The Convergence Ball and Error Analysis of the Relaxed Secant Method

Rongfei Lin, Qingbiao Wu, Minhong Chen, and Lu Liu

1Department of Mathematics, Taizhou University, Linhai, Zhejiang 317000, China
2Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310027, China
3Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310012, China

Correspondence should be addressed to Qingbiao Wu; qbwu@zju.edu.cn

Received 4 November 2016; Revised 17 January 2017; Accepted 12 February 2017; Published 8 March 2017

Copyright © 2017 Rongfei Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A relaxed secant method is proposed. Radius estimate of the convergence ball of the relaxed secant method is attained for the nonlinear equation systems with Lipschitz continuous divided differences of first order. The error estimate is also established with matched convergence order. From the radius and error estimate, the relation between the radius and the speed of convergence is discussed with parameter. At last, some numerical examples are given.

1. Introduction

Many scientific problems can be concluded to the form of nonlinear systems. Finding the solutions of nonlinear systems is widely required in both mathematical physics and nonlinear dynamical systems. In this paper, we will establish the convergence ball and error analysis of the relaxed secant method of nonlinear systems. Consider

\[F(x) = 0, \] \hspace{1cm} (1)

where \(F \) is a nonlinear operator defined on a convex subset \(\Omega \) of a Banach space \(X \) with values in another Banach space \(Y \). When \(F \) is nonlinear, iterative methods are generally adopted to solve the system:

\[x_{n+1} = \Psi(x_n), \quad x_0 \text{ is given}. \] \hspace{1cm} (2)

The most widely used iterative method is Newton’s method which can be described as

\[x_{n+1} = x_n - F(x_n)^{-1} F(x_n), \quad x_0 \text{ is given}. \] \hspace{1cm} (3)

This method and Newton-like methods have been studied well by many authors (see [1–12]).

Newton’s method requires that \(F \) is differentiable. Thus, when \(F \) is nondifferentiable, Newton method cannot be applied on it. We have to turn to other methods that do not need to evaluate derivatives. In their algorithms, instead of derivatives, divided differences are always used. The classical method of this type is the secant method.

Let \(\Phi(X,Y) \) denote the space of the bounded linear maps from \(X \) to \(Y \). If the following equality holds,

\[[X,Y;F](x-y) = F(x) - F(y), \] \hspace{1cm} (4)

then, we call the operator \([X,Y;F] \in \Phi(X,Y), \) at the points \(x \) and \(y \) \((x \neq y)\), a divided difference of order one of the nonlinear operator \(F \).

By the above definition, secant method can be generalized to Banach spaces, it is described as the following scheme:

\[x_{n+1} = x_n - [x_{n-1},x_n;F]^{-1} F(x_n), \] \hspace{1cm} (n > 0) \hspace{1cm} x_0, x_{-1} \in \Omega. \] \hspace{1cm} (5)

An interesting issue here is to estimate the radius of the convergence ball of an iterative method. Suppose \(x_* \) is a solution of the nonlinear system (1). Denote with \(B(x_*,r) \subset X \) an open ball with center \(x_* \) and radius \(r \). The open ball \(B(x_*,r) \subset X \) is called a convergence ball of an iteration, if the sequence generated by the iterative method converges with any initial value in the ball. Under the assumption that the
nonlinear operator F has Fréchet derivatives satisfying the Hölder condition,

$$\| F'(x_\ast)^{-1} ([x, y; F] - F'(x_\ast)z) \| \leq K (\| x - z \|^p + \| y - z \|^p) ,$$

(6)

\[\forall x, y, z \in \Omega \text{ for some } K > 0. \]

Ren and Wu [13] have given the radius of the convergence ball which is $r_p = \frac{\sqrt{1+p}}{K(1+2p)}$.

The convergence ball, the semilocal convergence of secant method, and secant-like method have been studied by many other authors (see [13–18]). In this paper, similar to the relaxed Newton's method in [7], we considered the relaxed secant method which can be written as the following form:

$$x_{n+1} = x_n - \lambda [x_{n-1}, x_n; F]^{-1} F(x_n), \quad x_0, x_1 \in \Omega; \quad (7)$$

here, $\lambda \in (0, 2)$ is called the relaxed parameter. When $\lambda = 1$, it will be the normal secant method.

In this paper, we will study the convergence ball of (7) under the assumption that the nonlinear operator F has Fréchet derivatives satisfying the following Lipschitz condition:

$$\| F'(x_\ast)^{-1} ([x, y; F] - [v, w; F]) \| \leq K (\| x - v \| + \| y - w \|) ,$$

(8)

\[\forall x, y, v, w \in \Omega \text{ for some } K > 0. \]

Under the Lipschitz condition, the radius r_{a_1} of the relaxed method is proved to be $\lambda/4K$ when $0 < \lambda \leq 1$; and the radius r_{a_1} of the relaxed method is proved to be $(2 - \lambda)/4K\lambda$ when $1 < \lambda < 2$. The error estimate is also given.

2. Convergence Ball

Theorem 1. Suppose $F(x_\ast) = 0$, where the nonlinear operator F is Fréchet differentiable on Ω, $F'(x_\ast)^{-1}$ exists, the Lipschitz condition (8) holds, and $0 < \lambda < 2$. Denote

$$r_{a_1} = \frac{\lambda}{4K},$$

$$r_{a_2} = \frac{(2 - \lambda)}{4K\lambda},$$

(9)

When $0 < \lambda \leq 1$, starting from any two initial points x_0, x_1 in ball $B(x_\ast, r_{a_1})$, the sequence $\{x_n\}$ generated by the relaxed secant method (7) converges to the solution x_\ast. When $1 < \lambda < 2$, the sequence $\{x_n\}$ generated by the relaxed secant method (7) converges to the solution x_\ast with any two initial points x_0, x_1 in ball $B(x_\ast, r_{a_2})$. x_\ast is the unique solution in ball $B(x_\ast, 1/K)$, that is bigger than ball $B(x_\ast, r_{a_1})$ and ball $B(x_\ast, r_{a_2})$. Moreover, we have the following error estimate:

$$\| x_n - x_\ast \| \leq \left(\frac{2 - \lambda}{1 - 2K\theta} \right)^n, \quad \text{if } 0 < \lambda \leq 1,$$

$$\| x_n - x_\ast \| \leq \left(\frac{(4\lambda - 2) K \theta + \lambda - 1}{1 - 2K\theta} \right)^n, \quad \text{if } 1 < \lambda < 2,$$

(10)

where $\theta = \max \{\| x_0 - x_\ast \|, \| x_1 - x_\ast \| \}$.

Proof. We will prove the above theorem by induction. Firstly, when $0 < \lambda < 2$, by Lipschitz condition, it is easy to get

$$\| F'(x_\ast)^{-1} [x_{n-1}, x_0; F] \| \leq K (\| x_{n-1} - x_\ast \| + \| x_0 - x_\ast \|) < 1.$$

(11)

By Banach lemma, we can know $[x_{n-1}, x_0; F]$ is invertible. Since x_1 is well defined and

$$\| (F'(x_\ast)^{-1} [x_{n-1}, x_0; F])^{-1} \| \leq \frac{1}{1 - K (\| x_{n-1} - x_\ast \| + \| x_0 - x_\ast \|)} ,$$

(12)

we can conduct

$$\| F'(x_\ast)^{-1} [x_{n-1}, x_0; F] \| \leq K (\| x_{n-1} - x_\ast \| + \| x_0 - x_\ast \|) + 1.$$

(13)

Then, we can give the estimate of $\| x_n - x_\ast \|$ when $0 < \lambda \leq 1$. From $F(x_\ast) = 0$, we have

$$\| x_1 - x_\ast \| = \| x_0 - x_\ast - \lambda [x_{n-1}, x_0; F]^{-1} F(x_0) \|$$

$$= \| (F'(x_\ast)^{-1} [x_{n-1}, x_0; F])^{-1} F'(x_\ast)^{-1} \| \cdot ([x_{n-1}, x_0; F] (x_0 - x_\ast) - \lambda (F(x_0) - F(x_\ast)))$$

$$\leq \| (F'(x_\ast)^{-1} [x_{n-1}, x_0; F])^{-1} \| \cdot \| F'(x_\ast)^{-1} \| \cdot ([x_{n-1}, x_0; F] (x_0 - x_\ast))$$

$$- \lambda \int_0^1 F'(tx_0 + (1-t)x_\ast) \, dt \| (x_0 - x_\ast) \|$$

(14)

$$\leq \| (F'(x_\ast)^{-1} [x_{n-1}, x_0; F])^{-1} \| \cdot \| x_0 - x_\ast \|$$

$$\cdot (\lambda \cdot \| F'(x_\ast)^{-1} \| \cdot ([x_{n-1}, x_0; F] (x_0 - x_\ast))$$

$$- \lambda) \| F'(x_\ast)^{-1} [x_{n-1}, x_0; F] \|.$$
Using Lipschitz condition with (12) and (13), we have

\[
\|x_1 - x_*\| \leq \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(\int_0^1 \lambda K \| (x_1 - tx_0 - (1-t) x_*) \| \, dt + (1 - \lambda) (K \| x_1 - x_* \| + \| x_0 - x_* \| + 1) \right)
\]

\[
= \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(\int_0^1 \lambda K \| (x_1 - x_0) + (1-t) (x_1 - x_*) \| \, dt + (1 - \lambda) (K \| x_1 - x_* \| + \| x_0 - x_* \| + 1) \right)
\]

\[
= \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(\int_0^1 \lambda K \| x_1 - x_0 \| + (1-t) \| x_1 - x_* \| \, dt + (1 - \lambda) (K \| x_1 - x_* \| + \| x_0 - x_* \| + 1) \right)
\]

\[
= \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(\int_0^1 \lambda K \| x_1 - x_0 \| + (1-t) \| x_1 - x_* \| + (1 - \lambda) (K \| x_1 - x_* \| + \| x_0 - x_* \| + 1) \right).
\]

(15)

Obviously, we have

\[
\|x_1 - x_*\| \leq \|x_0 - x_*\| + \|x_1 - x_*\|.
\]

(16)

From \(x_{-1}, x_0 \in B(x_*, r_{\lambda_1})\), together with (15), (16), and \(r_{\lambda_1} = \lambda/4K\), we have

\[
\|x_1 - x_*\| < \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(2K \lambda r_{\lambda_1} + (1 - \lambda) (2K r_{\lambda_1} + 1) \right)
\]

\[
= r_{\lambda_1}.
\]

(17)

This means \(x_1 \in B(x_*, r_{\lambda_1})\).

Similar to the procession above, when \(1 < \lambda < 2\), we can get that

\[
\|x_{n+1} - x_*\| = \|x_n - x_* - \lambda \left[x_{n-1}, x_0; F \right]^{-1} F(x_0) \|
\]

\[
\leq \left(\lambda \right) \left\| \left[x_{n-1}, x_0; F \right]^{-1} \left(\left[x_{n-1}, x_0; F \right] - \int_0^1 F' (tx_0 + (1-t) x_*) \, dt \right) \right\| + (\lambda - 1) \left\| F' (x_*)^{-1} \left[x_{n-1}, x_0; F \right] \right\|
\]

\[
= \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(\int_0^1 \lambda K \| x_{n-1} - x_0 \| + (1-t) \| x_{n-1} - x_* \| \, dt + (1 - \lambda) \left(K \| x_{n-1} - x_* \| + \| x_0 - x_* \| + 1 \right) \right).
\]

(18)

By (13) and (18) and Lipschitz condition we can get

\[
\|x_{n+1} - x_*\| \leq \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(\int_0^1 \lambda K \| x_{n-1} - x_0 \| + (1-t) \| x_{n-1} - x_* \| \, dt + (1 - \lambda) \left(K \| x_{n-1} - x_* \| + \| x_0 - x_* \| + 1 \right) \right)
\]

\[
= \frac{r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(\int_0^1 \lambda K \| x_{n-1} - x_0 \| + (1-t) \| x_{n-1} - x_* \| + (1 - \lambda) \left(K \| x_{n-1} - x_* \| + \| x_0 - x_* \| + 1 \right) \right).
\]

(20)

For \(x_{-1}, x_0 \in B(x_*, r_{\lambda_1})\),

\[
\|x_1 - x_*\| \leq \frac{K r_{\lambda_1}}{1 - 2K r_{\lambda_1}} \left(2K \lambda r_{\lambda_1} + (1 - \lambda) (2K r_{\lambda_1} + 1) \right)
\]

\[
= r_{\lambda_1}.
\]

This means that \(x_1 \in B(x_*, r_{\lambda_1})\) when \(1 < \lambda < 2\).

Now, suppose \(\{x_k\} (k = 1, 2, \ldots, n)\) is well defined, \(x_k \in B(x_*, r_{\lambda_1})\), when \(0 < \lambda \leq 1\); \(\{x_k\} (k = 1, 2, \ldots, n)\) is well defined, \(x_k \in B(x_*, r_{\lambda_1})\), when \(1 < \lambda < 2\). Similar to the argumentation about \(x_{-1}\) and \(x_0\), when \(0 < \lambda < 2\),

\[
\|I - F' (x_*)^{-1} \left[x_{n-1}, x_n; F \right] \|
\]

\[
\leq K \left(\| x_{n-1} - x_* \| + \| x_n - x_* \| \right) < 1.
\]

(21)

By the Banach lemma, it is obviously known that \(\left[x_{n-1}, x_n; F \right]^{-1}\) is invertible. Hence, \(x_{n+1}\) is well defined. We also get

\[
\|F' (x_*)^{-1} \left[x_{n-1}, x_n; F \right]^{-1} \|
\]

\[
\leq \frac{1}{1 - K \left(\| x_{n-1} - x_* \| + \| x_n - x_* \| \right)}.
\]

(22)

When \(0 < \lambda \leq 1\),

\[
\|x_{n+1} - x_*\| \leq \frac{\|x_n - x_*\|}{1 - K \left(\| x_{n-1} - x_* \| + \| x_n - x_* \| \right)}
\]

\[
\times \left(\lambda K \int_0^1 \| (x_{n-1} - x_0) + \left[x_{n-1}, x_0; F \right] \| + (1 - \lambda) \left(K \| x_{n-1} - x_* \| + \| x_0 - x_* \| + 1 \right) \right).
\]

(23)

And when \(1 < \lambda < 2\), we have

\[
\|x_{n+1} - x_*\| \leq \frac{\|x_n - x_*\|}{1 - K \left(\| x_{n-1} - x_* \| + \| x_n - x_* \| \right)}
\]

\[
\times \left(\lambda K \int_0^1 \| (x_{n-1} - x_0) + \left[x_{n-1}, x_0; F \right] \| + (1 - \lambda) \left(K \| x_{n-1} - x_* \| + \| x_0 - x_* \| + 1 \right) \right).
\]

(24)
By the assumptions that \(x_{n-1}, x_n \in B(x_*, r_{\lambda_1}) \) when \(0 < \lambda \leq 1 \) and \(x_{n-1}, x_n \in B(x_*, r_{\lambda_2}) \) when \(1 < \lambda < 2 \), similar to the discussions about \(x_1 \), it is known that \(x_{n+1} \in B(x_*, r_{\lambda_1}) \) when \(0 < \lambda \leq 1 \) and \(x_{n+1} \in B(x_*, r_{\lambda_2}) \) when \(1 < \lambda < 2 \).

Therefore, starting from any two initial points \(x_0, x_n \), the sequence \(\{x_n\} \), generated by the relaxed secant method, is well defined when \(0 < \lambda \leq 1 \), \(x_n \in B(x_*, r_{\lambda_1}) \), and when \(1 < \lambda < 2 \), \(x_n \in B(x_*, r_{\lambda_2}) \). It means that the following holds:

\[
\|x_n - x_*\| < r_{\lambda_1}, \quad (0 < \lambda \leq 1, \ n \geq -1),
\]

\[
\|x_n - x_*\| < r_{\lambda_2}, \quad (1 < \lambda < 2, \ n \geq -1).
\]

Denote

\[
\theta_n = \|x_n - x_*\|, \quad (n \geq -1),
\]

\[
\theta = \max \{\theta_0, \theta_1\},
\]

When \(0 < \lambda \leq 1 \), from (14) we can get

\[
\|x_{n+1} - x_*\| \leq \frac{\|x_n - x_*\|}{1 - K(\|x_n - x_*\| + \|x_{n-1} - x_*\|)} \times (\lambda K(\|x_n - x_*\| + \|x_{n-1} - x_*\|) + (1 - \lambda)(K(\|x_n - x_*\| + \|x_{n-1} - x_*\|) + 1)).
\]

Then, by (27), we have

\[
\theta_{n+1} \leq \theta_n \frac{\theta_n}{1 - K(\theta_n + \theta_{n-1})} (\lambda K(\theta_n + \theta_{n-1}) + (1 - \lambda)(K(\theta_n + \theta_{n-1}) + 1)).
\]

When \(1 < \lambda < 2 \), from (24),

\[
\|x_{n+1} - x_*\| \leq \frac{\|x_n - x_*\|}{1 - K(\|x_n - x_*\| + \|x_{n-1} - x_*\|)}
\]

\[
\times (\lambda K\int_0^1 (\|x_n - x_*\| + (1 - t)(x_{n-1} - x_*)) dt + (\lambda - 1))
\]

\[
\times (K(\|x_{n-1} - x_*\| + \|x_n - x_*\|) + 1).
\]

Then, by (27), we have

\[
\theta_{n+1} \leq \theta_n \frac{\theta_n}{1 - K(\theta_n + \theta_{n-1})} (\lambda K(\theta_n + \theta_{n-1}) + (1 - \lambda)(K(\theta_n + \theta_{n-1}) + 1)).
\]

By (32), we know \(\theta_n < r_{\lambda_1} \) for all \(n \). Then by (29) and (30), we can induct

\[
\theta_{n+1} < \theta_n < \theta_{n-1} < \ldots < \theta_1 < \theta.
\]

Then we can see

\[
\theta_{n+1} \leq \theta_n \frac{\theta_n}{1 - K(\theta_n + \theta_{n-1})} (K(\theta_n + \theta_{n-1}) + 1 - \lambda)
\]

\[
= \theta_n \frac{K(\theta_n + \theta_{n-1}) - 1 + 2 - \lambda}{1 - K(\theta_n + \theta_{n-1})}
\]

\[
= \theta_n \left(\frac{2 - \lambda}{1 - K(\theta_n + \theta_{n-1})} - 1 \right) < \theta_n \left(\frac{2 - \lambda}{1 - 2K\theta} - 1 \right)^{n+1}.
\]

Obviously, \(0 < (2 - \lambda)/(1 - 2K\theta) - 1 < 1 \). The sequence \(\{x_n\} \) converges to the exact solution \(x_* \) from (32).
Then and CPU time.

\[\text{normals can't methods in these sense of iteration number} \]

For \(\lambda = 1 \), we can get

\[\max_{1 \leq i \leq 2} |\lambda_i| = 1.1 \]

So \(K = e/2 \) in this problem. Set \(\lambda_1 = 0.999, \lambda_2 = 1, \lambda_3 = 1.01 \). Then, the radius of the convergence balls is \(r_1 = 999/2000e, r_2 = 1/2e, r_3 = 99/202e \). Set the initial points \(x_{-1} = 0.08, x_0 = 0.1 \), and they are in the convergence ball of the relaxed secant method. From Table 2, we can see the sequence \(\{x_n\} \) converges to the solution \(x_\ast \).

From Table 2, we can know that the relaxed secant method (\(\lambda = 0.999 \)) performs the same as the normal secant method in the sense of the iteration number and CPU time, while the solution gotten by the relaxed secant method is closer to the exact solution than that by the normal secant method.

Example 2. Let us consider

\[F(x) = x^2 - 1, \quad x \in [0, 2]. \] \hspace{1cm} (38)

Then \(F'(x) = 2x \). \(F(x) = 0 \) has a root \(x_\ast = 1 \) and \(F'(x_\ast) = 2 \).

It is easy to obtain

\[\left\| F'(x_\ast)^{-1} \left([x, y; F] - [u, v; F] \right) \right\| \leq \frac{1}{2} \left(\| x-u \| + \| y-v \| \right). \] \hspace{1cm} (39)

Set \(\lambda_1 = 0.9, \lambda_2 = 1, \lambda_3 = 1.1 \). Then the radius of the convergence balls is \(r_1 = 9/20, r_2 = 1/2, r_3 = 9/22 \). Choose the initial points \(x_{-1} = 1.15, x_0 = 1.2 \) and they are in the convergence ball of the relaxed secant method. From Table 1, we can see the sequence \(\{x_n\} \) converges to \(x_\ast \) with different \(\lambda \).

As we know, when \(\lambda = 1 \), the relaxed secant method reduces to normal secant method. From Table 1, we can see that relaxed secant method in the case of \(\lambda = 1.1 \) outperforms the normal secant method in the sense of iteration number and CPU time.

Example 3. Let us consider the nonlinear system:

\[2x_1 - \frac{1}{9} x_1^2 - x_2 = 0, \] \hspace{1cm} (43)

\[-x_1 + 2x_2 - \frac{1}{9} x_2^2 = 0. \]

It comes from the following nonlinear boundary value problem of second order:

\[x'' + x^2 = 0, \]

\[x(0) = x(1) = 0, \] \hspace{1cm} (44)

which has been studied by many authors [5, 13, 16].

Now, define the operator \(F : R^2 \rightarrow R^2 \) such that

\[F = (F_1, F_2). \]

We take \(F_1(x_1, x_2) = 2x_1 - (1/9)x_1^3 - x_2 = 0, F_2(x_1, x_2) = -x_1 + 2x_2 - (1/9)x_2^3 = 0, x = (x_1, x_2) \in R^2 \). Then, notice \(0 \leq \lambda \leq 1 \); it is easy to know \(F \) is Fréchet differentiable in \(R^2 \) and we get

\[F'(x) = \begin{pmatrix} 2 - \frac{2}{9} x_1 & -1 \\ -1 & 2 - \frac{2}{9} x_2 \end{pmatrix}. \] \hspace{1cm} (45)

Let \(x = (x_1, x_2) \in R^2 \) and \(\| x \| = \| x \|_\infty = \max_{1 \leq i \leq 2} |x_i| \).

The corresponding norm on \(A \in R^2 \times R^2 \) is

\[\| A \| = \max_{1 \leq i \leq 2} \sum_{j=1}^2 |a_{ij}|. \] \hspace{1cm} (46)

\[\begin{array}{|c|c|c|c|}
\hline
\lambda & n & x_n & \| x_n - x_\ast \| \\text{CPU time} \\
\hline
\hline
0.9 & 1 & 1.0315 & 0.0315 \\
& 2 & 1.0057 & 0.0057 \\
& 3 & 1.0006 & 6.4804 \times 10^{-4} & 0.0000877 \\
& 4 & 1.0001 & 6.6458 \times 10^{-5} \\
& 5 & 1.0000 & 6.6652 \times 10^{-6} \\
& 6 & 1.0000 & 6.6672 \times 10^{-7} \\
\hline
1 & 1 & 1.0128 & 0.0128 \\
& 2 & 1.0012 & 0.0012 \\
& 3 & 1.0000 & 7.3141 \times 10^{-6} & 0.000864 \\
& 4 & 1.0000 & 4.2172 \times 10^{-7} \\
\hline
1.1 & 1 & 0.9940 & 0.006 \\
& 2 & 1.0000 & 1.6176 \times 10^{-6} & 0.000095 \\
& 3 & 1.0000 & 1.6708 \times 10^{-7} \\
\hline
\end{array} \]

\[\begin{array}{|c|c|c|c|}
\hline
\lambda & n & x_n & \| x_n - x_\ast \| \\text{CPU time} \\
\hline
\hline
0.999 & 1 & 0.0038 & 0.0038 \\
& 2 & 1.8245 \times 10^{-4} & 1.8245 \times 10^{-4} & 0.000094 \\
& 3 & 1.6290 \times 10^{-7} & 1.6290 \times 10^{-7} \\
\hline
1 & 1 & 0.0039 & 0.0039 \\
& 2 & 1.9078 \times 10^{-4} & 1.9078 \times 10^{-4} & 0.000094 \\
& 3 & 3.7011 \times 10^{-4} & 3.7011 \times 10^{-4} \\
\hline
1.01 & 1 & 0.0048 & 0.0048 \\
& 2 & 2.8301 \times 10^{-4} & 2.8301 \times 10^{-4} & 0.000108 \\
& 3 & 3.4788 \times 10^{-6} & 3.4788 \times 10^{-6} \\
& 4 & 3.4931 \times 10^{-6} & 3.4931 \times 10^{-6} \\
\hline
\end{array} \]
Table 3: Relaxed secant method with different λ.

<table>
<thead>
<tr>
<th>λ</th>
<th>n</th>
<th>x_n</th>
<th>$|x_n - x_0|$</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9999</td>
<td>1</td>
<td>(8.9732, 8.9732)</td>
<td>0.0277</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(9.0016, 9.0016)</td>
<td>0.0016</td>
<td>0.000288</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(9.0000, 9.0000)</td>
<td>5.2307 x 10^{-6}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(9.0000, 9.0000)</td>
<td>4.2965 x 10^{-10}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(8.9722, 8.9722)</td>
<td>0.0278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(9.0016, 9.0016)</td>
<td>0.0016</td>
<td>0.001643</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(9.0000, 9.0000)</td>
<td>5.0744 x 10^{-6}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(9.0000, 9.0000)</td>
<td>9.2414 x 10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>(8.9455, 8.9455)</td>
<td>0.545</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(9.0000, 9.0000)</td>
<td>4.0974 x 10^{-5}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(9.0000, 9.0000)</td>
<td>2.0838 x 10^{-6}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(9.0000, 9.0000)</td>
<td>1.1794 x 10^{-7}</td>
<td></td>
</tr>
</tbody>
</table>

It can be verified easily that $x^* = (9, 9)$ is a solution of (24) and from (26) we get

$$F'(x) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}. \quad (47)$$

$F'(x)$ is invertible. Similar to [13], we can deduce that Lipschitz continuous condition is satisfied for $K = 1/9$. Set $\lambda_1 = 0.9999$, $\lambda_2 = 1$, $\lambda_3 = 1.06$. Then the radius of the convergence ball is $r_1 = 2.499975$, $r_2 = 9/4$, $r_3 = 326/212$. Set the two initial points $x_{-1} = (9.5, 9.5)$, $x_0 = (8.5, 8.5)$ and they are in the convergence ball. For results, see Table 3.

Table 3 shows the sequence $\{x_n\}$ generated by the relaxed secant method. From this table, it is known that the sequence $\{x_n\}$ converges, and also the error estimation holds. Moreover, relaxed secant method has more choices than secant method, and optimal parameter λ makes the presented method outperform the normal secant method.

Example 4. Consider the nonlinear conservative system given in [15]:

$$\begin{align*}
\frac{d^2 x(t)}{dt^2} &= -e^{x(t)}, \\
x(0) &= x(1) = 0.
\end{align*} \quad (48)$$

Applying the centered finite difference scheme, we can get the nonlinear system:

$$F(x) = Mx + h^2 \phi(x), \quad (49)$$

where $h = 1/(N + 1)$ is the step-size and N is a prescribed positive integer. $x, \phi(x)$ are vectors with forms of

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix},$$

$$\phi(x) = \begin{pmatrix} e^{x_1} \\ e^{x_2} \\ \vdots \\ e^{x_m} \end{pmatrix}. \quad (50)$$

and the matrix M has the form

$$A = \begin{pmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -2 \end{pmatrix}. \quad (51)$$

Take the same parameters used in [15], $N = 19$, $h = 1/20$, and the initial points $x_{-1}(t) = (5/2)t(1 - t)$ and $x_0(t) = (1/2)(1 - t)$, $t \in [0, 1]$. Then, we can solve this problem by our relaxed secant method, and we compare it with normal secant method. For the results, see Table 4.

From the results, we can know that, in this example, the relaxed secant method performs better. And we list the approximation solution which is gotten by the relaxed secant method in the situation $\lambda = 0.99$ in Table 5.

Competing Interests

The authors declare that they have no competing interests.
Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant nos. 11371320, 11632015), Zhejiang Natural Science Foundation (Grant no. LZ14A010002), and Scientific Research Fund of Zhejiang Provincial Education Department (Grant no. FX2016073).

References

