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Abstract. 
We propose in this paper a residual-based simpler block GMRES method for solving a system of linear algebraic equations with multiple right-hand sides. We show that this method is mathematically equivalent to the block GMRES method and thus equivalent to the simpler block GMRES method. Moreover, it is shown that the residual-based method is numerically more stable than the simpler block GMRES method. Based on the deflation strategy proposed by Calandra et al. (2013), we derive a deflation strategy to detect the possible linear dependence of the residuals and a near rank deficiency occurring in the block Arnoldi procedure. Numerical experiments are conducted to illustrate the performance of the new method.



1. Introduction
In this paper, we consider iterative methods for solving a system of linear algebraic equations:where  is a nonsingular matrix of order  and  and  are rectangular matrices of dimension  with . For solving such systems, the block GMRES [1] and its variants are very popular. Block GMRES is based on the block Arnoldi process and is formally fully analogous to the ordinary GMRES algorithm by Saad and Schultz [2].
The following notation is used throughout the paper. Subscripts denote the iteration index and superscripts distinguish between individual columns in a block. We denote by  the Euclidean vector norm and the induced matrix norm and by  the Frobenius norm. Moreover, for  of rank ,  is the spectral condition number, where  are the extremal singular values of .
Given an initial approximation  to the solution of (1), letand then in analogy to the unblocked case, we build a sequence of iterates  such thatwhere . Equation (3) is equivalent to minimizing every column of , that is,and also to the orthogonality conditionwhere  is the orthogonality relation induced by the Euclidean inner product. Assume that  is of the form , where  is a basis of . Then, we obtain the th residual matrix
Central to the usual implementations of block GMRES is the block Arnoldi process [1], which can be used to construct the orthonormal basis of . In practice, the possible linear dependence of the residuals of the  systems requires an explicit reduction of the number of right-hand sides. In [3], this was called deflation. If the block residual is nearly rank deficient, block GMRES should be implemented with deflation and there are various sophisticated rank-revealing QR factorizations. For details, see [3] and the references therein. We can write the nondeflated block Arnoldi process as shown in Algorithm 1.
		 Given  of full rank.
	 Compute the QR factorization of .
	 For 
	  Compute .
	  For 
	 .
	 .
	 End For
	  Compute the QR factorization of .
	 End For


	Algorithm 1: Nondeflated block Arnoldi process.

From Algorithm 1, we obtain formally the ordinary Arnoldi relationwhere the  matrix isIn the block Arnoldi algorithm,  holds due to the QR factorizations, and  when , where  is a unit matrix and 0 is a zero matrix of order . This indicates that the whole process is equivalent to the one in which the block vectors are generated column by column using an ordinary modified Gram-Schmidt process.
From (6) and (7), we obtain the fundamental block GMRES relationwhere  is the first  column of the  unit matrix (the size changes with ),  is an upper triangular matrix obtained in Arnoldi’s initialization step, and  is the “block coordinates” of  with respect to the block Arnoldi basis.
Using (9), the least squares problem (3) is solved by recursive QR factorization of , updated by applying Givens rotations. Once the norm of the residual is small enough, the triangular system with the computed -factor is solved, and the approximate solution  is computed. The detailed algorithm of block GMRES can be found in [3–5].
The block GMRES method with deflation at each iteration was proposed in [6]. And a deflation strategy was investigated to detect when a linear combination of approximate solutions is already known; for details, see [7]. In this paper, we deal with a different approach and compare the situation with deflation and without deflation. Let  be a block basis of . Instead of building a block orthogonal basis of , we look for a block orthogonal basis  of . As a special case, simpler block GMRES (SBGMRES) was proposed by Liu and Zhong [8], where . In this paper, we will consider the basis . We call this case the residual-based simpler block GMRES (RB-SBGMRES).
The paper is organized as follows. In Section 2, the RB-SBGMRES and SBGMRES algorithms are described (without deflation). In Section 3, some comparison between RB-SBGMRES and SBGMRES is established. In Section 4, the RB-SBGMRES method with deflation and the corresponding algorithm RB-SBGMRES-D (Table 2) are derived. In Section 5, these algorithms are compared using test matrices taken from the Matrix Market [9]. Conclusions are included in the last section.
2. Residual-Based Simpler Block GMRES
Suppose that  is a basis of . The orthogonal basis  of  is thus obtained from the QR factorization of ; that is,where  is an upper triangular matrix with order .
Due to the orthogonality property , the th residual matrix  can be computed recursively aswhere .
Define . Since the columns of  form a basis of , we can represent  in the formwhere  is the “block coordinates” of  with respect to the block basis . Due to , , and , it follows thatHence, once the residual norm is small enough, we can solve this upper triangular system (13) and then compute the approximate solution .
We now present the RB-SBGMRES method without deflation as shown in Algorithms 2 and 3 and Table 1. For comparison, we also present the SBGMRES method proposed in [8].
Table 1: Computational cost of a cycle of RB-SBGMRES (or SBGMRES).
	

	Step 	 Computational cost 
	

	Computation of 	  
	Computation of 	
	Block Arnoldi procedure (2.1)-(2.2)	  
	QR factorization of 	
	Computation of 	
	Computation of 	
	Computation of 	
	



Table 2: Computational cost of a cycle of RB-SBGMRES-D (Algorithm 4).
	

	Step 	 Computational cost 
	

	Computation of 	  
	Computation of 	
	Computation of 	
	Computation of 	
	Block Arnoldi procedure (5.3)	  
	Computation of 	
	QR factorization of 	
	Computation of 	
	Computation of 	
	QR factorization of 	
	Computation of 	
	QR factorization of 	
	Computation of 	
	Computation of 	
	Computation of 	
	Computation of 	
	Computation of 	
	



		 Given , set . If , accept  and exit.
	 For 
	  Compute .
	  For 
	 .
	 .
	 End For
	  Compute the QR factorization of .
	  Compute , .
	  If , break.
	 End For
	 Solve the triangular system  for .
	 From the approximate solution
	 
	 If , then accept  and exit; otherwise, restart: set  and go to Step (1).


	Algorithm 2: RB-SBGMRES(m).

		 Given , set . If , accept  and exit.
	 For 
	  Compute  if ,  for .
	  For 
	 .
	 .
	 End For
	  Compute the QR factorization of .
	  Compute , .
	  If , break.
	 End For
	 Solve the triangular system  for .
	 Form the approximate solution
	 
	 If , then accept  and exit; otherwise, restart: set  and go to Step (1).


	Algorithm 3: SBGMRES(m).

3. Comparison with SBGMRES
In [8], an equivalence between SBGMRES and classical block GMRES had been established. Algorithm 2 indicates that RB-SBGMRES is equivalent to block GMRES; that is, search a solution , such that .
On the other hand, for single right-hand side, it has been observed in [10] that the gap between the true residual  and the updated residual  can be strongly influenced by the conditioning of , which is the basis of , and the choice of the basis  has an effect on the conditioning of the matrix  [10]. Since we compute the coordinates of the correction  in the basis  by (13), the approximate solution  becomes inaccurate as the conditioning of  grows. Simpler GMRES [11] is, in general, less accurate than GMRES and is inherently unstable due to the choice of the basis . It is easy to formulate an analogous conclusion in the block case.
There is a theorem about condition number of  in [8] stated as follows.
Theorem 1.  For , one haswhere  is the number of right-hand sides.
The condition number of  may have an effect on the conditioning of the matrix . In the following, we formulate an analogous theorem on the condition number of .
Theorem 2.  Suppose that  steps of RB-SBGMRES have been taken and , , if and only if  is a zero vector; then, one haswhere  and  is the number of right-hand sides.
Proof.  Let  be a QR factorization of . We have whereMoreover, we get .
From (11), we obtainThen, it follows thatSince the columns of  are orthogonal, it follows thatOn the other hand,Thus, using the triangle inequality and the fact that the 1-norm is bounded from above by the 2-norm, we haveThe norm of  can be expressed using (11) asWith , we haveThe proof then follows from .
Theorem 1 indicates that the conditioning of  is inversely proportional to the actual relative norm of the residual. Once residuals become small, this will lead to the ill-conditioning of the matrices  and the matrices , and SBGMRES will behave unstably after some initial residual reduction. However, from Theorem 2, the conditioning of  is related to the intermediate decrease of the residual norms, not to the residual decrease with respect to the initial residual. For single right-hand sides, it has been observed that  remains well conditioned while  becomes ill-conditioned [10].
4. RB-SBGMRES with Deflation
When block Krylov subspace methods are used for the solution of linear systems of equations with multiple right-hand sides, the linear dependence of the residual of the  systems may occur, and this is called deflation. Deflation may be possible at startup or in a later step. Sometimes, we need to incorporate a strategy for detecting when a linear combination of systems has approximately converged. Recently, Calandra et al. derived a deflation strategy to detect a near rank deficiency occurring in the block Arnoldi procedure in [7]. We provide a brief overview of the method.
Assume that the QR factorization of  has been performed aswith  having orthonormal columns and . To circumvent deflation at startup, the subspace decomposition at the beginning of the cycle is derived by finding a unitary matrix , such thatwith , , and .
The unitary matrix  is determined by the singular value decomposition (SVD) of  and set . Choose a relative deflation threshold  and select  singular values of  such that .
Define  and , for  with orthonormal columns, and assume that the following block Arnoldi relation holds at the beginning of the th iteration:with , , , and . The th iteration of the deflated block Arnoldi procedure produces matrices  and  which satisfywith  having the following block structure: 
Defining , (28) can be reformulated asThe subspace decomposition is performed by finding a unitary matrix  such thatHence, we obtain Defining  as , this leads to which is the block Arnoldi relation required at the beginning of the next iteration.
From (31), the unitary matrix  has the following matrix structure:Defining  as  and  with , the unitary matrix  is determined by the following steps (for details, see [7]): (1)SVD of , with .(2)QR decomposition of  matrix .
In the case of simpler block GMRES method, the relationship , which is an important ingredient for the block GMRES method, cannot be established. We must find another strategy to perform the subspace decomposition.
Assume that the QR factorization of  has been performed as 
We compute  analogously as  in (26), which leads to the following formulas:with ,  and , . To build a block orthogonal basis of , we compute the QR factorization of :with , , , , , and , and  is computed similarly to .
Assume that the block Arnoldi relationholds at the beginning of the th iteration of the deflated block Arnoldi procedure, with , , , , , and , where , , and  are defined as follows: , , , and .
Set , with , and define  as . We generate  by calculating the QR factorization of , which leads to the following formulas:with , , , , and , and  is a unitary matrix, which is determined similarly to .
Compute  and make it orthogonal to the columns of  by an ordinary modified Gram-Schmidt process, such that with , and  have the following block structure:where , , , and . Define  as
We formulateby calculating the SVD of , instead of computing the SVD of . Note that ; we set  and select  singular values of  such that . Once a near rank deficiency occurs in the block Arnoldi procedure, it will be reflected by the singular values of . We now present the RB-SBGMRES method with deflation as shown in Algorithms 4 and 5.
		 Given , set . If , accept  and exit.
	 Compute the QR factorization of .
	 Determine deflation unitary matrix  and  such that  (see Algorithm 5), and set .
	 Define , with  as the first columns of , and define .
	 For 
	  Compute .
	  If 
	  Compute the QR factorization of .
	  Determine deflation unitary matrix  and  such that  (see Algorithm 5), and set .
	  Define , with  as the first columns of , and define .
	  Else
	  For 
	 .
	 .
	 End For
	   .
	   .
	  Define , compute the QR factorization of , leading to
	 , with  defined as (41).
	  Determine deflation unitary matrix  by the SVD of ,
	 and  such that  (see Algorithm 5), and set .
	  Define , with  as the first
	 columns of , and set , .
	 End If
	  Compute , .
	  If , break.
	  Compute the QR factorization of .
	  Determine deflation unitary matrix  and  such that  (see Algorithm 5), and set .
	  Define , with  as the first
	 columns of , and define .
	 End For
	 Solve the triangular system  for , with 
	 From the approximate solution
	 
	 If , then accept  and exit; otherwise, restart: set  and go to Step (1).


	Algorithm 4: RB-SBGMRES-D(m).

		 Choose a relative deflation threshold .
	 Compute the SVD of  as , with ,
	 , ; or the SVD of  as , with
	 , , .
	 Select  singular values of , such that ; or  singular values of  such that .
	 Define  as ; or  as .


	Algorithm 5: Determination of (, , ) or (, , ).

Denote by  and  the number of Krylov directions keeping at the th iteration of the th cycle; Algorithm 4 indicates that  and .
5. Numerical Experiments
In this section, RB-SBGMRES is tested and compared with SBGMRES. The test matrices were taken from the Matrix Market [9]. All computations were carried out using Matlab on a PC with the usual double precision, where the floating point relative accuracy is . In the following examples, we take  as the zero matrix; thus, the initial residual matrix is , and we set , where  is the order of the matrix . We plot the relative true norm of residualand condition number of , respectively, in Figures 1, 2, and 3. The condition number of  is computed by Matlab internal function cond.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		


Figure 1: Example 1, the relative true residual norms versus the number of iterations.






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		


Figure 2: Example 1, the condition numbers versus the number of iterations.






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
		
			
	


Figure 3: Example 1, the relative true residual norms versus the number of iterations.


Example 1.  The matrix is fs1836 (, ) which is a matrix of order , and we have  right-hand sides which are chosen as , , where  is the th column of matrix , , and .
In Figures 1 and 2, we show the relative true norm of residual  and condition number of  for the SBGMRES and RB-SBGMRES, respectively. It is clearly seen from Figure 1 that the relative true norm of residual of SBGMRES may stagnate at a significantly higher level than that of RB-SBGMRES. The reason for this is that the condition number of the matrix  of SBGMRES increases significantly faster than that of RB-SBGMRES as Figure 2 shows. In Figure 3, we show the relative true norm of residual  for the RB-SBGMRES-D and the BFGMRES-S proposed in [7], with . It is clearly seen from the figure that RB-SBGMRES-D can compete with BFGMRES-S.
Example 2.  The matrix is steam1 (, ) which is a matrix of order , and we have  right-hand sides which are chosen as , , , , , where  is the th column of matrix , , and  is the order of matrix .
It is clear from Figure 4 that the condition number of the matrix  of SBGMRES increases faster than that of RB-SBGMRES. Since the number of right-hand sides , the maximum iteration number is . From Figure 5, we can observe that the numerical performance of RB-SBGMRES is better than that of SBGMRES.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
			
				
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 4: Example 2, the relative true residual norms versus the number of iterations.






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
		


Figure 5: Example 2, the condition numbers versus the number of iterations.


Figure 6 shows the relative true norm of residual  for the RB-SBGMRES-D and BFGMRES-S, with . It is clearly seen that the performances of RB-SBGMRES-D and BFGMRES-S are almost same.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
		
			
	


Figure 6: Example 2, the relative true residual norms versus the number of iterations.


Example 3.  The matrix is add20 (, ) which is a matrix of order 2395, and we have  right-hand sides which are chosen as  , ,  for .
It is clear from Figure 7 that the numerical performance of RB-SBGMRES is better than that of SBGMRES, and from Figure 8, we see that the condition number of the matrix  of SBGMRES increases fast while that of RB-SBGMRES remains at a significantly low level. Figure 9 shows the relative true norm of residual  for the RB-SBGMRES-D and BFGMRES-S, with . The performances of RB-SBGMRES-D and BFGMRES-S are almost the same for Example 3.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
		
			
	


Figure 7: Example 3, the relative true residual norms versus the number of iterations.






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
		


Figure 8: Example 3, the condition numbers versus the number of iterations.






	
	
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
		


Figure 9: Example 3, the relative true residual norms versus the number of iterations.


Example 4.  The matrix is fs7601 (, ) which is a matrix of order 760, and we have  right-hand sides which are chosen as , , ,  for .
It is also obvious from Figure 10 that the RB-SBGMRES method is slightly more accurate than SBGMRES in this example, and Figure 11 also shows that the condition number of the matrix  of SBGMRES increases faster than that of RB-SBGMRES. It is clear from Figure 12 that the performances of RB-SBGMRES-D and BFGMRES-S are almost the same for Example 4.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
		
			
	


Figure 10: Example 4, the relative true residual norms versus the number of iterations.






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
		
		
			
		
			
	


Figure 11: Example 4, the condition numbers versus the number of iterations.






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
		
			
		
		
			
		
			
	


Figure 12: Example 4, the relative true residual norms versus the number of iterations.


In order to further verify that the condition number of the matrix  of SBGMRES increases significantly faster than that of RB-SBGMRES, we compared a broad selection of different matrices from the Matrix Market and presented a comparison of the overall condition number trend. We select matrices, randomly, and set the same convergence threshold for two methods. We compare the iterations required to converge for two methods. It is easy to see from Table 3 that the condition number of the matrix  of RB-SBGMRES is significantly smaller than that of SBGMRES and the number of iterations for the SBGMRES is slightly larger than that of RB-SBGMRES for most matrices.
Table 3
	

	Matrix 	 RB-SBGMRES	 SBGMRES 
	cond 	Iterations required to converge	cond 	Iterations required to converge
	

	ck400	  	 99	  	99
	nos3		123	  	135
	dwa512		128	  	130
	dwg961b		 238	  	242
	dwt607		136		137
	fidap001		53		53
	fs5411		13		13
	gre115		 28		28
	impcola		51	  	51
	jpwh991		 61	 	65
	lns511		 70	 	86
	mbeacxc		112	  	112
	olm500		 68	 	68
	orsirr2		 221		222
	pde900		94		98
	pores1		7	  	7
	qc324		 81		92
	qh768		 30	 	30
	rdb450		 81		84
	saylr1		 59	 	62
	sherman2		268	  	270
	shl400		 165	 	 165
	steam3		 13		 20
	st400		 91	 	93
	tols340		48	  	49
	utm300		 73		73
	curtis54		12	  	12
	west0132		32	  	32
	nos5		 117		119
	nos7		 130		183
	



6. Conclusion
In this paper, we have proposed a minimum residual method mathematically equivalent to the block GMRES method for solving systems of linear equations with multiple right-hand sides. Numerical experiments show that, after some initial reduction, the relative true norms of residual SBGMRES may stagnate at a significantly higher level than that of RB-SBGMRES. This difference is clearly caused by the choice of the basis , which has an effect on the condition number of the matrix . Numerical experiments indicate that  of RB-SBGMRES remains better-conditioned than  of simpler block GMRES, which may become a very ill-conditioned triangular matrix. Since the coordinates of the correction  in the basis  are computed from (13), its error starts to diverge as  grows and  will become inaccurate. We see that the choice  has a better numerical performance. In comparison with the case of deflation, we consider a deflation strategy to detect the possible linear dependence of the residuals of the  systems and a near rank deficiency occurring in the block Arnoldi procedure for RB-SBGMRES method, which was later called RB-SBGMRES-D. Numerical experiments show that the performances of RB-SBGMRES-D and BFGMRES-S are almost the same.
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