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Based on the three-dimensional real special orthogonal Lie algebra SO(3), by zero curvature equation, we present bi-integrable and
tri-integrable couplings associated with SO(3) for a hierarchy from the enlarged matrix spectral problems and the enlarged zero
curvature equations. Moreover, Hamiltonian structures of the obtained bi-integrable and tri-integrable couplings are constructed
by applying the variational identities.

1. Introduction

Among the well-known soliton hierarchies are the KdV hier-
archy, the AKNS hierarchy, and the Kaup-Newell hierarchy
[1]. The trace identity is used for constructing Hamiltonian
structures of soliton equations, which is proposed by Tu
[2, 3]. In the case of non-semi-simple Lie algebras, integrable
couplings of soliton equations are generated by zero curvature
equations [4, 5] and the corresponding Hamiltonian struc-
tures are obtained by the variational identity [6–8].

An integrable coupling equation𝑢𝑡 = 𝐾 (𝑢) = 𝐾 (𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑡, 𝑢𝑥𝑥, 𝑢𝑥𝑡, 𝑢𝑡𝑡, . . .) (1)

is a triangular integrable system of the following form [9]:𝑢𝑡 = 𝐾 (𝑢) ,
V𝑡 = 𝑆 (𝑢, V) , (2)

where 𝑢 is a function of variables 𝑡 and 𝑥, 𝑢𝑥 = 𝜕𝑢/𝜕𝑥,
and 𝑢𝑡 = 𝜕𝑢/𝜕𝑡. If 𝑆 is nonlinear with respect to the
second dependent variable V, the integrable coupling is called
nonlinear.

An integrable system of the following form [10]𝑢𝑡 = 𝐾 (𝑢) ,𝑢1,𝑡 = 𝑆1 (𝑢, 𝑢1) ,𝑢2,𝑡 = 𝑆2 (𝑢, 𝑢1, 𝑢2) (3)

is called a bi-integrable of (1).
Similarly, an integrable system of the following form [10]𝑢𝑡 = 𝐾 (𝑢) ,𝑢1,𝑡 = 𝑆1 (𝑢, 𝑢1) ,𝑢2,𝑡 = 𝑆2 (𝑢, 𝑢1, 𝑢2) ,𝑢3,𝑡 = 𝑆3 (𝑢, 𝑢1, 𝑢2, 𝑢3)

(4)

is called a tri-integrable of (1).
Integrable couplings correspond to non-semi-simple Lie

algebras 𝑔, and such Lie algebras can be written as semidirect
sums [11]:𝑔 = 𝑔 ⊎ 𝑔𝑐, 𝑔-semisimple, 𝑔𝑐-solvable. (5)

Hindawi
Advances in Mathematical Physics
Volume 2017, Article ID 9743475, 9 pages
https://doi.org/10.1155/2017/9743475

https://doi.org/10.1155/2017/9743475


2 Advances in Mathematical Physics

The notion of semidirect sums 𝑔 = 𝑔 ⊎ 𝑔𝑐 means that 𝑔 and𝑔𝑐 satisfy [𝑔, 𝑔𝑐] ⊆ 𝑔𝑐, where [𝑔, 𝑔𝑐] = {[𝐴, 𝐵] | 𝐴 ∈ 𝑔, 𝐵 ∈𝑔𝑐}, with [⋅, ⋅] denoting the Lie bracket of 𝑔. Obviously, 𝑔𝑐 is
an ideal of 𝑔. The subscript 𝑐 indicates a contribution to the
construction of coupling systems.We also require the closure
property between 𝑔 and 𝑔𝑐 under the matrix multiplication:𝑔𝑔𝑐, 𝑔𝑐𝑔 ⊆ 𝑔𝑐, where 𝑔𝑔𝑐 = {𝐴𝐵 | 𝐴 ∈ 𝑔, 𝐵 ∈ 𝑔𝑐}.

Integrable couplings are useful tools for describing and
explaining nonlinear phenomena of new evaluation equa-
tions. There are very rich mathematical structures behind
integrable couplings. In particular, integrable couplings gen-
eralize the symmetry problem and describe other integrable
properties of integrable equations. In order to enrich mul-
ticomponent integrable equations, it has been an important
task to explore more integrable properties from multi-
integrable couplings. For example, one can find work on the
integrable couplings [12, 13]. It is always interesting to explore
any new procedure for generating integrable couplings for
different soliton hierarchies, even from existing non-semi-
simple Lie algebras.

Recently, seeking new integrable systems including soli-
ton hierarchies and integrable couplings forms a pretty
important and interesting area of research in mathemati-
cal physics. To generate integrable couplings, bi-integrable
couplings and tri-integrable couplings of soliton hierarchies,
Ma proposed a new way to generate integrable couplings
through a few classes of matrix Lie algebras consisting of
block matrices [10]. Recently, bi-integrable couplings and tri-
integrable couplings for the KdV hierarchy and the AKNS
hierarchy have been studied considerably [14, 15]. From
[16, 17], bi-integrable couplings of a new soliton hierarchy
associated with SO(3) and bi-integrable couplings of a new
soliton hierarchy associated with SO(4) have been studied.

In this paper, we will construct bi-integrable and tri-
integrable couplings associated with SO(3) for a hierarchy
from the enlarged matrix spectral problems and the enlarged
zero curvature equations. Our work is essentially motivated
by [17–19].

2. Bi-Integrable Couplings and
Hamiltonian Structures

2.1. Bi-Integrable Couplings Associated with SO(3). So as to
generate bi-integrable couplings, we introduce a kind of block
matrices:

𝑀2 (𝐴, 𝐴1, 𝐴2) = (𝐴 𝐴1 𝐴20 𝐴 + 𝛼𝐴1 𝐴1 + 𝛼𝐴20 0 𝐴 + 𝛼𝐴1), (6)

where 𝛼 is an arbitrary nonzero constant and 𝐴, 𝐴1, and 𝐴2
are square matrices of the same order. In the following, we
define the corresponding non-semi-simple Lie algebra 𝑔 by a
semidirect sum: 𝑔 (𝜆) = 𝑔 ⊎ 𝑔𝑐, (7)

with 𝑔 = {𝑀2 (𝐴, 0, 0) | 𝐴 ∈ S̃O (3)} ,𝑔𝑐 = {𝑀2 (0, 𝐴1, 𝐴2) | 𝐴1, 𝐴2 ∈ S̃O (3)} , (8)

where the loop algebra S̃O(3) is defined by

S̃O (3) = {𝐴 (𝜆) ∈ SO (3) | entries of 𝐴 (𝜆)− Laurent series in 𝜆} . (9)

Obviously, we have the matrix commutator relation:[𝑀2 (𝐴, 𝐴1, 𝐴2) ,𝑀2 (𝐵, 𝐵1, 𝐵2)] = 𝑀2 (𝐶, 𝐶1, 𝐶2) , (10)

with 𝐶, 𝐶1, and 𝐶2 being defined by𝐶 = [𝐴, 𝐵] ,𝐶1 = [𝐴, 𝐵1] + [𝐴1, 𝐵] + 𝛼 [𝐴1, 𝐵1] ,𝐶2 = [𝐴, 𝐵2] + [𝐴2, 𝐵] + [𝐴1, 𝐵1] + 𝛼 [𝐴1, 𝐵2]+ 𝛼 [𝐴2, 𝐵1] .
(11)

Let us consider the Lie algebra SO(3). It has a basis
𝑒1 = ( 0 0 10 0 0−1 0 0) ,
𝑒2 = (0 0 00 0 −10 1 0 ) ,
𝑒3 = ( 0 1 0−1 0 00 0 0) ,

(12)

with which the structure equations of SO(3) are [𝑒1, 𝑒2] = 𝑒3,[𝑒2, 𝑒3] = 𝑒1, [𝑒3, 𝑒1] = 𝑒2.
The soliton hierarchy introduced in [18] has a spectral

problem 𝜙𝑥 = 𝑈𝜙 = 𝑈 (𝑢, 𝜆) 𝜙, 𝑢 = (𝑝, 𝑞)𝑇 , (13)

with the spectral matrix 𝑈 being chosen as

𝑈 = 𝑈 (𝑢, 𝜆) = 𝜆𝑒1 + 𝑝𝑒2 + 𝑞𝑒3 = ( 0 𝑞 𝜆−𝑞 0 −𝑝−𝜆 𝑝 0 ) . (14)

Based on this special non-semi-simple Lie algebra 𝑔(𝜆),
we begin with the corresponding enlarged spectral matrix



Advances in Mathematical Physics 3𝑈1 = 𝑀2(𝑈, 𝑈1, 𝑈2) and let supplementary spectral matrices
be

𝑈1 = 𝑈1 (𝑢1, 𝜆) = ( 0 𝑞 0−𝑞 0 −𝑝0 𝑝 0 ) , 𝑢1 = (𝑝𝑞) ,
𝑈2 = 𝑈2 (𝑢2, 𝜆) = ( 0 𝑞 0−𝑞 0 −𝑝0 𝑝 0 ) ,

𝑢2 = (𝑝𝑞) .
(15)

For purpose of solving the enlarged stationary zero cur-
vature equation 𝑉1𝑥 = [𝑈1, 𝑉1], we take 𝑉1 = 𝑀2(𝑉, 𝑉1, 𝑉2),
where 𝑉 is defined as in [18]

𝑉 = 𝑉 (𝑢, 𝜆) = ( 0 𝑐 𝑎−𝑐 0 −𝑏−𝑎 𝑏 0 )
= ∑
𝑖≥0

( 0 𝑐𝑖 𝑎𝑖−𝑐𝑖 0 −𝑏𝑖−𝑎𝑖 𝑏𝑖 0 )𝜆−𝑖, (16)

and the supplementary spectral matrices 𝑉1 and 𝑉2 read
𝑉1 = 𝑉1 (𝑢, 𝑢1, 𝜆) = ( 0 𝑐 𝑎−𝑐 0 −𝑏−𝑎 𝑏 0 )

= ∑
𝑖≥0

( 0 𝑐𝑖 𝑎𝑖−𝑐𝑖 0 −𝑏𝑖−𝑎𝑖 𝑏𝑖 0 )𝜆−𝑖,
𝑉2 = 𝑉2 (𝑢, 𝑢1, 𝑢2, 𝜆) = ( 0 𝑐 𝑎−𝑐 0 −𝑏−𝑎 𝑏 0 )

= ∑
𝑖≥0

( 0 𝑐𝑖 𝑎𝑖−𝑐𝑖 0 −𝑏𝑖−𝑎𝑖 𝑏𝑖 0 )𝜆−𝑖.

(17)

The enlarged stationary zero curvature equation 𝑉1𝑥 =[𝑈1, 𝑉1] is equivalent to𝑉𝑥 = [𝑈,𝑉] ,𝑉1𝑥 = [𝑈,𝑉1] + [𝑈1, 𝑉] + 𝛼 [𝑈1, 𝑉1] ,𝑉2𝑥 = [𝑈,𝑉2] + [𝑈2, 𝑉] + [𝑈1, 𝑉1] + 𝛼 [𝑈1, 𝑉2]+ 𝛼 [𝑈2, 𝑉1] .
(18)

The above equation system equivalently leads to𝑎𝑥 = 𝑝𝑐 − 𝑞𝑏,𝑏𝑥 = −𝜆𝑐 + 𝑞𝑎,𝑐𝑥 = 𝜆𝑏 − 𝑝𝑎,𝑎𝑥 = 𝑝𝑐 − 𝑞𝑏 − 𝑞𝑏 + 𝑝𝑐 + 𝛼 (𝑝𝑐 − 𝑞𝑏) ,𝑏𝑥 = −𝜆𝑐 + 𝑞𝑎 + 𝑞𝑎 + 𝛼𝑞𝑎,𝑐𝑥 = 𝜆𝑏 − 𝑝𝑎 − 𝑝𝑎 − 𝛼𝑝𝑎,𝑎𝑥 = −𝑞𝑏 + 𝑝𝑐 − 𝑞𝑏 + 𝑝𝑐 − 𝑞𝑏 + 𝑝𝑐+ 𝛼 (−𝑞𝑏 + 𝑝𝑐) + 𝛼 (−𝑞𝑏 + 𝑝𝑐) ,𝑏𝑥 = −𝜆𝑐 + 𝑞𝑎 + 𝑞𝑎 + 𝑞𝑎 + 𝛼𝑞𝑎 + 𝛼𝑞𝑎,𝑐𝑥 = 𝜆𝑏 − 𝑝𝑎 − 𝑝𝑎 − 𝑝𝑎 − 𝛼𝑝𝑎 − 𝛼𝑝𝑎.

(19)

Now, we define the enlarged Lax matrices 𝑉[𝑚]1 =(𝜆𝑚𝑉1)+ = 𝑀2(𝑉[𝑚], 𝑉[𝑚]1 , 𝑉[𝑚]2 ), 𝑚 ≥ 0, where 𝑉[𝑚] is
defined as 𝑉[𝑚] = (𝜆𝑚𝑉)+, and 𝑉[𝑚]𝑖 = (𝜆𝑚𝑉𝑖)+, 𝑖 = 1, 2.

Solving the enlarged zero curvature equations 𝑈1𝑡
𝑚

−𝑉[𝑚]1𝑥 + [𝑈1, 𝑉[𝑚]1 ] = 0, 𝑚 ≥ 0, we get bi-integrable couplings
of the soliton hierarchy in [18]

𝑢𝑡
𝑚

=(((((
(

𝑝𝑞𝑝𝑞𝑝𝑞
)))))
)𝑡

𝑚

=(((((
(

−𝑐𝑚+1𝑏𝑚+1−𝑐𝑚+1𝑏𝑚+1−𝑐𝑚+1𝑏𝑚+1
)))))
)

=(((((((((((
(

0 12 0 0 0 0−12 0 0 0 0 00 0 0 12 0 00 0 −12 0 0 00 0 0 0 0 120 0 0 0 −12 0

)))))))))))
)

(((((
(

−2𝑏𝑚+1−2𝑐𝑚+1−2𝑏𝑚+1−2𝑐𝑚+1−2𝑏𝑚+1−2𝑐𝑚+1
)))))
)

= 𝐽1𝑃1,𝑚+1.

(20)

2.2. Hamiltonian Structures. In this section, for purpose of
generating the Hamiltonian structure of hierarchy (20), we
will use the corresponding variational identity [20]:𝛿𝛿𝑢 ∫ {𝑉,𝑈𝜆} 𝑑𝑥 = 𝜆−𝛾 𝜕𝜕𝜆𝜆𝛾 {𝑉,𝑈𝑢} , (21)
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where {⋅, ⋅} is a required bilinear form, which is symmetric,
nondegenerate, and invariant under the Lie bracket.∀𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎1, 𝑎2, 𝑎3, 𝑎1 , 𝑎2 , 𝑎3 ) ∈ 𝑅9, 𝑏 = (𝑏1, 𝑏2, 𝑏3,𝑏1, 𝑏2, 𝑏3, 𝑏1 , 𝑏2 , 𝑏3 ) ∈ 𝑅9; we define the Lie bracket [⋅, ⋅] on𝑅9
as follows:

[𝑎, 𝑏] = 𝑎𝑇𝑅1 (𝑏) ,𝑅1 (𝑏)
= (𝑅 (𝑏) 𝑅1 (𝑏) 𝑅2 (𝑏)0 𝑅 (𝑏) + 𝛼𝑅1 (𝑏) 𝑅1 (𝑏) + 𝛼𝑅2 (𝑏)0 0 𝑅 (𝑏) + 𝛼𝑅1 (𝑏)) , (22)

where

𝑅 (𝑏) = ( 0 −𝑏3 𝑏2𝑏3 0 −𝑏1−𝑏2 𝑏1 0 ) ,
𝑅1 (𝑏) = ( 0 −𝑏3 𝑏2𝑏3 0 −𝑏1−𝑏2 𝑏1 0 ) ,
𝑅2 (𝑏) = ( 0 −𝑏3 𝑏2𝑏3 0 −𝑏1−𝑏2 𝑏1 0 ) .

(23)

Following the properties of the matrix 𝐹1: 𝐹1(𝑅1(𝑏))𝑇 =−𝑅1(𝑏)𝐹1 and 𝐹1 = 𝐹𝑇1 , we get
𝐹1 = ( 𝜂1 𝜂2 2𝜂3𝜂2 𝛼𝜂2 + 2𝜂3 2𝛼𝜂32𝜂3 2𝛼𝜂3 0 ) ⊗(𝑟0 0 00 𝑟0 00 0 𝑟0), (24)

where 𝜂1, 𝜂2, 𝜂3, 𝑟0 are arbitrary constants. We are easy to
have

det (𝐹1) = −64 (𝛼2𝜂1 − 𝛼𝜂2 + 2𝜂3)3 𝜂63𝑟90 ̸= 0. (25)

In order to get the Hamiltonian structure of the Lax
integrable system, we define a bilinear form {𝑎, 𝑏} on 𝑅9 of
the following form:

{𝑎, 𝑏} = 𝑎𝑇𝐹1𝑏. (26)

Now we can compute that{𝑉1, 𝑈1,𝜆} = 𝑎𝜂1 + 𝑟0𝑎𝜂2 + 2𝑟0𝑎𝜂3,{𝑉1, 𝑈1,𝑝} = 𝑟0𝑏𝜂1 + 𝑟0𝑏𝜂2 + 2𝑟0𝑏𝜂3,{𝑉1, 𝑈1,𝑞} = 𝑟0𝑐𝜂1 + 𝑟0𝑐𝜂2 + 2𝑟0𝑐𝜂3,{𝑉1, 𝑈1,𝑝} = (𝑟0𝑏 + 𝛼𝑟0𝑏) 𝜂2+ (2𝑟0𝑏 + 2𝛼𝑟0𝑏) 𝜂3,{𝑉1, 𝑈1,𝑞} = (𝑟0𝑐 + 𝛼𝑟0𝑐) 𝜂2 + (2𝑟0𝑐 + 2𝛼𝑟0𝑐) 𝜂3,{𝑉1, 𝑈1,𝑝} = (2𝑟0𝑏 + 2𝛼𝑟0𝑏) 𝜂3,{𝑉1, 𝑈1,𝑞} = (2𝑟0𝑐 + 2𝛼𝑟0𝑐) 𝜂3

(27)

and furthermore, we use the following formular [20]:𝛾 = −𝜆2 𝑑𝑑𝜆 ln {𝑉, 𝑉} , (28)

to obtain that 𝛾 = 0. Applying the corresponding variational
identity, we obtain the following Hamiltonian structure for
the hierarchy of bi-integrable coupling (20):

𝑢𝑡
𝑚

= 𝐾1,𝑚 (𝑢) = 𝐽1 𝛿𝐻1,𝑚𝛿𝑢 ; 𝑚 ≥ 0, (29)

where the Hamiltonian operator is

𝐽1 = ( 𝜂1 𝜂2 2𝜂3𝜂2 𝛼𝜂2 + 2𝜂3 2𝛼𝜂32𝜂3 2𝛼𝜂3 0 )−1 ⊗( 0 12−12 0) , (30)

and the Hamiltonian functions read𝐻1,𝑚 = −∫ 𝑎𝑚+2𝜂1 + 𝑟0𝑎𝑚+2𝜂2 + 2𝑟0𝑎𝑚+2𝜂3𝑚 + 1 𝑑𝑥,𝑚 ≥ 0. (31)

Based on (19), a direct computation yields a recursion
relation: 𝑃1,𝑚+1 = 𝐿1𝑃1,𝑚, (32)

where 𝐿1 = 𝑀𝑇2 (𝐿1, 𝐿11, 𝐿12)
= (𝐿1 0 0𝐿11 𝐿1 + 𝛼𝐿11 0𝐿12 𝐿11 + 𝛼𝐿12 𝐿1 + 𝛼𝐿11), (33)
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with 𝐿1, 𝐿11, and 𝐿12 being defined by𝐿1 = (𝑙11 𝑙12𝑙21 𝑙22) ,𝐿11 = (𝑙11 𝑙12𝑙21 𝑙22) , (34)

𝐿12 = (𝑙11 𝑙12𝑙21 𝑙22) , (35)𝑙11 = −𝑝𝜕−1𝑞,𝑙12 = 𝜕 + 𝑝𝜕−1𝑝,𝑙21 = −𝜕 − 𝑞𝜕−1𝑞,𝑙22 = 𝑞𝜕−1𝑝,𝑙11 = −𝑝𝜕−1𝑞 − 𝛼𝑝𝜕−1𝑞 − 𝑝𝜕−1𝑞,𝑙12 = 𝑝𝜕−1𝑝 + 𝛼𝑝𝜕−1𝑝 + 𝑝𝜕−1𝑝,𝑙21 = −𝑞𝜕−1𝑞 − 𝛼𝑞𝜕−1𝑞 − 𝑞𝜕−1𝑞,𝑙22 = 𝑞𝜕−1𝑝 + 𝛼𝑞𝜕−1𝑝 + 𝑞𝜕−1𝑝,𝑙11 = −𝑝𝜕−1𝑞 − 𝛼𝑝𝜕−1𝑞 − 𝑝𝜕−1𝑞 − 𝛼𝑝𝜕−1𝑞− 𝑝𝜕−1𝑞,𝑙12 = 𝑝𝜕−1𝑝 + 𝛼𝑝𝜕−1𝑝 + 𝑝𝜕−1𝑝 + 𝛼𝑝𝜕−1𝑝+ 𝑝𝜕−1𝑝,𝑙21 = −𝑞𝜕−1𝑞 − 𝛼𝑞𝜕−1𝑞 − 𝑞𝜕−1𝑞 − 𝛼𝑞𝜕−1𝑞− 𝑞𝜕−1𝑞,𝑙22 = 𝑞𝜕−1𝑝 + 𝛼𝑞𝜕−1𝑝 + 𝑞𝜕−1𝑝 + 𝛼𝑞𝜕−1𝑝+ 𝑞𝜕−1𝑝,

(36)

where 𝜕 = 𝑑/𝑑𝑥 and 𝜕−1 = ∫(𝑑/𝑑𝑥)𝑑𝑥.
3. Tri-Integrable Couplings and
Hamiltonian Structures

3.1. Tri-Integrable Couplings Associated with SO(3). So as to
generate bi-integrable couplings, we introduce a kind of block
matrices:𝑀3 (𝐴, 𝐴1, 𝐴2, 𝐴3)

= (𝐴 𝐴1 𝐴2 𝐴30 𝐴 + 𝛽𝐴1 𝛽𝐴2 𝐴1 + 𝛽𝐴30 0 𝐴 + 𝛽𝐴1 + 𝜇𝐴2 ]𝐴20 0 0 𝐴 + 𝛽𝐴1), (37)

where 𝛽, 𝜇, and ] are arbitrary nonzero constants and 𝐴, 𝐴1,𝐴2, and 𝐴3 are square matrices of the same order. In the
following, we define the corresponding non-semi-simple Lie
algebra 𝑔(𝜆) by a semidirect sum:𝑔 (𝜆) = 𝑔 ⊎ 𝑔𝑐, (38)

with𝑔 = {𝑀3 (𝐴, 0, 0, 0) | 𝐴 ∈ S̃O (3)} ,𝑔𝑐 = {𝑀3 (0, 𝐴1, 𝐴2, 𝐴3) | 𝐴1, 𝐴2, 𝐴3 ∈ S̃O (3)} , (39)

where the loop algebra S̃O(3) is defined by

S̃O (3) = {𝐴 (𝜆) ∈ SO (3) | entries of 𝐴 (𝜆)− Laurent series in 𝜆} . (40)

Obviously, we have the matrix commutator relation:[𝑀3 (𝐴, 𝐴1, 𝐴2, 𝐴3) ,𝑀3 (𝐵, 𝐵1, 𝐵2, 𝐵3)]= 𝑀3 (𝐶, 𝐶1, 𝐶2, 𝐶3) , (41)

with 𝐶, 𝐶1, 𝐶2, and 𝐶3 being defined by𝐶 = [𝐴, 𝐵] ,𝐶1 = [𝐴, 𝐵1] + [𝐴1, 𝐵] + 𝛽 [𝐴1, 𝐵1] ,𝐶2 = [𝐴, 𝐵2] + [𝐴2, 𝐵] + 𝜇 [𝐴2, 𝐵2] + 𝛽 [𝐴1, 𝐵2]+ 𝛽 [𝐴2, 𝐵1] ,𝐶3 = [𝐴, 𝐵3] + [𝐴3, 𝐵] + 𝛽 [𝐴3, 𝐵1] + 𝛽 [𝐴1, 𝐵3]+ [𝐴1, 𝐵1] + ] [𝐴2, 𝐵2] .
(42)

We introduce the following enlarged spectral matrix to
construct tri-integrable couplings for SO(3) hierarchy:𝑈2 = 𝑈2 (𝑢, 𝜆) = 𝑀3 (𝑈,𝑈1, 𝑈2, 𝑈3) ∈ 𝑔 (𝜆) , (43)

with𝑈 = 𝑈(𝑢, 𝜆) being defined as in (14), where𝑈1 and𝑈2 are
defined by (15), and also the supplementary spectral matrix𝑈3 reads
𝑈3 = 𝑈3 (𝑢3, 𝜆) = ( 0 𝑞 0−𝑞 0 −𝑝0 𝑝 0 ) ,

𝑢3 = (𝑝𝑞) . (44)

As usual, we take a solution of the following form:𝑉2 = 𝑉2 (𝑢, 𝜆) = 𝑀3 (𝑉, 𝑉1, 𝑉2, 𝑉3)
= (𝑉 𝑉1 𝑉2 𝑉30 𝑉 + 𝛽𝑉1 𝛽𝑉2 𝑉1 + 𝛽𝑉30 0 𝑉 + 𝛽𝑉1 + 𝜇𝑉2 ]𝑉20 0 0 𝑉 + 𝛽𝑉1), (45)
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where𝑉,𝑉1, and𝑉2 are defined by (16) and (17); also𝑉3 reads
𝑉3 = 𝑉3 (𝑢, 𝑢1, 𝑢2, 𝑢3, 𝜆) = ( 0 𝑐 𝑎−𝑐 0 −𝑏−𝑎 𝑏 0 ) ,
𝑎 = ∑

𝑖≥0

𝑎𝑖 𝜆−𝑖,𝑏 = ∑
𝑖≥0

𝑏𝑖 𝜆−𝑖,𝑐 = ∑
𝑖≥0

𝑐𝑖 𝜆−𝑖,𝑓 = ∑
𝑖≥0

𝑓𝑖 𝜆−𝑖,𝑔 = ∑
𝑖≥0

𝑔𝑖 𝜆−𝑖.
(46)

It now follows from the enlarged stationary zero curva-
ture equation 𝑉2𝑥 = [𝑈2, 𝑉2] that𝑉𝑥 = [𝑈,𝑉] ,𝑉1𝑥 = [𝑈,𝑉1] + [𝑈1, 𝑉] + 𝛽 [𝑈1, 𝑉1] ,𝑉2𝑥 = [𝑈,𝑉2] + [𝑈2, 𝑉] + 𝜇 [𝑈2, 𝑉2] + 𝛽 [𝑈1, 𝑉2]+ 𝛽 [𝑈2, 𝑉1] ,𝑉3𝑥 = [𝑈,𝑉3] + [𝑈3, 𝑉] + 𝛽 [𝑈3, 𝑉1] + [𝑈1, 𝑉1]+ 𝛽 [𝑈1, 𝑉3] + ] [𝑈2, 𝑉2] .

(47)

The above equation system is equivalent to𝑎𝑥 = 𝑝𝑐 − 𝑞𝑏,𝑏𝑥 = −𝜆𝑐 + 𝑞𝑎,𝑐𝑥 = 𝜆𝑏 − 𝑝𝑎,𝑎𝑥 = −𝑞𝑏 + 𝑝𝑐 − 𝑞𝑏 + 𝑝𝑐 + 𝛽 (−𝑞𝑏 + 𝑝𝑐) ,𝑏𝑥 = −𝜆𝑐 + 𝑞𝑎 + 𝑞𝑎 + 𝛽𝑞𝑎,𝑐𝑥 = 𝜆𝑏 − 𝑝𝑎 − 𝑝𝑎 − 𝛽𝑝𝑎,𝑎𝑥 = −𝑞𝑏 + 𝑝𝑐 − 𝑞𝑏 + 𝑝𝑐 + 𝜇 (−𝑞𝑏 + 𝑝𝑐)+ 𝛽 (−𝑞𝑏 + 𝑝𝑐) + 𝛽 (−𝑞𝑏 + 𝑝𝑐) ,𝑏𝑥 = −𝜆𝑐 + 𝑞𝑎 + 𝑞𝑎 + 𝜇𝑞𝑎 + 𝛽𝑞𝑎 + 𝛽𝑞𝑎,𝑐𝑥 = 𝜆𝑏 − 𝑝𝑎 − 𝑝𝑎 − 𝜇𝑝𝑎 − 𝛽𝑝𝑎 − 𝛽𝑝𝑎,𝑎𝑥 = −𝑞𝑏 + 𝑝𝑐 − 𝑞𝑏 + 𝑝𝑐+ 𝛽 (−𝑞𝑏 + 𝑝𝑐) + 𝛽 (−𝑞𝑏 + 𝑝𝑐)− 𝑞𝑏 + 𝑝𝑐 + ] (−𝑞𝑏 + 𝑝𝑐) ,𝑏𝑥 = −𝜆𝑐 + 𝑞𝑎 + 𝑞𝑎 + 𝛽𝑞𝑎 + 𝛽𝑞𝑎 + 𝑞𝑎+ ]𝑞𝑎,𝑐𝑥 = 𝜆𝑏 − 𝑝𝑎 − 𝑝𝑎 − 𝛽𝑝𝑎 − 𝛽𝑝𝑎 − 𝑝𝑎− ]𝑞𝑎.

(48)

Now, we define the enlarged Lax matrices 𝑉[𝑚]2 =(𝜆𝑚𝑉2)+ = 𝑀3(𝑉[𝑚], 𝑉[𝑚]1 , 𝑉[𝑚]2 , 𝑉[𝑚]3 ), 𝑚 ≥ 0, where 𝑉[𝑚]
is defined as 𝑉[𝑚] = (𝜆𝑚𝑉)+, and 𝑉[𝑚]𝑖 = (𝜆𝑚𝑉𝑖)+, 𝑖 = 1, 2, 3.

Solving the enlarged zero curvature equations 𝑈2𝑡
𝑚

−𝑉[𝑚]2𝑥 + [𝑈2, 𝑉[𝑚]2 ] = 0,𝑚 ≥ 0, we get tri-integrable couplings
of the soliton hierarchy in [18]

𝑢𝑡
𝑚

=(((((((((((
(

𝑝𝑞𝑝𝑞𝑝𝑞𝑝𝑞

)))))))))))
)𝑡

𝑚

=(((((((((((
(

−𝑐𝑚+1𝑏𝑚+1−𝑐𝑚+1𝑏𝑚+1−𝑐𝑚+1𝑏𝑚+1−𝑐𝑚+1𝑏𝑚+1

)))))))))))
)

=
((((((((((((((((((((
(

0 12 0 0 0 0 0 0−12 0 0 0 0 0 0 00 0 0 12 0 0 0 00 0 −12 0 0 0 0 00 0 0 0 0 12 0 00 0 0 0 −12 0 0 00 0 0 0 0 0 0 120 0 0 0 0 0 −12 0

))))))))))))))))))))
)

((((((((((((((
(

−2𝑏𝑚+1−2𝑐𝑚+1−2𝑏𝑚+1−2𝑐𝑚+1−2𝑏𝑚+1−2𝑐𝑚+1−2𝑏𝑚+1−2𝑐𝑚+1

))))))))))))))
)

= 𝐽2𝑃2,𝑚+1.

(49)

3.2. Hamiltonian Structures. In this section, for the purpose
of generating theHamiltonian structure of the hierarchy (49),
we will use the corresponding variational identity [20]:

𝛿𝛿𝑢 ∫ {𝑉,𝑈𝜆} 𝑑𝑥 = 𝜆−𝛾 𝜕𝜕𝜆𝜆𝛾 {𝑉,𝑈𝑢} , (50)

where {⋅, ⋅} is a required bilinear form, which is symmetric,
nondegenerate, and invariant under the Lie bracket.∀𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎1, 𝑎2, 𝑎3, 𝑎1 , 𝑎2 , 𝑎3 , 𝑎1 , 𝑎2 , 𝑎3 ) ∈ 𝑅12,𝑏 = (𝑏1, 𝑏2, 𝑏3, 𝑏1, 𝑏2, 𝑏3, 𝑏1 , 𝑏2 , 𝑏3 , 𝑏1 , 𝑏2 , 𝑏3 ) ∈ 𝑅12; we
define the Lie bracket [⋅, ⋅] on 𝑅12 as follows:

[𝑎, 𝑏] = 𝑎𝑇𝑅2 (𝑏) , (51)



Advances in Mathematical Physics 7

where

𝑅2 (𝑏) = (𝑅 (𝑏) 𝑅1 (𝑏) 𝑅2 (𝑏) 𝑅3 (𝑏)0 𝑅 (𝑏) + 𝛽𝑅1 (𝑏) 𝛽𝑅2 (𝑏) 𝑅1 (𝑏) + 𝛽𝑅3 (𝑏)0 0 𝑅 (𝑏) + 𝛽𝑅1 (𝑏) + 𝜇𝑅2 (𝑏) ]𝑅2 (𝑏)0 0 0 𝑅 (𝑏) + 𝛽𝑅1 (𝑏)) , (52)

with 𝑅(𝑏), 𝑅1(𝑏), and 𝑅2(𝑏) being defined by (23), and

𝑅3 (𝑏) = ( 0 −𝑏3 𝑏2𝑏3 0 −𝑏1−𝑏2 𝑏1 0 ) . (53)

Following the properties of the matrix 𝐹2, 𝐹2(𝑅2(𝑏))𝑇 =𝑅2(𝑏)𝐹2 and 𝐹2 = 𝐹𝑇2 , we have
𝐹2 =(𝜂1 𝜂2 𝜂3 𝜂4𝜂2 𝛽𝜂2 + 𝜂4 𝛽𝜂3 𝛽𝜂4𝜂3 𝛽𝜂3 𝜇𝜂3 + ]𝜂4 0𝜂4 𝛽𝜂4 0 0 )

⊗(𝑟0 0 00 𝑟0 00 0 𝑟0),
(54)

where ⊗ is the Kronecker product and 𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝑟0 are
arbitrary constants. It is easy to have

det (𝐹2) = 𝜂64 (𝛽2𝜂1 − 𝛽𝜂2 + 𝜂4)3 (𝜇𝜂3 + ]𝜂4)3 𝑟120̸= 0. (55)

In order to get the Hamiltonian structure of the Lax
integrable system, we define a bilinear form {𝑎, 𝑏} on 𝑅12 of
the following form: {𝑎, 𝑏} = 𝑎𝑇𝐹2𝑏. (56)

Now, we further compute that{𝑉2, 𝑈2,𝜆} = −𝑎𝑟0𝜂1 − 𝑎𝑟0𝜂2 − 𝑎𝑟0𝜂3 − 𝑎𝑟0𝜂4,{𝑉2, 𝑈2,𝑝} = 𝑟0𝑏𝜂1 + 𝑟0𝑏𝜂2 + 𝑟0𝑏𝜂3 + 𝑟0𝑏𝜂4,{𝑉2, 𝑈2,𝑞} = −𝑟0𝑐𝜂1 − 𝑟0𝑐𝜂2 − 𝑟0𝑐𝜂3 − 𝑟0𝑐𝜂4,{𝑉2, 𝑈2,𝑝} = (𝑟0𝑏 + 𝑟0𝑏𝛽) 𝜂2 + 𝑟0𝑏𝛽𝜂3+ (𝑟0𝑏 + 𝑟0𝑏𝛽) 𝜂4,

{𝑉2, 𝑈2,𝑞} = (−𝑟0𝑐 + 𝛽𝑟0𝑐) 𝜂2 + 𝑟0𝑐𝛽𝜂3+ (𝑟0𝑐 + 𝛽𝑟0𝑐) 𝜂4,{𝑉2, 𝑈2,𝑝} = (𝑟0𝑏 + 𝛽𝑟0𝑏 + 𝜇𝑟0𝑏) 𝜂3 + ]𝑟0𝑏𝜂4,{𝑉2, 𝑈2,𝑞} = (−𝑟0𝑐 − 𝛽𝑟0𝑐 − 𝜇𝑟0𝑐) 𝜂3 − ]𝑟0𝑐𝜂4,{𝑉2, 𝑈2,𝑝} = (𝑟0𝑏 + 𝛽𝑟0𝑏) 𝜂4,{𝑉2, 𝑈2,𝑞} = (−𝑟0𝑐 − 𝛽𝑟0𝑐) 𝜂4.
(57)

We use formula (28) and find that 𝛾 = 0. Applying the
corresponding variational identity, we obtain the following
Hamiltonian structure for the hierarchy of tri-integrable
couplings (49):

𝑢𝑡
𝑚

= 𝐾2,𝑚 (𝑢) = 𝐽2 𝛿𝐻2,𝑚𝛿𝑢 , 𝑚 ≥ 0, (58)

where the Hamiltonian operator is

𝐽2 =(𝜂1 𝜂2 𝜂3 𝜂4𝜂2 𝛽𝜂2 + 𝜂4 𝛽𝜂3 𝛽𝜂4𝜂3 𝛽𝜂3 𝜇𝜂3 + ]𝜂4 0𝜂4 𝛽𝜂4 0 0 )−1

⊗( 0 12−12 0) ,
(59)

and the Hamiltonian functions read𝐻2,𝑚= ∫ 𝑟0𝑎𝑚+2𝜂1 + 𝑟0𝑎𝑚+2𝜂2 + 𝑟0𝑎𝑚+2𝜂3 + 𝑟0𝑎𝑚+2𝜂4𝑚 + 1 𝑑𝑥,𝑚 ≥ 0. (60)

Based on (48), a direct computation shows a recursion
relation: 𝑃2,𝑚+1 = 𝐿2𝑃2,𝑚, (61)
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where the recursion operator 𝐿2 is given by𝐿2 = 𝑀𝑇3 (𝐿1, 𝐿11, 𝐿13, 𝐿14)
=(𝐿1 0 0 0𝐿11 𝐿1 + 𝛽𝐿11 0 0𝐿13 𝛽𝐿13 𝐿1 + 𝛽𝐿11 + 𝜇𝐿13 0𝐿14 𝐿1 + 𝛽𝐿14 ]𝐿13 𝐿1 + 𝛽𝐿11), (62)

with 𝐿1 and 𝐿11 being given as in (34), and

𝐿13 = (𝑥11 𝑥12𝑥21 𝑥22) ,𝐿14 = (𝑦11 𝑦12𝑦21 𝑦22) ,𝑥11 = − (𝑝 + 𝜇𝑝 + 𝛽𝑝) 𝜕−1𝑞 − 𝛽𝑝𝜕−1𝑞− 𝑝𝜕−1𝑞,𝑥12 = (𝑝 + 𝜇𝑝 + 𝛽𝑝) 𝜕−1𝑝 + 𝛽𝑝𝜕−1𝑝 + 𝑝𝜕−1𝑝,𝑥21 = − (𝑞 + 𝜇𝑞 + 𝛽𝑞) 𝜕−1𝑞 − 𝛽𝑞𝜕−1𝑞 − 𝑞𝜕−1𝑞,𝑥22 = (𝑞 + 𝜇𝑞 + 𝛽𝑞) 𝜕−1𝑝 + 𝛽𝑞𝜕−1𝑝 + 𝑞𝜕−1𝑝,𝑦11 = − (𝑝 + 𝛽𝑝) 𝜕−1𝑞 − ]𝑝𝜕−1𝑞− (𝛽𝑝 + 𝑝) 𝜕−1𝑞 − 𝑝𝜕−1𝑞,𝑦12 = (𝑝 + 𝛽𝑝) 𝜕−1𝑝 + ]𝑝𝜕−1𝑝+ (𝛽𝑝 + 𝑝) 𝜕−1𝑝 + 𝑝𝜕−1𝑝,𝑦21 = − (𝑞 + 𝛽𝑞) 𝜕−1𝑞 − ]𝑞𝜕−1𝑞− (𝛽𝑞 + 𝑞) 𝜕−1𝑞 − 𝑞𝜕−1𝑞,𝑦22 = (𝑞 + 𝛽𝑞) 𝜕−1𝑝 + ]𝑞𝜕−1𝑝+ (𝛽𝑞 + 𝑞) 𝜕−1𝑝 + 𝑞𝜕−1𝑝.

(63)

4. Conclusion

In this paper, we take advantage of the non-semi-simple
Lie algebras consisting of 3 × 3, 4 × 4 block matrices and
apply them to the construction of bi-integrable couplings
and tri-integrable couplings associated with SO(3), based
on the enlarged zero curvature equations. According to the
associated variational identities, their Hamiltonian structures
can be generated.

We can think about other related issues, for example,
how we can get integrable couplings and their Hamiltonian
structures when irreducible representations of SO(3) and
SO(4) are used to form matrix loop algebras. In addition, we

can also consider the relations between the hierarchy of tri-
integrable couplings associated with SO(3) and the hierarchy
of tri-integrable couplings associated with SO(4).
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