Advances in Mathematical Physics
Volume 2016 (2016), Article ID 9218693, 11 pages
http://dx.doi.org/10.1155/2016/9218693
Research Article
Lie Subalgebras of the Matrix Quantum Pseudodifferential Operators
Karina Batistelli and Carina Boyallian
FaMAF-CIEM, Universidad Nacional de Córdoba, 5000 Córdoba,  Argentina
Received 22 March 2016; Accepted 10 July 2016
Academic Editor: Angel Ballesteros
Copyright © 2016 Karina Batistelli  and Carina Boyallian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
We give a complete description of the anti-involutions that preserve the principal gradation of the algebra of matrix quantum pseudodifferential operators and we describe the Lie subalgebras of their minus fixed points.



1. Introduction
The -infinity algebras naturally arise in various physical theories, such as conformal field theory and the theory of quantum Hall effect. The  algebra, which is the central extension of the Lie algebra  of differential operators on the circle, is the most fundamental among these algebras. The representations of Lie algebra  were first studied in [1], where its irreducible quasifinite highest weight representations were characterized. At the end of that article, similar results were found for the central extension of the Lie algebra of quantum pseudodifferential operators , which contains as a subalgebra the q-analogue of the Lie algebra , the algebra of all regular difference operators on . Here and further,  is not a root of unity.
In [2], certain subalgebras of the Lie algebra  were considered, and it was shown that there are, up to conjugation, two anti-involutions  on , which preserve the principal gradation. These results were extended to the matrix case in [3], where a complete description of the anti-involutions of the algebra  of the -matrix differential operators on the circle preserving the principal -gradation was given.
Analogously, in [4] it was shown that there is a family of anti-involutions  on   , up to conjugation, preserving the principal gradation. The goal of this paper is to extend these results to the matrix case, where the global image seems to be richer and more complex.
The paper is organized as follows: in Section 2 we give a complete description of the anti-involutions of the algebra  of -quantum pseudodifferential operators, preserving the principal -gradation. For each  with , we obtain, up to conjugation, two families of anti-involutions that show quite different results when  and . To exhibit their differences in detail, they are studied separately in Sections 3 and 4, respectively. In Section 3, the anti-involutions give us two families  of Lie subalgebras  fixed by . Then, we give a geometric realization of , concluding that  is a subalgebra of  of orthogonal type and  is a subalgebra of  of symplectic type. In Section 4, the families , with , give us two families of Lie subalgebras    fixed by . We give a geometric realization of , concluding that  is a subalgebra of  of type  and  is a subalgebra of  of type .
2. Quantum Pseudodifferential Operators
Consider  the Laurent polynomial algebra in one variable. We denote by  the associative algebra of quantum pseudodifferential operators. Explicitly, let  denote the operator on  given bywhere . An element of  can be written as a linear combination of operators of the form , where  is a Laurent polynomial in . The product in  is given by 
Now let  denote the Lie algebra obtained from  by taking the usual commutator. Let . It follows that
Let  be a positive integer. As of this point, we shall denote by  the associative algebra of all -matrices over an algebra  and by  the standard basis of .
Let  be the associative algebra of all quantum matrix pseudodifferential operators, namely, the operators on  of the form
In a more useful notation, we write the pseudodifferential operators as linear combinations of elements of the form , where  is a Laurent polynomial,  and . The product in  is given by
Let  denote the Lie algebra obtained from  with the bracket given by the commutator; namely,
The elements  form a basis of .
Define the weight on  by
This gives the principal -gradation of  and , the latter of which is given by . This allows the following triangular decomposition:where  and .
An anti-involution  of  is an involutive antiautomorphism of ; that is, , , and , for all  and . From now on we will assume that .
As we intend to classify the anti-involutions of  preserving its principal gradation, we shall introduce some notation. For each , define the permutation  in  by
Let us fix ,   and , , and write
We define  in  by the following formulas:
Theorem 1.  Let  defined on generators by (11) extends to an anti-involution on  which preserves the principal -gradation if and only ifMoreover, any anti-involution  of  which preserves the principal -gradation is of the form .
The proof will mainly consist of several steps making use of the involutive property of  and the relations between the generators .
Proof. Fix .
Step 1. Because  should preserve the principal -gradation, we have . Given the fact that  is an anti-involution, we get , so . Taking into consideration the positive and negative degrees of these Laurent polynomials, we arrive at , where  are constant elements such that . This gives us  or  for every . We also know that . So,  and  for . So, for each  there exists a unique  such that  and  for any . And  for every  and . In particular,  for , so  for any , obtaining that . Due to the injectivity of ,  is a permutation in , and since  is an involution, we have . 
Step 2. Again, due to the fact that  should preserve the principal -gradation, we may assume that  and . So,Proceeding similarly with , we have Combining these two equations, we have So,  and, as consequence, they must be units of the Laurent polynomial ring. Therefore, we can assume  and , with  and . So,  is then determined by .
Now, let us note that we can write , for every . Therefore,So,  and . This gives us the following alternatives  or . 
Step 3. Since  and  should preserve the principal -gradation, we can assume  and . Using a similar argument to the one used in Step 2 and denoting  and , we can deduce that  and  for , and also  and , with , , and . So,Therefore, we have  and . On the other hand,We can therefore conclude that  and . From this last equation and the previous step, we get .
If , then . Since we assumed that  is not a root of unity, it is easy to check that these are not antiautomorphisms. Therefore, , and .
By now, whereand also  and , for , and . 
Step 4. Suppose . As an implication of the -gradation preservation property of , we have that  Since , we can deducewhere  and .
Similarly, if  and  we deducewhere . 
Case 1. Let , with :using (21), we must have  because we would otherwise get  in the right hand side above, soThen,  and  are units of the Laurent polynomial ring and . Therefore, because , we can write  and , withCase 2. Let  and if , in the same way, using simultaneously (21) and (22) in order to take care of  that appears in , we have ; thus,Therefore,  and we can assume  and , withCase 3. Let  and :using (22), we must have  in order to avoid getting  in the right hand side above. SoThen,  and  and  are units of the Laurent polynomial ring, so we can assume  and , withCase 4. Let  and if , since  is an involution, we make use of (21) and (22) simultaneously to take care of  appearing in . In order to do this, we require . SoThen, . Once again, with  and  being units of the Laurent polynomial ring, we can write  and , withStep 5. Let ; then, by Step 1, . Using (21) with condition , we have that ; therefore,  trivially. So,with We can finally rewrite  if  and .
Now, in the case  and  in (21), we have  and it is immediate that ; then,So, Because of this, we have  if  and .
Thus, we can rewrite (21) and (22) as the following: for and for We now intend to determine the permutation . So, let  be such that . In Cases 1 and 3,  and it is easy to see thatMoreover, since in Case 2 , we have . Since  is a bijective map, we conclude that  must be  given in (9) where .
Let us note that if , , and if , . As a consequence, we can easily see that if  (Case 1) corresponds to the choice  or , and the case in which  and  corresponds to  (Case 2). Similarly for , when  or , we have  (Case 3) and the case in which  and  corresponds to  (Case 4).
Computing  in the four cases for  and , with their corresponding restrictions, we have the following.
In Case 1, where  and  or , we getRegarding (41), when  we deduce, combining (41) with (25), that .
On the other hand, from  in (41) combined with the fact that , we get . So, 
Now, due to (25) and (40), with  and . So, 
If we consider  and  in (40) and (25), we have . Using (20) and the fact that , we get . So,  Thus,resembling [4], andIn Case 2, where  and , we haveRegarding (45), when , we deduce thatOn the other hand, when  in (45),  . Combining the last two items, we get .
Now, due to (44) with  and ,  Combining this with (44), we get that, for arbitrary values of  and ,If we consider  and  in the last equation, we get . So,  and due to (42) and (43), .
Finally, when  and  in (47),  is constant for every . So,  for every .
Now, because of (46),Letting  and  in (47), we have . Since , , resulting in  because of (42). So,  and, by (48),  and in (42) and (43), this implies .
Again, letting  and  in (47),  and combining this with the previous equation, we get .
Cases 3 and 4 give the same results.
We have thus arrived at the final relations of (11).
Now, recall that we have, for . So, rewriting (37) and (38) for these cases, we haveIf , since , we get (12a). Finally, (12b) are results of (25) and of (44) with  and  and taking into consideration that  and .
On the other hand, it is straightforward to check that  defined by (11) is indeed anti-involution of , finishing the proof.
Corollary 2.  If , the anti-involution  is given bywhere  and  verify relations (12a) and (12b).
Proof. If  there is only Case 1 to be considered in the proof of Theorem 1.
Remark 3. Case  coincides with [4].
We will now concentrate on the implications of conditions (12a) and (12b). First, let us note that, as a consequence of (12a), all coefficients  are completely determined byand the upper condition of (12b) can be written as  by (39). Combining the lower condition of (12b) with (12a), we get . Also, let us note that the permutation  is given by two simple permutations of the sets  and . Thus, (12b) reduces toLet  and let us analyze the previous formulas. If  (resp., ) is even, by (52) we have  and  (resp.,  and ). The coefficient  (resp., ) will be called a fixed point.
Case −. If  is even and (1)is even, condition (53) is satisfied if there are two fixed points: one of them must be  and the other one must be equal to ,(2) is odd, then there are no fixed points and (53) is impossible. Thus, there is no anti-involution in this case.If  is odd, then  or  is even and we have only one fixed point that must be equal to .
Case +. For any , condition (53) is satisfied if the (possible) fixed points are all equal to .
From now on, we will consider separately cases  and  in an attempt to exhibit more clearly their particular results.
3. Case 
3.1. Lie Subalgebras of 
Let  denote the Lie subalgebra of  fixed by minus ; namely,where , for , is given by
Note that  from [4] agrees with  for .
Let us now analyze the relation among  for different values of , , , , and . To that end, let  and denote by  the automorphism of  given by , , and , where  and  stands for the identity matrix. It is easy to check that  preserves the principal -gradation of . Making use of the equation for  pointed out in (55), we havewhich resembles [4], when .
Similarly, let  satisfying (12a) and (12b). Denote by  the automorphism of  defined by ,  , andLet ; then, we havewhere  and . Observe that  and  also satisfy (12a) and (12b). Using (56) and (58), we have the following.
Lemma 4.  The Lie algebras  for arbitrary choices of , , and  are isomorphic to , where  is  or  and  is the matrix  with  except for the fixed points that are  or , which keep their sign.
We shall introduce some notation in order to give an explicit description of this family of subalgebras.
First, we will write  and  instead of  and . Also, for any matrix , definethat is, the transpose with respect to the “other” diagonal. Recall the anti-involutions on  given in [4]:
An extension of  to a map on  can be made by taking . 
Case +. We define the following map on :
Explicitly, the anti-involution  on  is given bywhere  and
Case −. Now, consider the following map on :
Then,  on  is explicitly given bywhere . And
Let us note that  are Lie subalgebras of  and that  and  are antiautomorphisms.
Remark 5. Replacing  by  (usual transpose) in (61) and (64) gives us another family of involutions that we shall denote by , which do not preserve the principal -gradation. Moreover, the corresponding subalgebras are not -graded subalgebras of , even though they are isomorphic to the others using , where  is the following -matrix:This way, we get .
3.2. Generators of 
We can now give a detailed description of the generators of .
Let us denote  (where  or ) the set of Laurent polynomials such that .
Note that  and observe that by (60)
Here and in the following we will use the description of the elements in the subalgebras used in (63) and (66). The following is a set of generators of :and the generators on the opposite diagonal are
3.3. Geometric Realization of 
In this subsection, we give a geometric realization of . The algebra  acts on the space  and we define two bilinear forms on :where ,  as in (67), and  given by .
Proposition 6.  (a) The bilinear forms  are nondegenerate. Moreover,  is symmetric and  is antisymmetric. 
(b) For any  and  we have where . In other words,  and  are adjoint operators with respect to .
Proof. (a) The statements are straightforward.
(b) Let , , and . Recall thatSo,On the other hand, we haveNote that if we multiply (74) by  and (75) by , we getIt is easy to prove that, for ,Making use of this result in (76), we can see thatThus, as expected, we get
Remark 7. In a similar fashion, we can define the following nondegenerate bilinear forms on : wherewith  the  identity matrix, and it easily follows that they satisfywhere  were defined in Remark 5.
4. Case 
4.1. Lie Subalgebras of 
Let  denote the Lie subalgebra of  fixed by minus :As in the case , we analyze the relation among  for different values of , and . Let  and denote by  the automorphism of  given by , , and , where  stands for the identity matrix and . Clearly  preserves the principal -gradation of . As before, we have for this case the following:
Let  satisfying (12a) and (12b) and denote by  the automorphism of  defined by , , andLetting , we havewhere  and . Note that  and  also satisfy (12a) and (12b). Making use of (84) and (86), we have the following.
Lemma 8.  The Lie algebras  for arbitrary choices of  and  are isomorphic to , where  is  or  and  is the matrix  with  except for the fixed points that are  or , which keep their sign.
Remark 9. Due to this lemma, we can find a complex number  such that . Moreover, recall that, in the case , we find a complex number such that  (which makes  as a consequence). So, in both cases, the subalgebra  is isomorphic to  and the only distinction between both cases is regarding : while  takes an arbitrary value in the case , if  happens to be .
We will write  and  instead of  and , with  and . As in the previous section, for any matrix , we definethat is, the transpose with respect to the “other” diagonal. Recall once again the anti-involutions on  given in [4]:We extend  to a map on  by taking . Now let . 
Case +. We define the following maps:where , , , and . We can write the anti-involution  on  explicitly asThe fact that  implies  and , and these two conditions are equivalent because . Moreover, proving that  is a Lie subalgebra of  by direct computations requires using the fact that  and  are antiautomorphisms and the identities , , , , and so forth. Observe, however, that  and  are not antiautomorphisms. The following identities are also useful:Case −. As we have seen in the analysis following equation (53), the case  even and  (also ) odd is impossible. Therefore, we may suppose, due to the symmetry, that  is even. Now, we shall consider the following maps:where , , , and . Then, the anti-involution  on  is explicitly given byAs before, condition  implies  and , and these two conditions are equivalent due to the fact that . Moreover, proving that  is a Lie subalgebra of  by direct computations requires using the fact that  and  are antiautomorphisms and the identities , , , , and so forth. Once again,  and  are not antiautomorphisms. We also need to use
Remark 10. Replacing  by  (usual transpose) in (89) and (93) gives another family of involutions denoted by . These involutions do not preserve the principal -gradation, and the corresponding subalgebras are not -graded subalgebras of , but they are isomorphic to the others using the same argument in Remark 5.
4.2. Generators of 
In this subsection we give a detailed description of the generators of .
Let us denote  (where  or ) the set of Laurent polynomials such that  And let  if  is odd and  if  is even.
Recall thatand also
Therefore, the following is a set of generators of , using the description of the elements in the subalgebras given in (91) and (95).(i)For block , where ,and the generators on the opposite diagonal are (ii)For blocks  (and ), where  and  (or  and ), (iii)For block , where , and the generators on the opposite diagonal are 
4.3. Geometric Realization of 
In this section, we give a geometric realization of .
The algebra  acts on the space  and we define two bilinear forms on :wherewith  given by , and  as in (67). Observe that  is the orthogonal decomposition of . Now, consider the following proposition.
Proposition 11.  (a) The bilinear forms  are nondegenerate. Moreover,  is symmetric and  is symmetric in the subspace  and antisymmetric in . 
(b) For any  and , we have that is,  and  are adjoint operators with respect to .
Proof. (a) The statements are straightforward.
(b) Let , and  be as shown previously. Recall thatSo,On the other hand, we haveAs the last two results are equal, we finish the proof.
Remark 12. In a similar fashion, we can define the following nondegenerate bilinear forms on : wherewith  the  identity matrix, and it easily follows that they satisfywhere  were defined in (67).
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