Advances in Mathematical Physics
Volume 2017 (2017), Article ID 4780928, 11 pages
https://doi.org/10.1155/2017/4780928
Research Article
Contrast Expansion Method for Elastic Incompressible Fibrous Composites
Piotr Drygaś1 and Vladimir Mityushev2
1Department of Differential Equations and Statistics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, Pigonia 1, 35-959 Rzeszow,  Poland
2Pedagogical University, Ul. Podchorazych 2, 30-084 Krakow,  Poland
Correspondence should be addressed to Vladimir Mityushev; mityu@up.krakow.pl
Received 31 May 2017; Accepted 14 September 2017; Published 17 October 2017
Academic Editor: Andrei D. Mironov
Copyright © 2017 Piotr Drygaś  and Vladimir Mityushev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
Contrast parameter expansion of the elastic fields for 2D composites is developed by Schwarz’s method and by the method of functional equations for the case of circular inclusions. A computationally efficient algorithm is described and implemented in symbolic form to compute the local fields in 2D elastic composites and the effective shear modulus for macroscopically isotropic composites. The obtained new analytical formula contains high-order terms in the contrast parameter and explicitly demonstrates dependence on the location of inclusions. As a numerical example, the hexagonal array is considered.



1. Introduction
The general potential theory of mathematical physics yields methods of integral equation to numerically solve various boundary value problems. Integral equations for plane elastic problems were constructed by Muskhelishvili [1], first, extended to doubly periodic problems in [2], and developed in [3–5] and papers cited therein. The obtained results were applied to computations of the effective properties of the elastic media. Integral equations are efficient for the numerical investigation of nondilute composites when interactions of inclusions have to be taken into account. Another type of integral equation based on the generalized alternating method of Schwarz was proposed by Mikhlin [6] and developed in [7].
Consider a problem on the plane  isomorphic to the complex plane . Let  where the boundary  of  is a simple closed Lyapunov curve oriented in clockwise sense. Schwarz’s method for a multiply-connected domain  is based on the separate solutions of the simple boundary value problems for simply connected domains . It was demonstrated in [7] that Schwarz’s method can be realized as the iterative schemes constructed on contrast and on concentration parameters considered as small perturbation parameters and precisely described below. Convergence was proved for Laplace’s equation for the contrast expansion.
The main advantage of Schwarz’s method consists in analytical solution to the problems discussed when the physical parameters are presented in symbolic form in the final exact or approximate formulae. Such formulae were recently obtained in [8] for biharmonic functions which describes elastic materials for a circular multiply-connected domain. The results of [8] are based on the concentration expansion.
In the present paper, we apply Schwarz’s method based on the contrast parameter expansion for a circular multiply-connected domain. Schwarz’s method is used in the form of the functional equations method [7–9]. Elastic isotropic materials are described through two independent moduli. In order to make the presentation clear, we simplify the problem by consideration of incompressible materials when Poisson’s ratio  is equal to . Then, we introduce only one contrast parameter:where  and  denote the shear modulus of inclusions  and matrix , respectively.
In the present paper, we deduce a computationally efficient algorithm implemented in symbolic form to compute the local fields in 2D elastic composites and the effective shear modulus  for macroscopically isotropic composites. The obtained new analytical formula is valid up to  and explicitly demonstrates dependence on the location of inclusions. Such an approach has advantages over pure numerical methods when dependencies of the effective constants on the mechanical properties of constitutes and on geometrical structure are required.
The numerical examples from Section 6 give sufficiently accurate values of  for all admissible , that is, for  and for  not exceeding .
2. Contrast Expansion Method
Consider a finite number  of inclusions as mutually disjoint simply connected domains  in the complex plane . It is worth noting that the number  is given in a symbolic form with an implicit purpose to pass to the limit  later.
The components of the stress tensor can be determined by the Kolosov-Muskhelishvili formulae [1]: The strain tensor components of incompressible materials ,   are determined by the formulae [1]: Let the stress tensor be applied at infinity:The uniform shear stress will be considered in the paper when Then, where the functions  and  are analytical in  and bounded at infinity. The functions  and  are analytical in  and twice differentiable in the closures of the considered domains.
It follows from (1) that The perfect bonding at the matrix-inclusion interface can be expressed by two equations [1]: The problem (8)-(9) is the classic boundary value problem of the plane elasticity having the unique solution up to additive constants corresponding to rigid shifts of medium. It follows from [1] that solutions of (8)-(9) analytically depend on  for sufficiently small . One can see also Chapter 2, Section  in [3], where the problem (8)-(9) is reduced to the Fredholm integral equation shortly written as where  is a compact integral operator in the space of the Hölder continuous functions.
We are looking for the complex potentials in the contrast expansion form. For instance,  for sufficiently small  has the following form: Then, the problem (8)-(9) is reduced to the following cascade of boundary value problems. Equation (8) becomesEquation (9) yields the cascade where 
Addition and subtraction of the boundary condition (12) for  and the first condition (13) yield Application of principle of analytic continuation to (15) implies analytic continuation of the functions  and  into all the domains . Then, (6) gives the exact formulae for the zero approximation: and .
Ultimately, we arrive at the following cascade. First, we solve  boundary value problems separately for every domain : Next, we solve the problem following from (13): This is a boundary value problem for the multiply-connected domain  on the functions ,  analytic in  and twice continuously differentiable in the closure of  including infinity. The described above step is the first step of the iterative scheme when we pass from  and  to  and . The step  consists in the solution to the problems for every domain : and, further, the problem for the domain 
Therefore, the conjugation problem (8)-(9) is reduced to the sequence of the problems separately for the domains  () and . The described iterative scheme is computationally effective if the inclusions  have simple shape. The next section is devoted to its explicit realization for circular inclusions.
3. Method of Functional Equations
Consider the circular inclusions  and , where . Introduce the new unknown functions analytic in  except at the point , where its principal part has the form 
Let  denote the inversion with respect to the circle . If a function  is analytic in , then  is analytic in  The problem (8), (9) was reduced in [9] (see equations (5.6.11) and (5.6.16) in Chapter 5), [10] to the system of functional equations: where  and  are constants. The unknown functions  and  () are related by  equations (22)-(23). One can see that the functional equations do not contain integral operators but contain compositions of  and  with inversions.
Following [11], we first introduce the Hardy-Sobolev space  separately for each  as the space of functions analytic in  satisfying the conditions: where  denotes the derivative . The norm is introduced as follows:where the classic Hardy norm is used.
Using the above designations (24)–(26) we introduce the space  shortly denoted by  of functions  analytic in  endowed with the norm: where  for .
The functional-differential equations (22)-(23) include the meromorphic functions  not belonging to . They were written ason the vector-function  introduced in all  by substitution (21) in the space . The operator  and the given vector-function  are determined by (22)-(23). Equation (28) was explicitly written in [11] as the system of functional-differential equations It was proved in [11] that the operator  is compact in . One can see that the contrast parameter  plays the role of the spectral parameter; hence,  can be written in the form of power series in . This implies that the method of successive approximations applied to (29) converges in  for sufficiently small . Let ,  () be a solution of (29). This unique solution belongs to . The given vector-function  is twice differentiable in the closures of . Hence, the pumping principle [9, page 22] can be applied as follows. The shifts in composition operators of the right part of (29) are the shift strictly into domains. Hence, if we substitute ,  into (29), we obtain that ,  are twice differentiable in the closures of . The equivalent method of successive approximations can be applied to (22)-(23) more conveniently in computations.
The functions  and  are determined through  and  up to additive constants. For instance, 
4. Method of Successive Approximations
Application of successive approximations to functional equations is equivalent to Schwarz’s method described at the end of Section 2. It follows, for instance, from the uniqueness of the analytic expansion in  near zero. Moreover, each iteration for the functional equations corresponds to an iteration step in Schwarz’s method since the coefficients in the series in  are also uniquely determined. It can be also established directly form formulae written below.
Using the series (11) for  and analogous series for other functions and applying successive approximations to the functional equations we obtain the following iteration scheme. The zeroth approximation is The next approximations for  are where  denotes the Kronecker symbol.
Introduce the functionsThen, It follows from (31) that  can be written in the following form: where the following expansion is used: The th approximation for  becomes and .
5. Shear Modulus
5.1. General Iterative Scheme
Introduce the average value over a sufficiently large rectangle  containing all the inclusions : The averaged shear modulus  of the considered finite composite is introduced as the ratio It is related to the effective shear modulus  for macroscopically isotropic composites by the limit . It was demonstrated in [8] that (41) can be transformed into whereHere,  is a solution to the problem with  inclusions.
In order to determine , we first calculate the integral . Equation (37) implies that Application of (35) and Cauchy’s integral theorem yield The presented iterative scheme can be easily realized numerically. But we are interested in analytical formulae which can be obtained by symbolic computations. In the next sections, we perform symbolic computations to determine  and the effective shear modulus in the third-order approximation.
5.2. Second-Order Approximation
We are looking for  in the form It follows from (37) that for the third-order approximation we need the integrals (45) for . Using the second equation (32), we have The functions  are analytic in  for . Therefore, the integrals with  vanish in (47) by Cauchy’s integral theorem and (47) can be calculated by residues 
In order to use (37) for  we find from (34) Using the expansion for , we haveAlong similar lines Subtracting (51) and (52) we obtain Using the above formulae we obtain from (49) the exact formula:We are now ready to calculate the integral: 
Using Cauchy’s integral theorem and residues we obtain This yields 
5.3. Third-Order Approximation
The third-order approximation requires advanced and long computations presented below. In order to calculate , we need the following function:It is obtained from (34) for  by substitution  given by (49) and  calculated by (33) with .
Below, we describe general recurrent formulae for an arbitrary th approximation and explicitly write the third-order terms when . The following double series in  and  are used: The coefficients in the power series (61) are presented as series in : Substitution of (60)–(62) into (22) and selection of coefficients in the same powers of  and  yieldwith the zeroth approximation . Along similar lines, (23) yields with the zeroth approximation .
The expanded form of  follows from (31):Equation (65) is in accordance with (37) whereUsing (66) we calculate the integral 
The coefficients  for  can be explicitly written by the iterations (64): 
The limit (43) has to be found. Using (44) and (67) we express  through : Taking into account terms up to  we rest  for ; hence, 
The above limits are calculated by use of the formalism developed in [8, 12]. It was supposed that  equal nonoverlapping disks belong to a parallelogram (fundamental) cell periodically extended to the complex plane by two linearly independent translation vectors. As an example, we shortly present the transformation of the term of  given by (68) multiplied by  and complexly conjugated in accordance with (71): We are interested in the limit associated with the Eisenstein summation [8, 12]:The normalized -sums were introduced in [8, 12] by means of the Eisenstein summation: where . This means that the rectangle  is normalized by the -linear transformation  to  having the unit area. Therefore, . Other terms are transformed by the same method. As a result we arrive at the following formula:where denotes the concentration. The absolute convergence of series in  follows from the standard root test (Cauchy’s criterion).
The effective shear modulus is calculated by (42):whereExpansion of (79) in  yields 
6. Numerical Simulations
The asymptotic formula (82) is a new theoretical formula obtained in the present paper. The computationally effective formulae and algorithms for the absolutely convergent sums  and  () were developed in [13, 14]. However, the numerical implementation of the conditionally convergent series (74)-(75) for  and (76) for  requires further investigations.
Formula (42) is similar to the famous Clausius-Mossotti approximation (Maxwell’s formula) [15, Section  10.4] applied for calculation of the effective conductivity of dilute composites. It is surprising that the Eisenstein summation and Maxwell’s self-consistent formalism are based on the different summation definitions of the conditionally convergent series [16, 17]. Using an analogy with the conductivity problem we now justify the proper limit value of , that is, (76) for . The Hashin-Shtrikman bounds [15, Ch. 23] for 2D incompressible elastic media become In the case , the bounds  and  are replaced with each other. One can check that the upper and lower bounds (83) coincide up to : This implies that the coefficients in the term  of the expressions (82) and (84) must be equal. It follows from (80) that  must vanish in the framework of the considered Maxwell’s formalism. The definition of  is not essential in the final formulae since the terms with  are cancelled in (81). The above demonstration is based on the formal pure mathematical arguments. Its physical interpretation has been not clear yet.
Consider a numerical example, the regular hexagonal lattice, when the -sums become the Eisenstein-Rayleigh lattice sums  and  calculated by algorithm presented in [8, 18]. Only the nonzero values of  and  are presented in Table 1.
Table 1: The nonzero values of the lattice sums for the hexagonal array.
	

	 		
	

	5	3.80815	4.2426
	11	2.53532	2.93754
	17	1.64402	1.89818
	23	1.06787	1.23308
	29	0.693603	0.800903
	35	0.450508	0.520202
	41	0.292614	0.337881
	47	0.190058	0.21946
	53	0.123446	0.142544
	59	0.0801808	0.0925848
	



The effective shear modulus for the regular hexagonal lattice becomes where The typical dependence of the effective modulus (85) on  is displayed in Figure 1 for  and in Figure 2 for negative . A dependence on  is given in Figure 3. The presented and other graphs demonstrate sufficiently good precision for  and for arbitrary .




	
	
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
	


Figure 1: Dependence of the effective shear modulus for the hexagonal array on the concentration  for . The data are computed by (85) (solid line) and its polynomial expansion up to  (dotted line). The Hashin-Shtrikman bounds (83) are shown by dashed lines.






	
	
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
		
			
	


Figure 2: The same dependencies as in Figure 1 but for .






	
	
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
			
		
			
	


Figure 3: Dependence of the effective shear modulus for the hexagonal array on  for . The designations of lines are the same as in Figure 1. Equation (85) and its polynomial expansion coincide (solid line).


7. Conclusion
Schwarz’s alternating method is applied to 2D elastic problem for dispersed composites. It is realized for circular inclusions in symbolic form. Exact and approximate formulae for the local fields and for the effective shear modulus are established. In general, Schwarz’s method can be realized as expansion on the concentration  and on the contrast parameter . The concentration expansion was recently realized in [8]. In the present paper, we use the contrast parameter expansion. These two expansions in  and  yield two different computational schemes [7]. The effective modulus formulae are the same in the second-order approximations and begin to differ in the third-order terms in  and , respectively. Schwarz’s method is used in the form of the functional equations method for circular inclusions [7–9].
We develop a computationally efficient algorithm implemented in symbolic form to compute the local fields in 2D elastic incompressible composites and the effective shear modulus for macroscopically isotropic composites. The new analytical formula (79) contains the third-order term in  and explicitly demonstrates dependence on the location of inclusions. The theory is supplemented by a numerical example on the hexagonal array of inclusions. Figures 1–3 illustrate the dependence of the effective shear modulus on  and . These numerical examples give sufficiently accurate values of  for all admissible , that is, for  and for .
One can expect that the precision of  will increase by using of the next approximation terms  (). As it is noted in Introduction, Schwarz’s method can be based on two different expansion, in  used here and in  used in [12]. The both expansions contain the locations of inclusions in symbolic form. The expansions in  were held for smaller  but for an arbitrary  [12]. At the present time, we are inclined to use the contrast parameter expansions. However, we suppose that the choice between different variants of Schwarz’s method will depend on the further implementation of high-order symbolic-numerical codes.
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