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Abstract. 
Consider the following nonlocal integrodifferential system: , where  is a general nonlocal integrodifferential operator, ,  is a fractional Sobolev critical exponent, , ,  is a lower order perturbation of the critical coupling term, and  is an open bounded domain in  with Lipschitz boundary. Under proper conditions, we establish an existence result of the ground state solution to the nonlocal integrodifferential system.



1. Introduction
Recently, fractional Sobolev spaces and the corresponding nonlocal equations are applied to many subjects, such as, anomalous diffusion, elliptic problems with measure data, gradient potential theory, minimal surfaces, nonuniformly elliptic problems, optimization, phase transitions, quasigeostrophic flows, singular set of minima of variational functionals, and water waves (see [1] and the references therein). For more details, please refer the book [2]. In [3], the authors considered the following equation:where  is a general nonlocal integrodifferential operator of order  which will be defined later and  is a lower order perturbation of the critical power , and, under proper conditions, an existence result of its solutions was obtained.
In present paper, we use some ideas and techniques in [3–5] to extend the results in [3] to the system case.
Consider the following nonlocal integrodifferential system:where ,  is a fractional Sobolev critical exponent, , ,  is a lower order perturbation of the critical coupling term,  is an open bounded domain in  with Lipschitz boundary, and  is a general nonlocal integrodifferential operator defined as Here,  is a function satisfying
Define the Hilbert space  as the completion of  with respect to the norm  induced by the scalar product  given by If  is an open bounded Lipschitz domain, then  coincides with the Sobolev spacewhere  is a linear space of Lebesgue measurable functions from  to  such that the restriction to  of any function  in  belongs to  and the map  is in , and  is the complement of  in .
The solutions of (2) coincide with the critical points of the following energy functional :where , , , endowed with norm , and  is a nonnegative Carathéodory function from  to ; namely,Consider the following Nehari manifold: define the ground state energy of (2) byand call a solution  by a ground state solution if . DefineThen , where 
Theorem 1.  Assume that , where  is the first eigenvalue of the nonlocal operator  with homogeneous Dirichlet boundary conditions. If there exists  with  a.e. in , such thatthen (2) has a nontrivial ground state solution.
2. Preliminaries
We need the following results, which have been proved in [6].
Lemma 2.  There exists a positive constant  such that, for any , where  is only depending on  and .
3. Proof of Theorem 1
Lemma 3.  Assume that  is a Carathéodory function; that is, (10)–(12) hold. Then, for any , there exist  and  such that for a.e.  and, for any ,
Proof.  For any , by (12), there exists  such that, for a.e.  and for any  with , It follows from (10) that there exists  satisfying, for a.e.  and for any  with ,Combining (21) and (22), we see that (19) holds.
By (11), for any , there exists  such that, for a.e.  and for any  with , It is easy to see from (19) that Therefore, there exists  satisfying, for a.e.  and for any  with ,Then, (20) follows from (23) and (25).
Lemma 4.  Assume that . Then, there exist  and  such that (i) for any  with ;(ii) a.e. in , , and . In particular, if (17) holds, then we can construct  by , where  is given by (17) and  is large enough.
Proof.  For  and any , by (20), Lemma 2, , and (5), we deduce that For , we have where  and  are suitable positive constants. Let  satisfy , where  is small enough such that . Therefore, which proves (i).
Fix  with  and  a.e. in . Choosing  in (19), we get thatFor , by (29), we have which implies that  as . Then, (ii) follows by taking  with  sufficiently large.
In particular, if (17) holds, then we may fix  by . Thus, we can construct  by , where  is large enough.
Definewhere with  given in Lemma 4. It is standard to see thatwhere  and  is given in (14).
Lemma 5.  , where  is given in Lemma 4 and  is defined in (15).
Proof.  Noting that, for any , the function  is continuous in ; we get that  and , where  is given by Lemma 4. Thus, we may find  such that . Therefore, which implies that . Recalling that  and the special pass  belongs to , by (17), we deduce that 
Lemma 6.  Every sequence  with  and  in  as  ( sequence of ) is bounded in .
Proof.  From and it can be seen thatfor some suitable positive constant . For , it follows from Lemma 2 and (5) thatfor some positive constant . By (19) and (39), we havewhere  is a positive constant relevant to  and . Choosing  small enough such that , then (38) and (40) yield that Letting  in (40) and noting , by (41), we infer that for suitable constants  and , which implies that  is bounded in .
Proof of Theorem 1.  It follows from  that , where  is given in Lemma 4. By Lemma 4, we see that  has a Mountain Pass Structure (e.g., [7]). By (33) as well as Lemma 5 and Theorem 2.2 in [8], there is  sequence  for . By Lemma 6, we get that  is bounded in , and then, going if necessary to a subsequence, still denoted by , there exists  such that  weakly in ; i.e., for any . It follows from (41) and the boundedness of  in  thatThen, it is standard to see thatup to a subsequence, where . By (19), (44), and the boundedness of , we see that Since  is superlinear with respect to  and , we get that the mappings  and  are continuous in . Therefore, Then, by (46) and (47), we have Noting that  is the dual space of , we deduce that and then, in particular, For any , we have Then, it follows from (43), (45), and (50) that which means that  is solution of (2). It remains to show that  is nontrivial. Suppose by contradiction that  in . Then, by (19) and boundedness of  and  in , we have and similarly Noting that  in  for any  and letting , we get that Taking , we have Therefore, Assume, up to a subsequence, that . Then, , and which means that . By Lemma 5, we see that . Noting (15), we have which implies that . Therefore, , contradicting with Lemma 5. Hence,  can not be . Besides (45), up to a subsequence, we may assume that where  is the power sum of  with respect to  and . From we get that where ; i.e.,  in . Setting  and , then  weakly in . Thus,  strongly in ,  a.e. in , , ,  in , up to a subsequence. Brezis-Lieb Lemma guarantees that Since  and , by (63), we deduce thatandwhere Assume that up to a subsequence. By (64), we see that Letting , we haveSuppose by contradiction that , where . Then,  is a nontrivial solution of . Hence, by (69), we deduce that , contradiction with Lemma 5. Therefore,  can not be , where . Similarly,  can not be , where . Thus, (2) has a nontrivial ground state solution, which completes the proof.
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