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Abstract. 
We study the translation invariant properties of the eigenvalues of scattering transmission problem. We examine the functional derivative of the eigenvalue density function  to the defining index of refraction . By the limit behaviors in frequency sphere, we prove some results on the inverse uniqueness of index of refraction. In physics, Doppler’s effect connects the variation of the frequency/eigenvalue and the motion velocity/variation of position variable. In this paper, we proved the functional derivative 



1. Introduction
In this paper, we investigate an inverse spectral problem in the following homogeneous interior transmission problem:where  is the unit outer normal;  is a starlike domain in  containing the origin with boundary ; ; , for ; , for ; . Equation (1) is called the homogeneous interior transmission eigenvalue problem. We also assume the boundary is given and defined by where  is the unit sphere with the spherical coordinate . Problem (1) occurs naturally when one considers the scattering of the plane waves hinging on certain inhomogeneity inside the domain  that is defined by an index of refraction in many models. In the reduced scattering model (1), the inverse problem is to determine the index of refraction by the measurement of the scattered wave fields collected in the far fields. The inverse scattering problem plays a role in various disciplines of science and technology such as the applications in sonar and radar, geophysical sciences, astrophysics, medical imaging, remote sensing, and nondestructive testing in instrument manufacturing.
By an inhomogeneous interior transmission problem, we mean the following system:in which  is the spherical Hankel function of order  and  is the spherical harmonics of order . We say  is an interior transmission eigenvalue of (1) if there is a nontrivial pair of solution  to the boundary value problem (1). To ensure the uniqueness of the scattered solution outside , we impose the Sommerfeld radiation condition; that is, 
The interior transmission eigenvalues play a role in the inverse scattering theory both in numerical computation and in theoretical scattering theory. For the origin of interior transmission eigenvalue problem, we refer to Colton and Monk [1] and Kirsch [2]. For a theoretical study and historic literature, we refer to [3–6]. It is also another subject of research interest to study the existence or location of the eigenvalues [1, 4, 7–14]. It is expected to find a Weyl’s type of asymptotics for the interior transmission eigenvalues. In this case, the distribution of transmission eigenvalues is directly related to certain spectral invariants of the scatterer. In this regard, we apply the methods from entire function theory [15–20] to study the distributional laws of the eigenvalues. We also refer to [21, 22] for the reconstruction of the interior transmission eigenvalues. For the nonsymmetrically stratified medium, there are not too many known results [3, 8, 23]. In this paper, we mainly follow the idea in [9, 24–26] to study the nonsymmetrical scatterers as a series of one-dimensional problems and consider the analytic continuation theorems of the Helmholtz equation. This paper aims to examine some spectral invariants associated to (1) and analyze the functional correspondence between the variation of the spectral density function and perturbation of the index of refraction.
2. Preliminaries and Main Result
Firstly, we expand the solution  of (1) in two series of spherical harmonics by Rellich’s lemma. This is a Fourier type of expansion theory, and we refer to [4, p. 32, p. 227] and [14, p. 353]. where and  is the spherical Bessel function of the first kind of order . The summations converge uniformly and absolutely on compact subsets for sufficiently large . We refer the method to [4, p. 32, Lemma ] which holds for a bounded perturbation.
Here, we note that the spherical harmonics is a complete orthonormal system in , in which where the Legendre polynomials , , form a complete orthogonal system in . We refer this to [4, p. 25]. By the orthogonality of the spherical harmonics, the functions satisfy (1) independently for . It is well-known that so we apply the Laplacian to the first equation of (1) for , where , and we observe that Accordingly, the Fourier coefficients  trivially satisfy the following equation: Most importantly, we extend the Fourier coefficients  along some fixed incident direction  into  by considering the following scheme. Let us define For the fixed , we consider the radially symmetric index of refraction in  by rotating  around the origin. Due to the radial-symmetry, the solution  of (13) has an extension into  depending on the incident direction  by solving the following ODE: We denote the solution to (15) as . We renormalize the initial condition as follows: is independent of the incident direction . We refer the initial condition to [4, 14].
Now we consider the following Liouville transformation for each fixed : Let us define Then, we deduce from (15) and (17) that in which Here  if and only if  for the fixed . Moreover, Thus, we deduce from (19), (20), and (21) that For the simplicity of the notation, we drop the superscripts on the variables. When , the asymptotic estimates for the solution  are classic and can be found in [27] where , and the error term can be improved [27, p. 17] by Similarly,in which the boundary behavior of  plays a role in determining the inverse spectral uniqueness on the scatterer, and thus -assumption on the index of refraction is convenient.
For , there are much more generalized results from [28, 29]. In particular, the solution of (15) is an entire function of order one and of finite type [4, 9, 10, 14, 27–30] that has a Sturm-Liouville type of spectral analysis.
Now we fulfill the boundary conditions in (1). The nontrivial solutions (10) of the homogeneous system are required to satisfy the boundary condition along the fixed  as follows: for , in which we note that . The eigenvalues are possibly the intersection points of two complex-valued functions, and the constants  and  depend on  as well. Let us define in which  is independent of index . The existence of the nontrivial  of (26) is equivalent to finding the zeros of The following fundamental lemma connects the zeros of  and the eigenvalues of (1).
Lemma 1.  Let  be an eigenvalue of (1) if and only if it satisfies (28) for all  and some .
Proof. Let  and  be a nontrivial pair of solutions of (1). Then, (6) holds and uniquely defines the coefficients  and all  for  and extends into  by solving (15) with some fixed . The solution, each satisfies the Helmholtz equation independently and meets with  in . By the analytic continuation of the Helmholtz equation [1], they extend to meet on . That is, (28) is satisfied at . Hence, (28) holds on  for all .
For the sufficient condition, if (28) is valid on the boundary for some , then  define a Fourier coefficient by ODE (15) by some eigenvalue , which defines a solution of the Helmholtz equation for . By the analytic extension of the Helmholtz equation,  is defined outside  and meets  on . That is, (28) holds for all other  with . Hence, which we consider as an initial condition for that Bessel function , are known functions. Combining the initial condition with we find that the solution  defines an eigenfunction to (1). We refer more detailed construction to [11].
For ,  is easier to compute [24, ()]: in which all four elements have zeros distributed asymptotically like sine and cosine functions.
Moreover,  has the following Hadamard representation: where  is a constant [24, ()]. From [9, 10], the zeros spread along the real axis by Cartwright theory [19, Ch. 6] and [18, 20]. In general , we state the following lemma.
Lemma 2.  For the fixed , the determinant  has only finitely many different zeros to the ones of  or  in each parallel adjacent strips to the imaginary axis.
Proof. We infer from (27) that in which we recall from [9] and [10, Lemma ] that  and  outside the zeros in the denominators. Without loss of generality, we drop the lower order term  in the bracket in (36) and the term  is bounded and bounded away from zero near the zeros of  and . The asymptotic expansion of  for large  is given in (23) and in [28, 29]. In particular,  is bounded near the real axis and then in the Cartwright class [19, p. 251].
More importantly, we drop the lower order term in (35) and then consider Rouché’s Theorem for the identity The inequality holds if and only if We recall that outside their poles, where Hence, (39) holds if and only if which are two asymptotically periodic meromorphic functions along the real axis. Referring the graph of  to [31], there are vertical lines in  passing through the real axis at which  and then strictly increases to  or at which  and strictly decreases to , as  goes to infinity. For large , there are infinitely many vertical lines of this property on which the following inequality holds:Similarly, we may repeat the argument from (37) to deduce that there are infinitely many vertical lines in  on which the following equality holds: Therefore, we apply Rouché’s theorem to (43) and (44) on the boundary of a family of suitable vertical strips along the real axis and conclude that  have only finite many of different zeros to the ones of  or  in the strips.
One step further, we can describe the zero distribution of  more precisely by applying Wilder’s theorem [32, 33] to the term  or  in (35) and obtain the following density distribution theorem for (33): let , , and  be three adjacent strips containing all but a finite exceptions of the zeros along the positive real axis, and let , be the zero counting function in the strip starting with , of length  and of width . Then there exist some  and large  such that A similar argument holds for  that yields identical asymptotics to (46), (47), and (48). We refer the details to [10, Theorem ].
From the point of view of the inhomogeneous system (3), to which we can solve for ,  by Cramer’s rule: where ,  are understood as two meromorphic functions. An interior transmission eigenvalue means that the inhomogeneous system (3) can not be solved explicitly in  whenever  has a zero in the denominator. We observe that  is not a solution in the classic sense if there is any  and any  such that  has a zero. Whenever that happens, we have an interior transmission eigenvalue.
Definition 3. We define  to be the union of the zero set of entire function  at  and .
We need the following vocabulary to describe the asymptotic behavior of the eigenvalues.
Definition 4. Let  be an integral function of order , and  denote the number of the zeros of  inside the angle  and ; we define the zero density function with some fixed  such that  is at most a countable set [18–20].
Following the results in [9–11, 26], we have the density asymptotics: For a simpler notation, we use to denote the density of zero set of .
One can show the following.
Lemma 5.  Let us denote and the following identity holds: Accordingly, the density function is invariant to the rigid translations of .
Proof. We observe that By applying (52) in (54) to  and , respectively, (56) is proven. The invariant property comes from the translation transformation along  of integral . The invariant property on rotation is trivial.
We state the inverse spectral uniqueness in this paper.
Theorem 6.  Let  be two unknown indices of refraction parameterized in (1) in domains  and  with eigenvalue sets  and , respectively, as defined in Definition 3.  and  are assumed to be identical up to a translation in . If  for infinitely many pairs of , then  up to a translation in .
This is one local assumption implying a global uniqueness on the index of refraction. Previously [9, 10, 26], we have shown that if the interior transmission eigenvalues are given identical for all possible incident angles with , then we can prove the inverse uniqueness. Here we are given a potpourri of spectral data.
3. Analysis along an Angle
The following results hold up to a rigid translation in .
Lemma 7.  Let  be the density function of  defined as in (54), . Up to a translation in , there exists at least one accumulation point of pair of common incident directions  and  from  and , respectively, such that  holds for  near  and  near , respectively, in .
Proof.  is compact. By applying the assumption in Theorem 6, there are the accumulation points  and  in , respectively, such that  holds near  and , respectively, in . This proves the lemma.
Lemma 8.  Let  be the boundary defining function of domain . Up to a translation in , there exists one pair of incident directions  and  in , respectively, such that  in the neighborhood of  and , respectively.
Proof. By Theorem 6 assumption, we can assume the eigenvalues of  and  coincide for some  and , respectively, in . Considering some algebraic additions of (46) and (47), or (47) and (48), the boundary defining function at  appears as a part of eigenvalue asymptotics above. That is,  for  near  and , respectively. This proves the lemma.
Proposition 9.  Let us assume . There exists one fixed pair of incident directions  and  in , respectively, such that  for  near  and  near , respectively.
Proof. Applying Lemmas 7 and 8, this is the previous uniqueness result from [9–11, 26]. If two indices of refraction have an identical set of interior transmission eigenvalues along one of their incident directions, then they must be identical on that ray.
We deduce from the Weierstrass-Bolzano property on  that there are finitely many of such neighborhoods on  described in Lemmas 7 and 8.
Lemma 10.  The density function  has the derivatives on : In particular,  and  are invariant to the rigid translation of .
Proof. Applying the chain rule to  in (56) with  fixed and setting , Observing the boundary conditions of (1), . Thus, we deduce (58) and (59). We note that  and  depend only on the boundary . This proves the lemma.
Proposition 11.  Under the assumption of Theorem 6, 
Proof. We deduce from Lemma 8, Proposition 9, and Lemma 10 that near some  and , respectively, such that  and  up to a translation as well. For each index , we collect all local coordinates such that (62) and (63) hold. As a result of the Weierstrass-Bolzano property on , there are mostly finitely many choices of neighborhoods of  and  in which (62) and (63) hold, respectively, on  and , say, the collection of the neighborhoods Because the boundary , is given, all of the other neighborhoods satisfying (62) and (63) in each , , or  are known. Fix one of  and , the one is locally isomorphic to all other neighborhoods by applying (62), (63), (64), and (65) up to some translations. Accordingly, we choose a translation  such that In this case, up to the chosen , we deduce that Applying (68) under Lemmas 10 and 7, we consider the initial value problems up to the translation  and deduce By the uniqueness of ODE of (58), (59), and (69), we obtain 
Surely we have  up to a translation by assumption, but Proposition 11 holds with some local information on the index of refraction.
Corollary 12.  Let us assume  and , are analytical functions with the assumption of Theorem 6 without assuming that  up to a translation. If we assume the results of Lemmas 7 and 8, then we can conclude that 
Proof. If  and , are analytical functions, then (60) implies that , are analytical in . Then (62) and (63) imply an analytic extension to . This and ODE (69) prove the corollary.
4. Proof of Theorem 6 via the Doppler’s Effect
We want to show that, for a fixed , We have the shifts of the frequency density to the space variable on the left hand side while the index of refraction is on the left hand side. Let us justify this differentiation by a perturbation theory on the index of refraction. We have seen the perturbation theory for finitely many interior transmission eigenvalues from [7, 9]. As observed in [9, 10], the perturbation theory for finite eigenvalues implies a theory for all eigenvalues when considered with the asymptotic almost periodic structure (46), (47), and (48).
Let us consider a perturbation on the index of refraction in the form  where  is the cut-off function defined on the interval . We fix  and start the perturbation at . Outside , we still take the index of refraction to be . We can mollify the cusp of  near  in an arbitrarily small neighborhood by standard measure theory. Without loss of generality, we assume , is differentiable, and the perturbation is carried out under the uniform norm. We recall from [9] the following theorem.
Theorem 13.  Let  be the zeros of . Then, for any , there exists depending on , such that there exists an interior transmission eigenvalues of the index of refraction , in -neighborhood of each , whenever  is small enough.
The perturbation theory for finitely many eigenvalues is firstly considered in [8]. Previously in [9, 10], we have shown from Sommerfeld’s radiation condition (4), (5), and (26) that, along  and , respectively, for any common interior eigenvalue  of index , the following identities hold up to the translation : That is, the common interior transmission eigenvalues are the intersection points of two entire functions that move continuously to the perturbation to the index of refraction on either side of (74) according to Theorem 13.
Following [10, ()] and [9], the zero density of entire functions or is while the density for the common zero set is according to the assumption of Theorem 6 and (52). This contradicts with (77), and so Cartwright’s theory [9, 10, 18–20, 26] suggests that We refer the details of (58) up to (63) to [10] or [19, p. 251] for a Cartwright theory. In particular,  and  have identical sets of norming constants and Dirichlet/Neumann eigenvalues for the Sturm-Liouville problem (15). Hence, [29, Theorem ] implies  along  and , respectively.
Let us consider the perturbation on both sides of (79) in the following form: We denote the new solutions again by . For each , Theorem 13 and (52) imply that the new density function of the common set of interior transmission eigenvalues equals to Without loss of generality, we take  due to (67).
Whenever  is close to , this overdetermined density (81) again, by Cartwright’s theory, implies the identities for the new solutions. Moreover, we deduce from (82) and (83) again that the perturbed index of refraction , have an identical set of interior transmission eigenvalues [9, 10]. From (81) and Theorem 13, The perturbation applies in .
We repeat the same argument to the other incident directions . Thus, we apply Proposition 11 to consider the limit quotient for all : Thus, we apply the Lebesgue Differentiation Theorem to deduce that From Proposition 11, we conclude that 
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