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Abstract. 
It is shown that quasi-Frobenius Hom-Lie algebras are connected with a class of solutions of the classical Hom-Yang-Baxter equations. Moreover, a similar relation is discussed on Frobenius (symmetric) monoidal Hom-algebras and solutions of quantum Hom-Yang-Baxter equations. Monoidal Hom-Hopf algebras with Frobenius structures are studied at last.



1. Introduction
Hom-type algebras appeared first in physical contexts, in connection with twisted, discretized, or deformed derivatives and corresponding generalizations, discretizations, and deformations of vector fields and differential calculus. The notion of Hom-Lie algebras was introduced by Hartwig, Larsson, and Silvestrov in [1–3] as part of a study of deformations of Witt algebras and Virasoro algebras. Because of close relation to discrete and deformed vector fields and differential calculus, Hom-Lie algebras are widely studied recently; see [4–9].
Hom-associative algebras generalize the concept of associative algebras. They were introduced by Makhlouf and Silvestrov in [10]. Hom-associative algebras and their related structures have recently become rather popular, due to the prospect of having a general framework in which one can produce many types of natural deformations of algebras. Among them, there are such structures as Hom-coassociative coalgebras, Hom-Hopf algebras, Hom-alternative algebras, Hom-Jordan algebras, Hom-Poisson algebras, Hom-Leibniz algebras, infinitesimal Hom-bialgebras, Hom-power associative algebras, and quasi-triangular Hom-bialgebras (see [11–16]). Furthermore, some categories of Hom-modules on Hom-Hopf algebras are studied, such as the category of Hom-Hopf modules and the category of Yetter-Drinfel’d Hom-modules in [17].
The concept of Frobenius algebras is very important because of the connections to such diverse areas as group representations, homology of a compact oriented manifold, topological quantum field theories, quantum cohomology, Gorenstein rings in commutative algebras, Hopf algebras, coding theory, Lie quasi-Frobenius algebras, and the classical (quantum) Yang-Baxter equation (see [18–21]). In addition, there is a “quantum version” of the classical result that any finite dimensional Hopf algebra is Frobenius. The main properties of Frobenius algebras were developed by Nakayama in [22]. Nakayama automorphism is a distinguished -algebra automorphism of a Frobenius algebra  which measures how far  is from being a symmetric algebra, where  is a fixed field. The automorphism is the identity if and only if  is symmetric. A connection between solutions of the classical Yang-Baxter equation and quasi-Frobenius Lie algebras was studied by Drinfel’d [23]. The authors in [19] gave the relation between Frobenius algebras and solutions of the quantum Yang-Baxter equation.
Naturally, we would like to do some research in Frobenius Hom-algebras. Some preliminary results about monoidal Hom-algebras with Frobenius property have been studied, such as when finite dimensional monoidal Hom-Hopf algebras are Frobenius associated with integral spaces [16], the structures of separable and Frobenius monoidal Hom-algebras related to the Hom-Frobenius-separability equation, as well as the Nakayama automorphism of Frobenius monoidal Hom-algebras [24], and so on.
The main purpose of this paper is to do further research in Frobenius Hom-algebras connected with solutions of the quantum Hom-Yang-Baxter equation. This paper is organized as follows. In Section 3, we give some preliminary results about surgenerate bilinear forms and the element , where  is an object in the Hom-category . In addition, a connection between solutions of the classical Hom-Yang-Baxter equation (CHYBE) and quasi-Frobenius Hom-Lie algebras is also discussed. Specifically, for Hom-Lie algebra , such an element  satisfies CHYBE if and only if there exists a surgenerate bilinear form on  such that it is quasi-Frobenius. In Section 4, a similar relationship between Frobenius (symmetric) monoidal Hom-algebras and the quantum Hom-Yang-Baxter equation (QHYBE) is discussed. For any Frobenius monoidal Hom-algebra, there exists a class of solutions of the QHYBE. And a converse result when monoidal Hom-algebras are Frobenius is also presented. It is known that a finite dimensional monoidal Hom-Hopf algebra  is Frobenius if and only if the space of integrals in  is not zero. Last, the properties of monoidal Hom-Hopf algebras with Frobenius structures are studied in Section 5.
2. Preliminaries
Throughout the paper, all vector spaces, tensor products, and homomorphisms are over . The symbol  denotes the transposition map.
Let  be the Hom-category associated with the category  of -modules (see [15] cited by [16]). Throughout, we use the conception of [15] for convenience.
Definition 1.  A monoidal Hom-algebra ([15, Proposition 2.1]) is a vector space  together with an element  and linear maps  such thatfor all .
The definition of monoidal Hom-algebras is the same to the unital monoidal Hom-associative algebras defined in [16, Definition 2.1]. A monoidal Hom-algebra is indeed a unital and associative algebra in the Hom-category . Let  be a monoidal Hom-algebra in the rest of this section.
Right -Hom-modules have been introduced in [16, Definition 2.5]. In the following, we give the definition of a left -Hom-module similarly.
Definition 2.  A left -Hom-module consists of  in  together with a morphism  such that for all  and .
A morphism of left -Hom-modules is a morphism of left -modules in the Hom-category .  will be denoted the category of left -Hom-modules and left -linear morphisms between them.
If  is both a left -Hom-module and a right -Hom-module such that the following compatibility conditionholds, then  is called an -Hom-bimodule.
For any object , let  be an morphism in . Consider the maps  given by . We say that  is a solution of the quantum Hom-Yang-Baxter equation (or the QHYBE for convenience) if
For elements , where  is a monoidal Hom-algebra with unit . Then  acts on  via Hom-multiplication and is a solution of the quantum Hom-Yang-Baxter equation (or the QHYBE for convenience) ifwhere  In what follows, we often omit the summation symbols for convenience.
3. Hom-Lie Algebras and Classical Hom-Yang-Baxter Equation
In this section, we give some preliminary results about surgenerate bilinear forms and a specific element , where  is an object in . In addition, an equivalent relation between solutions of the classical Hom-Yang-Baxter equation (CHYBE) and quasi-Frobenius Hom-Lie algebras is also discussed.
Definition 3.  A Hom-Lie algebra in [9] is a triple  consisting of vector space , bilinear map  (called the “bracket”), and a linear endomorphism  satisfying  for any .
Now let  be a Hom-Lie algebra. Element  is called a solution of the classical Hom-Yang-Baxter equation (or the CHYBE for convenience) ifandHere  where  and .
Let  be finite dimensional. A bilinear form  in  is called surgenerate if there exists an isomorphism  in  given by  Here  is a morphism in  which means that , for all . And this makes sure that  is also a morphism in .
A Hom-Lie algebra  is said to be quasi-Frobenius if  is finitely generated projective -module having a skew-symmetric surgenerate bilinear form  satisfying the following equation:for all .
Lemma 4.  Let  be finite dimensional. Define a homomorphism  by , for all , where  is the twisting given by . Then  is an isomorphism in .
Proof.  First  is well defined in , since . Define a morphism  by , where  is a dual basis for . We can easily check that  is the inverse of . Indeed, for any ,  and 
The endomorphism algebra  can be considered as a monoidal Hom-algebra, where the Hom-multiplication is the composite of morphisms, the unit is the identity homomorphism, and the twisting map  is given by , for .
Proposition 5.  Let  be finite dimensional with a surgenerate bilinear form  in . Further let , be a dual basis of , and . We set , and define a homomorphism in  by  Further we define the mapping  as follows:  for any .
Then(1) for all .(2) is an isomorphism in .(3).(4)The element  does not depend on the choice of the dual bases , of .(5)The mapping  does not depend on the choice of the dual bases , of .
Proof.  (1) Since , , for all . Given , set . Then  for all . Since  is surgenerate, .
(2) Define a homomorphism  in  by  It is not difficult to show that  is an isomorphism with an inverse . Since ,  is an isomorphism in .
(3) For all , we have  by (1). On the other hand, , for all , so , and hence . Further,  for all  by (1). Therefore , which implies .
(4) follows directly from (3).
(5) For , define the mapping  by  in . Obviously, . It follows from (4) that  does not depend on the choice of the dual bases , of .
Lemma 6.  Let  be finite dimensional with a surgenerate bilinear form  in . Further let  be a dual basis of . Choose  such that  for all . We set , and write , where . Next we set , , and .
Then(1), where  is the identity of ;(2).
Proof.  Since , the first assertion is true.
The second statement is obvious.
Theorem 7.  Let  be a Hom-Lie algebra with a skew-symmetric surgenerate bilinear form . Suppose that  is finite dimensional and  is a dual basis of . We set . Then(1).(2)The element  does not depend on the choice of dual basis of .(3)The element  satisfies CHYBE if and only if  satisfies (16).
Proof.  The first two statements follow from (3) and (4) of Proposition 5.
Next, if  satisfies the CHYBE, then by (12) we have . Choose  such that . Then from (4) of Proposition 5,  so . Therefore we have  which proves that  is skew-symmetric.
Last, we only need to show that  satisfies the equation  if and only if  satisfies (16). Since , we have and Then So  if and only if which is equivalent to 
Note that if  is a quasi-Frobenius Hom-Lie algebra, then Lemma 6 implies that  is skew-symmetric.
4. Frobenius Monoidal Hom-Algebras and Quantum Hom-Yang-Baxter Equations
A relationship between Frobenius (symmetric) monoidal Hom-algebras and QHYBE is mainly discussed in this section.
For a finite dimensional monoidal Hom-algebra , we can check that  is a right -Hom-module via the action  given by  where  and  is the dual Hom-coalgebra structure on , for all .
Definition 8 (see [16, Definition 5.1]).  A finite dimensional monoidal Hom-algebra  is called Frobenius if is an isomorphism as right -Hom-modules.
Recall from [16, Proposition 5.2] that a finite dimensional monoidal Hom-algebra being Frobenius has several equivalent characterization as follows.
Lemma 9.  For a finite dimensional monoidal Hom-algebra , the following assertions are equivalent.(1) is Frobenius.(2) as left -Hom-modules, which is called Frobenius isomorphism.(3)There exists a Frobenius structure of . Equivalently, there exist elements  (called Frobenius homomorphism), and  such that  and , for any .(4)There exists a Hom-associative, nondegenerate bilinear form for . That is, there exists a bilinear map  in , such that , and if  or  for any , then .
Let  be a finite dimensional monoidal Hom-algebra. And further we assume that  is Frobenius with Frobenius isomorphism , Frobenius structure  and , and the corresponding bilinear form . By the proof of the above lemma, we know that  for all . Then there exists a dual basis  and  such that . Setting , we note that  for all  So  for all . Thus we can also refer to  and  as dual basis of .
Note that there is an automorphism  called the Nakayama automorphism of  defined in [16, Section 5]. It is easy to check that  is a Hom-algebra automorphism satisfying , that is, , for all .
If a Frobenius monoidal Hom-algebra  has an augmentation , then the element  in  is called a left norm of  if , for any .
Given a monoidal Hom-algebra , we denote  We consider  as an -Hom-bimodule under the actions given byandfor all .
Lemma 10.  Let  be a monoidal Hom-algebra and . Then(1);(2).
Proof.  (1) (2) From (1), we have 
Theorem 11.  Let  be a Frobenius monoidal Hom-algebra with Nakayama automorphism  and let , be dual bases of . We set . Then(1).(2)The element  does not depend on the choice of the dual bases of  of .(3), for all .(4).(5).(6)The element  satisfies the braid relation 
Proof.  The first two statements follow directly from (3) and (4) of Proposition 5.
(3) According to Proposition 5 (1), for any , we have  which proves (3).
(4) For any given , define a map  given by .  is a homomorphism of -Hom-bimodules, where the actions on  are given by (37) and (38). Then (3) implies that  so , for any .
It is obvious that  by setting  in the equality of (3). The statements (5) and (6) follow from Lemma 10.
Theorem 12.  Let  be a finite dimensional monoidal Hom-algebra with two bases  and , and . Then the following conditions are equivalent:(1);(2);(3);(4);(5) is a Frobenius algebra with Frobenius homomorphism  such that , for all .
Proof.  From Lemma 10, it is enough to show that one of the conditions (1), (2), and (3) implies (4). We may as well show that (3) implies (4), and the others can be proved analogously. From (3), it follows that  and sofor all , which proves (4).
Due to Theorem 11, it is enough to prove that (4) implies (5). Define a bilinear map  in  as follows: , for all  Since  and  are two bases of , it follows that  is a well-defined surgenerate bilinear form. And we claim that  is Hom-associative. Indeed, it is enough to show that , for all  Since for any , , then equality (45) implies that  and hence  which implies that Thus , for all  and , by the -invariance of . Setting , we conclude that  is a Frobenius homomorphism and  for all .
A Frobenius monoidal Hom-algebra with Frobenius homomorphism  is called symmetric if , for all . In this case, the Nakayama automorphism  is the identity map of .
Lemma 13.  Let  be a monoidal Hom-algebra with two bases  and , and . Suppose that . Then(1) and ;(2).
Proof.  The first assertion of (1) is proved in Theorem 12, and the second one can be showed similarly.
(2) From (1), we have 
Theorem 14.  Let  be a symmetric monoidal Hom-algebra with Frobenius homomorphism , and , be dual bases of . We set . Then(1), for any ;(2) and ;(3)the element  is a solution of QHYBE, and .
Proof.  Since  is symmetric, the corresponding Nakayama automorphism is the identity. It follows from Theorem 11 (3) that , for all . The last two statements are true from Lemma 13.
Next we consider the converse of the above theorem.
Theorem 15.  Let  be a finite dimensional monoidal Hom-algebra with two bases  and . Further let . Then the following conditions are equivalent:(1) and ;(2) and ;(3) and ;(4), for all ;(5) is a symmetric monoidal Hom-algebra with Frobenius homomorphism  such that , for all .
Proof.  We have proved that (4) implies the first three equalities in Lemma 13. And each of the first three conditions implies the fourth one in the same way as it was done in Theorem 12. Taking into account Theorem 14, we have only to prove that (4) implies (5). Set  in  as follows: , for all  We have seen that  is a Hom-associative surgenerate bilinear form by Theorem 12, and  is a Frobenius homomorphism. To show , we only need to show , for , which is equivalent to prove that , for . From (4) we see that , for all , so by Proposition 5 (1). Hence  which implies  for all . Thus , for all . Taking , we get  so , for all .
5. Frobenius Monoidal Hom-Hopf Algebras
It is known that a finite dimensional monoidal Hom-Hopf algebra  is Frobenius if and only if the space of integrals in  is not zero. In this section, we do further research on monoidal Hom-Hopf algebras with Frobenius structures.
Definition 16 (see [16, Definition 2.2]).  A monoidal Hom-coalgebra is an object  in the category  together with linear maps  and  such thatfor all 
Definition 17.  A monoidal Hom-bialgebra [16, Definition 2.3]  is a bialgebra in the category . This means that  is a monoidal Hom-algebra and  is a monoidal Hom-coalgebra such that  and  are Hom-algebra maps; that is, for any , 
Definition 18 (see [16, Definition 2.5]).  A monoidal Hom-bialgebra  is called a monoidal Hom-Hopf algebra if there exists a morphism (called antipode)  in  (i.e., ), such that, for any ,In fact, monoidal Hom-coalgebras, monoidal Hom-bialgebras, and monoidal Hom-Hopf algebras are coalgebras, bialgebras, and Hopf algebras in the category , respectively. Further, the antipodes of monoidal Hom-Hopf algebras have similar properties (see [16]) of those of Hopf algebras. The self-duality of finite dimensional monoidal Hom-Hopf algebras also holds from [16], and the dual structure of monoidal Hom-Hopf algebra  is given as follows: for all , 
Definition 19 (see [16, Definition 3.1]).  A left integral in  is an -invariant element  (i.e., ) such that  for all .
Lemma 20.  Let  be a monoidal Hom-Hopf algebra with antipode . Further let  be an -invariant element in . Then for all ,  if and only if  is a left integral in .
Proof.  Let . Since for any ,  we have  if and only if , which means that  is a left integral in .
Lemma 21.  Let  be a monoidal Hom-bialgebra and Frobenius with Frobenius homomorphism  such that  and with left norm , for all . Then  is a monoidal Hom-Hopf algebra.
Proof.  We define  in  by  for all . Then by the properties of , we see that  for all .
It is not difficult to check that the endomorphism  in  forms a monoidal Hom-algebra with Hom-multiplication convolution , twisting map  and unit . Indeed, for all  And the Hom-associativity is true by the Hom-coassociativity of . The map  is epimorphism, since . By Lemma 4 in [25],  is an isomorphism with inverse map . So . Thus  is an antipode of .
Theorem 22.  Let  be a monoidal Hom-Hopf algebra with antipode  and also Frobenius with Frobenius homomorphism  such that for all  and with the Nakayama automorphism . Further let , be dual bases of . Then(1) is a left norm and a left integral in . Further , and ;(2) generates the Hom-submodule of left integral in  and 
Proof.  (1) Setting , we have  and  by the -invariance of  and Proposition 5 (1). Further, for all ,  Since , can also be considered as dual bases of , hence we see that which implies that  is -invariant. Thus  is a left integral in  by Definition 19.
Next, , so  is a left norm.
From Lemma 21, we know that the antipode  is given by  And  is bijective when  if finite dimensional by Theorem 5.3 of [16]. So  forms a basis of . Therefore  for some . Then we rewrite the expression of  as  for all . Applying  we get  for all . On the other hand . So . It follows that , so , and hence  By the counitary property of  we have . And , so  by applying . Therefore . Similarly, , which implies that . According to the above, so we obtain (2) From Proposition 3.4 of [16], we know that the integral in finite dimensional monoidal Hom-Hopf algebras does not necessarily exist. But if it exists, it is unique up to a scalar multiplication. And  is a left integral in  by Lemma 21, so  generates the Hom-submodule of left integral in . Since  by (1), we see that  by applying  and the definition of  in Proposition 5. So .
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