finite number of thin solenoids. Deficiency index is found for the minimal operator generated by the Aharonov-Bohm differential expression.

1. Introduction

66 years have passed since the publication of Aharonov and Bohm’s “Significance of Electromagnetic Potential in the Quantum Theory” [1], and since then interest in this paper has never faded. According to Web of Science®-Google Scholar, it has been cited 5680 times (as of December 2014)! Note that there are plenty of both supporters and opponents of this work (see, e.g., [2, 3]).

The purpose of our work is to find explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential and to explain the mathematical essence of it. The obtained formulas show (see Theorems 1 and 3) that the magnetic field and divergence of this potential are very singular generalized functions concentrated at a finite number of thin solenoids perpendicular to the plane x_1Ox_2.

2. Main Results

Let $\xi_k = (x_1^{(k)}, x_2^{(k)}), k = 1, 2, \ldots, n$, be pairwise distinct points in R_2, let $a_k : S_1(0) \rightarrow R_1, k = 1, 2, \ldots, n$, be real, bounded, and measurable functions on the unit circle $S_1(0) \subset R_2$, and $\Omega' = R_2 \setminus \{\xi_k, k = 1, 2, \ldots, n\}$. Define the magnetic Aharonov-Bohm potential as follows:

$$A(x) = \sum_{k=1}^{n} a_k \left(\frac{x - \xi_k}{|x - \xi_k|} \right) \frac{1}{|x - \xi_k|^2} \left(-x_2 + x_2^{(k)} , x_1 - x_1^{(k)} \right),$$

$$x = (x_1, x_2) \in \Omega',$$

where

$$|x - \xi_k| = \sqrt{(x_1 - x_1^{(k)})^2 + (x_2 - x_2^{(k)})^2}. \quad (2)$$

As far as we know, in all the earlier works (except for [4]) dedicated to the Aharonov-Bohm effect (for short, AB effect), the functions $a_k((x - \xi_k)/|x - \xi_k|), k = 1, 2, \ldots, n$, are constants.

The following theorems are true (in case $n = 1$ they were proved in [4]).
Theorem 1. Let the magnetic field $B = \nabla \times A$ be generated by the magnetic Aharonov-Bohm potential (1) in the sense of generalized functions. Then the following equality is true:

$$B = \nabla \times A = \sum_{k=1}^{n} \left[\int_{-\pi}^{\pi} a_k(\theta) \, d\theta \right] \delta(x - \xi_k),$$

where $\delta(x - \xi_k), k = 1, 2, \ldots, n$, are the Dirac functions and $\nabla = (\partial/\partial x_1, \partial/\partial x_2)$ is the gradient operator.

Proof. Let

$$A(x) = (A_{x_1}, A_{x_2}),$$

where

$$A_{x_1} = \sum_{k=1}^{n} \left(\frac{x - \xi_k}{|x - \xi_k|^2} \right) x_2^{(k)} - x_2,$$

$$A_{x_2} = \sum_{k=1}^{n} \left(\frac{x - \xi_k}{|x - \xi_k|^2} \right) x_1 - x_1^{(k)}.$$

Then the definition of magnetic field

$$B = \nabla \times A = \frac{\partial A_{x_1}}{\partial x_2} - \frac{\partial A_{x_2}}{\partial x_1}$$

implies that for every function $f(x) \in C^0_0(R_2)$ we have

$$\int_{R_2} B f(x) \, dx$$

$$= \int_{R_2} \left(\frac{\partial A_{x_1}}{\partial x_1} - \frac{\partial A_{x_2}}{\partial x_2} \right) f(x_1, x_2) \, dx_1 dx_2.$$

Taking into account the identity

$$\left(\frac{\partial A_{x_1}}{\partial x_1} - \frac{\partial A_{x_2}}{\partial x_2} \right) f(x_1, x_2) = \frac{\partial}{\partial x_1} (A_{x_1} f) - \frac{\partial}{\partial x_2} (A_{x_2} f) - A_{x_1} \frac{\partial f}{\partial x_1} + A_{x_2} \frac{\partial f}{\partial x_2}$$

and the Green formula, we rewrite relation (7) as follows:

$$\int_{R_2} B f(x) \, dx$$

$$= \int_{R_2} \left(A_{x_1} \frac{\partial f}{\partial x_2} - A_{x_2} \frac{\partial f}{\partial x_1} \right) dx_1 dx_2.$$

Hence, by virtue of (5), we get

$$\int_{R_2} B f(x) \, dx$$

$$= \int_{R_2} \sum_{k=1}^{n} \left[\int_{R_2} a_k \left(\frac{x - \xi_k}{|x - \xi_k|^2} \right) \left[x_2^{(k)} \frac{\partial f}{\partial x_2} - x_2 \frac{\partial f}{\partial x_1} \right] \, dx_1 dx_2 \right]$$

$$= \sum_{k=1}^{n} \left[\int_{R_2} \frac{a_k}{|x - \xi_k|^2} \left[x_2^{(k)} \frac{\partial f}{\partial x_2} - x_2 \frac{\partial f}{\partial x_1} \right] \, dx_1 dx_2 \right]$$

where

$$J_k(f) = \int_{R_2} \frac{a_k}{|x - \xi_k|^2} \left[x_2^{(k)} \frac{\partial f}{\partial x_2} - x_2 \frac{\partial f}{\partial x_1} \right] \, dx_1 dx_2,$$

$$k = 1, 2, \ldots, n.$$

Using the transformation of plane into itself defined by the formulas

$$t_1 = x_1 - x_1^{(k)},$$

$$t_2 = x_2 - x_2^{(k)},$$

and considering the equalities

$$\frac{\partial f}{\partial x_1} = \frac{\partial f(t_1 + x_1^{(k)}, t_2 + x_2^{(k)})}{\partial t_1},$$

$$\frac{\partial f}{\partial x_2} = \frac{\partial f(t_1 + x_1^{(k)}, t_2 + x_2^{(k)})}{\partial t_2},$$

we arrive at the following formula:

$$J_k(f) = \int_{R_2} \frac{a_k}{|t|^2} \left[\frac{t_1}{|t|^2} \frac{\partial f(t_1 + x_1^{(k)}, t_2 + x_2^{(k)})}{\partial t_1} + \frac{t_2}{|t|^2} \frac{\partial f(t_1 + x_1^{(k)}, t_2 + x_2^{(k)})}{\partial t_2} \right] \, dt_1 dt_2,$$

$$k = 1, 2, \ldots, n.$$
After transition to polar coordinates
\[t_1 = r \cos \theta, \]
\[t_2 = r \sin \theta, \]
\[r > 0, \quad -\pi < \theta \leq \pi \quad (t = r \left(\cos \theta, \sin \theta \right)), \] (15)

and using the equalities
\[
\frac{\partial f}{\partial t_1} = \frac{\partial}{\partial r} \left(r \cos \theta + x^{(k)}_1, r \sin \theta + x^{(k)}_2 \right) \cos \theta
\]
\[= \frac{\partial f}{\partial r} \left(r \cos \theta + x^{(k)}_1, r \sin \theta + x^{(k)}_2 \right) \cos \theta
\]
\[
\frac{\partial}{\partial r} \left(r \cos \theta + x^{(k)}_1, r \sin \theta + x^{(k)}_2 \right) \cos \theta
\]
we get

\[J_k(f) = \int_{0}^{+\infty} \int_{-\pi}^{\pi} a_k(\cos \theta, \sin \theta) \cos \theta \left\{ \frac{\partial f}{\partial r} \left(r \cos \theta + x^{(k)}_1, r \sin \theta + x^{(k)}_2 \right) \right\} \] (17)

Taking into account \(f(x) \in C^\infty_0(R_2) \) and denoting \(a_k(\cos \theta, \sin \theta) \equiv a_k(\theta) \), from (17) we have

\[J_k(f) = -f(x^{(k)}_1, x^{(k)}_2) \int_{-\pi}^{\pi} a_k(\theta) \, d\theta \]
\[= -f(\xi_k) \int_{-\pi}^{\pi} a_k(\theta) \, d\theta. \] (18)

The Dirac function \(\delta(x - \xi_k) \) acts as follows:
\[(\delta(x - \xi_k), f(x)) = f(\xi_k). \] (19)

Then the functional defined by the right-hand side of (18) is a generalized function. Thus, formula (18) can be rewritten in the following way:

\[J_k(f) = -\int_{-\pi}^{\pi} a_k(\theta) \, d\theta \delta(x - \xi_k), f(x) \]
\[= -(\int_{-\pi}^{\pi} a_k(\theta) \, d\theta \delta(x - \xi_k), f(x)), \] (20)

Due to (20), equality (10) has the following form:

\[(B, f(x)) \equiv \int_{R_2} B f(x) \, dx \]
\[= \sum_{k=1}^{n} \left(\int_{-\pi}^{\pi} a_k(\theta) \, d\theta \delta(x - \xi_k), f(x) \right) \]
\[= \left(\sum_{k=1}^{n} \int_{-\pi}^{\pi} a_k(\theta) \, d\theta \delta(x - \xi_k), f(x) \right). \] (21)

Consequently, we have

\[B = \nabla \times A = \sum_{k=1}^{n} \int_{-\pi}^{\pi} a_k(\theta) \, d\theta \delta(x - \xi_k). \] (22)

The theorem is proved. □

Remark 2. The formula

\[B = \sum_{k=1}^{n} \int_{-\pi}^{\pi} a_k(\theta) \, d\theta \delta(x - \xi_k) \] (23)
implies that if the condition

$$\int_{-\pi}^{\pi} a_k(\theta) \, d\theta = 0 \quad (24)$$

holds for every k from $\{1, 2, \ldots, n\}$, then the AB effect is absent because the total magnetic flux of the magnetic field B passing through the closed contour that covers all the points $\xi_k = (x_1^{(k)}, x_2^{(k)})$, $k = 1, 2, \ldots, n$, is equal to zero.

The conditions for both the presence and absence of the AB effect in multiply connected domains are thoroughly studied in [3, 5].

Theorem 3. Let the divergence $\nabla \cdot A$ be generated by the magnetic Aharonov-Bohm potential (1) in the sense of generalized functions. Then the following equality is true:

$$\nabla \cdot A = \sum_{k=1}^{n} V.p. \left\{ \frac{1}{|x - \xi_k|^2} \left[-\frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right] + \frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right\}, \quad k = 1, 2, \ldots, n \quad (25)$$

where

$$V.p. \left\{ \frac{1}{|x - \xi_k|^2} \left[-\frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right] + \frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right\}, \quad k = 1, 2, \ldots, n \quad (26)$$

are singular generalized functions; the letters $V.p.$ mean “Cauchy principal value.”

Proof. Let $f(x) \in C_0^\infty(R_2)$. Then, by the definition of the derivative of generalized function, using formulas (5), we have

$$\nabla \cdot A = \int_{R_2} \left(\frac{\partial A_{x_1}}{\partial x_1} + \frac{\partial A_{x_2}}{\partial x_2} \right) f(x) \, dx = -\int_{R_2} \left(A_{x_1} \frac{\partial f(x)}{\partial x_1} + A_{x_2} \frac{\partial f(x)}{\partial x_2} \right) dx$$

$$= -\sum_{k=1}^{n} \lim_{\delta \to 0} \int_{|x-\xi_k|>\delta} a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right) \left[-\frac{x_2 + x_2^{(k)} \frac{\partial f(x_1, x_2)}{\partial x_1}}{|x - \xi_k|^2} + \frac{x_1 - x_1^{(k)} \frac{\partial f(x_1, x_2)}{\partial x_2}}{|x - \xi_k|^2} \right] dx_1 \, dx_2 \quad (27)$$

where

$$I_{k,\delta}(f) = \int_{|x-\xi_k|>\delta} a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 + x_2^{(k)} \frac{\partial f(x_1, x_2)}{\partial x_1}}{|x - \xi_k|^2} + \frac{x_1 - x_1^{(k)} \frac{\partial f(x_1, x_2)}{\partial x_2}}{|x - \xi_k|^2} \right) dx_1 \, dx_2, \quad k = 1, 2, \ldots, n \quad (28)$$

Using substitutions (12) and (15) and formulas (13) and (16), we obtain
\[I_{k,\delta}(f) = \int_{|t| \geq \delta} a_k \left(\frac{t}{|t|} \right) \left[\frac{-t_2}{|t|^2} \frac{\partial f}{\partial t_1} \left(t_1 + x_1^{(k)}, t_2 + x_2^{(k)} \right) + \frac{t_1}{|t|^2} \frac{\partial f}{\partial t_2} \left(t_1 + x_1^{(k)}, t_2 + x_2^{(k)} \right) \right] dt_1 dt_2 = \int_\delta^\infty \int_{-\pi}^\pi a_k(\cos \theta, \sin \theta) \]

\[\cdot \left[-\sin \theta \left[\frac{\partial f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)})}{\partial \theta} \cos \theta - \frac{\partial f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)})}{\partial \theta} \sin \theta \right] + \cos \theta \right] \]

\[\left[\frac{\partial f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)})}{\partial \theta} \sin \theta + \frac{\partial f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)})}{\partial \theta} \cos \theta \right] \right] dr d\theta \]

\[= \int_\delta^\infty \int_{-\pi}^\pi a_k(\theta) \frac{\partial f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)})}{\partial \theta} \frac{1}{r} dr d\theta = \int_\delta^\infty \frac{1}{r} \int_{-\pi}^\pi a_k(\theta) \frac{\partial f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)})}{\partial \theta} d\theta d\theta, \]

\[= -\int_\delta^\infty \frac{1}{r} \int_{-\pi}^\pi a_k'(\theta) f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)}) d\theta d\theta = \int_\delta^\infty \frac{1}{r} \int_{-\pi}^\pi a_k(\theta) \frac{\partial f(\cos \theta + x_1^{(k)}, \sin \theta + x_2^{(k)})}{\partial \theta} d\theta, \]

\(k = 1, 2, \ldots, n. \)

Now, to express \(a_k'(\theta) \) in Cartesian coordinates \(x_1 \) and \(x_2 \), we put

\[M_k(x_1, x_2) \equiv a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right) \]

\[= a_k(\cos \theta, \sin \theta) = a_k(\theta), \quad k = 1, 2, \ldots, n. \)

Having solved the system of equations

\[\frac{\partial M_k(x_1, x_2)}{\partial x_1} = \frac{\partial M_k}{\partial \theta} \cos \theta - \frac{\partial M_k}{\partial \theta} \sin \theta, \quad k = 1, 2, \ldots, n, \]

\[\frac{\partial M_k(x_1, x_2)}{\partial x_2} = \frac{\partial M_k}{\partial \theta} \sin \theta + \frac{\partial M_k}{\partial \theta} \cos \theta, \quad k = 1, 2, \ldots, n, \]

\[a_k'(\theta) = \left[\frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} \left(\frac{-\left(x_1 - x_1^{(k)} \right) \left(x_2 - x_2^{(k)} \right)}{|x - \xi_k|^3} \right) \right] \]

\[+ \left[\frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \right] \left(\frac{1}{|x - \xi_k|} - \frac{\left(x_2 - x_2^{(k)} \right)^2}{|x - \xi_k|^3} \right) \]

\[- \left[\frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} \right] \left(\frac{1}{|x - \xi_k|} - \frac{\left(x_1 - x_1^{(k)} \right)^2}{|x - \xi_k|^3} \right) \]

\[+ \left[\frac{\partial a_k \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \right] \left(\frac{-\left(x_1 - x_1^{(k)} \right) \left(x_2 - x_2^{(k)} \right)}{|x - \xi_k|^3} \right) \]

Differentiating the composite function \(M_k(x_1, x_2) \) in \(x_1 \) and \(x_2 \) and using formula (32), we find

\[a_k'(\theta) = \frac{\partial M_k}{\partial x_1} \cos \theta - \frac{\partial M_k}{\partial x_1} \sin \theta = r \left(\frac{\partial M_k(x_1, x_2)}{\partial x_1} \cos \theta - \frac{\partial M_k(x_1, x_2)}{\partial x_2} \sin \theta \right) \]
\[
\frac{\partial a_k}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} + \frac{\partial a_k}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \cdot \frac{x_1 - x_1^{(k)}}{|x - \xi_k|}, \quad k = 1, 2, \ldots, n.
\]

Passing to the limit in (29) as \(\delta \to 0 \) and taking into account (33), we obtain

\[
\lim_{0<\delta \to 0} I_{k,\delta} (f) = -V_p \int_{R_2} \left\{ \frac{1}{|x - \xi_k|^2} \left[-\frac{\partial a_k}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} + \frac{\partial a_k}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \right] f(x) \, dx \right\}, \quad k = 1, 2, \ldots, n.
\]

It is seen from (27) and (34) that the following equality is true for every \(f(x) \in C_0^\infty (R_2) \):

\[
\begin{align*}
\text{(div}A, f(x)) & = \sum_{k=1}^n V_p \int_{R_1} \left\{ \frac{1}{|x - \xi_k|^2} \left[-\frac{\partial a_k}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} + \frac{\partial a_k}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \right] f(x) \, dx \right\}, \\
& = \sum_{k=1}^n V_p \int_{R_1} \left[\frac{1}{|x - \xi_k|^2} \right] \left\{ \frac{\partial a_k}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} + \frac{\partial a_k}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \right\} f(x) \, dx.
\end{align*}
\]

Thus, the following equality is true in the sense of generalized functions:

\[
\text{div}A = \sum_{k=1}^n V_p \left[\frac{1}{|x - \xi_k|^2} \left[\frac{\partial a_k}{\partial \left(\frac{x_1 - x_1^{(k)}}{|x - \xi_k|} \right)} + \frac{\partial a_k}{\partial \left(\frac{x_2 - x_2^{(k)}}{|x - \xi_k|} \right)} \right] \right].
\]

The theorem is proved. \(\square \)

Screening every thin solenoid \(\xi_k = (x_1^{(k)}, x_2^{(k)}, x_3) \) \((k = 1, 2, \ldots, n) \), with the use of Dirac function \(\delta(x - \xi_k) \) \((k = 1, 2, \ldots, n) \), we obtain a multcenter Schrödinger operator

\[
(i\mathbf{\nabla} + A(x))^2 - b_1 \delta (x - \xi_1) - b_2 \delta (x - \xi_2) - \cdots - b_n \delta (x - \xi_n), \quad (37)
\]

with the magnetic Aharonov-Bohm potential of type (1), where \(b_k \)'s \((k = 1, 2, \ldots, n) \) are real numbers.

Consider in \(L_2(R_2) \) the symmetric operator \(H_0 \) with the domain \(D(H_0) = C_0^\infty (R_2 \setminus \{ \xi_1, \xi_2, \ldots, \xi_n \}) \) \((C_0^\infty (\Omega') \) is the totality of all infinitely differentiable finite functions in \(\Omega' \), which acts as follows:

\[
H_0 \psi (x) = (i\mathbf{\nabla} + A(x))^2 \psi (x), \quad \psi (x) \in C_0^\infty (R_2 \setminus \{ \xi_1, \xi_2, \ldots, \xi_n \}).
\]
We denote by H the closure of the operator H_0. Let
\begin{equation}
\int_{-\pi}^{\pi} a_k(\theta)d\theta = \bar{a}_k + \alpha_k, \quad k = 1, 2, \ldots, n, \tag{39}
\end{equation}
where \bar{a}_k is the integral part and α_k is the fractional part of the number $\int_{-\pi}^{\pi} a_k(\theta)d\theta$. Obviously, $0 \leq \alpha_k < 1$, $k = 1, 2, \ldots, n$. Without loss of generality, we will assume that there exists an integer $l \leq n$ such that
\begin{equation}
0 < \alpha_j < 1, \quad \text{if } j = 1, 2, \ldots, l, \\
\alpha_j = 0, \quad \text{if } j = l + 1, l + 2, \ldots, n. \tag{40}
\end{equation}

Theorem 4. (i) The domain $D(H_0^*)$ of the conjugate operator H_0^* coincides with the set
\begin{equation}
D(H_0^*) = \left \{ \psi(x) : \psi(x) \in L_2(R_2), \right. \\
\left. \nabla^2_{\text{loc}}(\Omega'), (i\nabla + A(x))^2 \psi(x) \in L_2(R_2) \right \}, \tag{41}
\end{equation}
where $W^2_{\text{loc}}(\Omega')$ is a local second-order Sobolev space.

(ii) Deficiency index of the operator H is $(2l, 2l)$, where l is an integer ($l \leq n$) defined in (40).

Proof. (i) As the domain of the operator H_0 is dense in $L_2(R_2)$, it has a conjugate operator H_0^*. The domain of this conjugate operator $D(H_0^*)$ is the totality of all $\psi(x)$ from $L_2(R_2)$ for which there exist $u(x) \in L_2(R_2)$ such that
\begin{equation}
(H_0\psi(x), \psi(x)) = (\varphi(x), u(x)), \tag{42}
\end{equation}
for every $\varphi(x) \in D(H_0)$, and $H_0\psi(x) = u(x)$. From
\begin{equation}
(H_0\phi(x), \psi(x)) = (\varphi(x), H_0^* \psi(x)), \tag{43}
\end{equation}
it follows that $u(x) = (i\nabla + A(x))^2 \psi(x)$ in the sense of generalized functions in $C_0^\infty(\Omega')$. Hence, in view of the ellipticity of the operator $(i\nabla + A(x))^2$, we have $\psi(x) \in W^2_{\text{loc}}(\Omega')$ (see [6]).

(ii) Considering the notations
\begin{equation}
A_1(x) = \sum_{k=1}^l a_k \left(\frac{x - \xi_k}{|x - \xi_k|} \right)^2 (x_1 - x_1^{(k)}), \tag{44}
\end{equation}
in (1), we rewrite the potential $A(x)$ in the form of the sum of two summands:
\begin{equation}
A(x) = A_1(x) + A_2(x). \tag{45}
\end{equation}

Now we introduce the magnetic l-flux potential
\begin{equation}
B(x) = \sum_{k=1}^l \frac{a_k}{|x - \xi_k|^2} (x_2 + x_2^{(k)}, x_1 - x_1^{(k)}), \tag{46}
\end{equation}
where α_k is the fractional part of the number $\int_{-\pi}^{\pi} a_k(\theta)d\theta$.

It is proved in [7] that the minimal operator $H_{0,B}$ generated by the differential expression $(i\nabla + B(x))^2$ has the deficiency index $(2l, 2l)$. It follows from the results of [7, 8] that $A_1(x) \sim B(x)$ and $A_2(x) \sim 0$; that is, the pairs of potentials $(A_1(x), B(x))$ and $(A_2(x), 0)$ are gauge equivalent. Consequently, the assertion (ii) of the theorem follows from the gauge equivalence of the potentials $A(x)$ and $B(x)$. The theorem is proved.

Remark 5. The assertions of Theorem 4 stay true if the Aharonov-Bohm solenoids lie in a homogeneous magnetic field of intensity γ, that is, for potentials of the form
\begin{equation}
A(x) + \left(\frac{\gamma}{2} x_2, \frac{\gamma}{2} x_1 \right). \tag{47}
\end{equation}

Now let us make a few concluding remarks about the mathematical justification for the AB effect. Proceeding from Berezin and Faddeev’s idea (see [9]), we arrive at the conclusion that the rigorous mathematical justification for the Aharonov-Bohm effect is that the pure Aharonov-Bohm operator H_{AB} lies among the self-adjoint extensions of the operator H_0; that is,
\begin{equation}
H_0 \subset H_{AB} \subset H_0^*. \tag{48}
\end{equation}

For local and nonlocal δ-interactions without magnetic field this idea was confirmed in many works (see, e.g., [10–13]), while for the Aharonov-Bohm operator it was confirmed in [7, 8, 14]. So the following question remains open for the potential of form (1): which of the self-adjoint extensions of the operator H_0 corresponds to the pure Aharonov-Bohm operator H_{AB}^*?

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. 377-1435. The authors, therefore, gratefully acknowledge the DSR technical and financial support.
References

