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Abstract. 
We construct metric connection associated with a first-order differential equation by means of the generator set of a Pfaffian system on a submanifold of an appropriate first-order jet bundle. We firstly show that the inviscid and viscous Burgers’ equations describe surfaces attached to an ODE of the form  with certain Gaussian curvatures. In the case of PDEs, we show that the scalar curvature of a three-dimensional manifold encoding a system of first-order PDEs is determined in terms of the integrability condition and the Gaussian curvatures of the surfaces corresponding to the integral curves of the vector fields which are annihilated by the contact form. We see that an integral manifold of any PDE defines intrinsically flat and totally geodesic submanifold.



1. Introduction
A simple dynamical transport phenomenon such as transport of a pollutant in a fluid, transportation of information, wave propagation, traffic flow, population density, chemical reactions, and gas dynamics is described by a certain first-order partial differential equation (PDE) of space and time variables, the so-called transport equation [1, 2]. Among them, Burgers’ equation may be the more intriguing one which serves as a prototype model for turbulent flows [3]. Many works in the literature are devoted to investigation of Lie symmetries and the exact solutions of Burgers’ equation(s) and its generalizations [4–14]. Beyond its importance in mathematical physics, it appears also as a geodesic equation on diffeomorphism group of a circle with right invariant  metric (see [15] and references therein). As we show in this paper, the identity for the Gaussian curvature of a surface associated with a first-order ordinary differential equation (ODE) in the first-order jet bundle is described by an inhomogeneous Burgers’ equation:
Geometric study of differential equations is a notable subject in differential geometry and dates back to Tresse, Lie, and Cartan [16–19]. A considerable number of works in the literature are devoted to study of problems such as linearization, existence of local coordinates in which an equation takes the special form, and theory of connections associated with differential equations [20–27]. In modern terminology, an ODE or a PDE is identified with an exterior differential system in an appropriate jet bundle and this approach leads to geometrization of differential equations. In this work, we basically deal with the first-order ODEs and PDEs in the context of Riemannian geometry and Riemannian structure defined on a submanifold corresponding to given equation enables one to give a geometric description of an interesting class of equations in mathematical physics.
With this regard, in this paper, we construct  and -valued connections from the exterior differential systems encoding first-order ODEs and PDEs on corresponding submanifolds in the appropriate jet bundles. As a new result, we firstly show that the Gaussian curvature of a surface corresponding to a first-order ODE in  is described by nonlinear PDE (1). Accordingly, we show that the inviscid and viscous Burgers’ equations and Korteweg-de Vries (KdV) equation can be seen as the equations for surfaces with certain Gaussian curvatures. Also, Riemannian metrics for spaces of constant curvature can be attached to some linear ODEs by solving certain inhomogeneous Burgers’ equations. For a system of first-order PDEs, we show that an integral manifold of any system of first-order PDEs defines intrinsically flat and totally geodesic submanifold. We prove that the scalar curvature of three-dimensional Riemannian manifold obtained from a system of first-order PDEs is given by the sum of the integrability condition and the Gaussian curvatures of the surfaces corresponding to the characteristic equations. Accordingly, we show that, for all points on an integral submanifold of a flat manifold, sectional curvatures are described by a pair of inhomogeneous Burgers’ equations.
2. Preliminaries
2.1. Basics of Riemannian Geometry in an Orthonormal Frame
In this subsection, we shall give the basic notions of the formulation of the Riemannian geometry in an orthonormal frame. We assume that all considerations are local and all objects are smooth. For details in the subject we refer to [28–30].
Let  be a  dimensional Riemannian manifold and let  be a coordinate neighbourhood of . Let  and  denote the set of sections of the tangent and cotangent bundles of  over , respectively. For simplicity, let us denote  by . Let  and  for . An orthonormal frame field  on , which is dual to the coframe field , is defined with respect to symmetric section  of  ashere .  is called the Riemannian metric on . The matrix of 1-forms , satisfyingis called unique -valued torsion-free connection on . From (3), one has  for some functions . The coefficients  are defined in terms of the structure functions  asClearly one has . Exterior derivative of (3) gives . This implies that is called curvature 2-form or the Riemannian curvature tensor associated with the connection  and it is written asRiemannian curvature tensor has the symmetriesRicci curvature and the scalar curvature are defined, respectively, byThe covariant derivative operator associated with the connection  is defined bywith
2.2. Jet Bundle Formulation of the First-Order Equations
Consider a first-order ODE of the formFor the function , (11) can be described geometrically as a surface in the first-order jet bundle by . That is,where  denotes standard local coordinates on . The first-order jet bundle of maps  is a fibered manifold defined by the space of all 1-jets of smooth sections of the trivial bundle . The 1-graph of a solution curve of differential equation (11) is a curve on , represented by a section , on which contact form  vanishes. The one-form  is defined by the pullback of the canonical contact form  to , by natural inclusion. Accordingly, solutions of the exterior differential systemwith , are in one-to-one correspondence with the solutions of (11). For the vector fieldson , we have the relation  and 1-graph of a solution curve of (11) is an integral curve of the vector field .
Similar to ODEs, any first-order PDE with one dependent and two independent variables, in the formis described as a submanifold in the first-order jet bundle of maps . In the vicinity of a point, where , Implicit Function Theorem states that one can write (15) asIf  is known, say , then (16) may be written as an overdetermined systemwith , such that  must hold on an integral surface. The first-order jet bundle of maps  is a fibered manifold defined by the space of all 1-jets of smooth sections of the trivial bundle  of two independent and one dependent variables and denoted by . Let  be the standard coordinates on . The 1-graph of a solution or an integral surface of (15) is represented by the section  and  on which the canonical contact formvanishes. That is, solutions of the exterior differential systemare in one-to-one correspondence with the solutions of (17).
Consider three-dimensional submanifold  determined by the equationsLet us denote the pullback of  to  by . In terms of the differential 1-formsdefined on  with local coordinates , and the inclusion map, an integral submanifold  of (15) is determined by  such thatSince the exterior derivative commutes with the pullback,  holds also on this two-dimensional integral manifold. Thereof, the identity  must vanish identically on integral manifold . Due to the Frobenius Theorem, the integrability condition is described byIt is suitable to note here that  does not necessarily hold identically on .
The vector fieldssatisfy the relation . Integral curves of the vector fields  and , passing through the point , are determined by solutions of the ordinary differential equationswhich correspond to characteristic equations for (17). Moreover, since  on an integral surface, parameter curves, passing through a point  for , on a solution are determined by the solutions of (25). In the subsequent section, we will define Riemannian metrics on  and  in terms of the exterior differential systems determined by the set of 1-forms  and . They define local coframe fields on  and , respectively, since both of them are linearly independent at each point on respective coordinate neighbourhoods. For detailed description of differential equations in jet bundle formalism we refer to [29, 31–33].
3. Metric Connections Associated with First-Order Differential Equations
3.1. Connection on 
We shall define a Riemannian metric on a coordinate neighbourhood of  by the sum of squares of differential 1-forms (13) as follows:The coframe field  on  is dual to the orthonormal frame of vector fields (14). A solution curve of (11) is attached to an integral curve of  and an integral curve of  to  const. By definition . It is suitable to note that Riemannian metric (26) is not uniquely defined and depends on the choice of the coframe. The coframe that we use here may be thought as “best representative” associated with a differential equation since solutions are determined by vanishing of the canonical contact form in jet bundle. Moreover, our aim is to relate geodesic curves of the metric connection to solution curves of given ordinary differential equation simply as . In other words, an integral curve of (11) can be obtained as the projection of a geodesic curve.
In the formulation that we use, the one-forms  are defined by the restriction or pullback of the canonical contact form  and  on  to . Since  on , in terms of a local coordinates , coordinate description of the Riemannian metric is obtained asby substituting  and  in (26). Notice that the components of the Riemannian metric purely depend on the right hand side of a given ODE.
The structure equations for the coframe field  are determined asFrom here, we can define unique -valued torsion-free connection asIn terms of , structure equations take the formwhere 
Accordingly, from definition (10) of the covariant differentiation, we obtainThen, it is concluded that 1-graph of a solution curve of (11) defines a geodesic curve of connection (29).
Curvature of the connection  is found asIt is clear that  is exactly the Gaussian curvature of the metric compatible torsion-free connection, whose components are determined in local coordinates by the well-known formula:From (32) or (33), we see that the Gaussian curvature of the metric connection is given byAs a consequence, we get the following.
Theorem 1.  Gaussian curvature of the metric connection (29) on the surface corresponding to the equation  is determined by the following inhomogeneous Burgers’ equation:
This representation for the curvature is worthwhile to word in some aspects: By means of expression (35), the inviscid and viscous Burgers’ equations and also KdV equation can be seen as the equations for surfaces with certain Gaussian curvatures. Also, by virtue of our representation, the problem of the construction of Riemannian metrics associated with certain first-order ODEs turns out to finding a solution of certain Burgers’ equations. Moreover, expression (35) for curvature is rather simple and hence it is very convenient for computational purposes in a way that it is calculated by the Lie derivative of the right hand side of a given ODE in the direction of the vector field . Besides, the spaces of constant curvature, which admit isometry group of maximal dimension, can be attached to some ODEs by solving certain inhomogeneous Burgers’ equations.
From (35) it follows that  is flat iff  satisfiesfor some smooth function . This identity tells us that the characteristic curves of (36) correspond to the solution curves of differential equation (11). Therefore, the inviscid Burgers’ equationcorresponds to a flat surface in  associated with the equationAlso, it is geometrically reasonable to investigate a question like whether the right hand side of (36) depends also on , since it is ultimately related to obtaining a space of constant curvature  from a single ODE. These are in fact determined by the following Burgers’ equations:such that the characteristic curves of these first-order PDEs correspond to solutions of the system of equationsfor , , and , respectively. Although solutions of these equations can be obtained as implicit functions of the corresponding first integrals by the method of characteristics, it is not hard to see the existence of such Riemannian metrics simply by the linear differential equation as follows:
Proposition 2.  A linear first-order equationdescribes a surface of constant curvature  if and only if  satisfies the following differential equations:respectively. Moreover, in the case of , if  is an integrating factor of (41), then  satisfies the inviscid Burgers’ equation .
The proposition follows by a direct calculation by taking  in (34) or (35).
On the other hand, to see what happens with our representation if the viscosity is added, identity (35) for the Gaussian curvature tells us that viscous Burgers’ equation represents a surface with curvatureTo see this, let us consider the ODEwith . Then, as it is well known,  satisfies the viscous Burgers’ equationprovided that  satisfies the heat equation . In this case, Gaussian curvature of the surface corresponding to (44) is determined by the differential equationwhich is equivalent to (45) due to (35). The existence of such curvature is guaranteed by the existence of a solution of the heat equation and so is (45).
Another interesting integrable model is Korteweg-de Vries (KdV) equationwhich admits soliton solutions and appears widely in the dynamics of shallow water waves [34]. From (35), it is seen that (47) describes a surface with Gaussian curvature
3.2. Connection on 
Analogues to the previous subsection, we shall define a Riemannian metric on a coordinate neighbourhood of  by the sum of squares of the elements of the coframe  asCoframe  is dual to the orthonormal frame field of vector fieldsthat is, , and by definition we have . In terms of the local coordinates , Riemannian metric (49) is given by
In order to construct -valued torsion-free connection, let us consider the structure equations for the coframe :where. Construction of -valued connection needs a little bit of work. To this end, we shall solve the system of equationsBy using Cartan’s Lemma for the 1-forms , , and , we obtainAccordingly, we havewhere the connection matrix of 1-forms is defined byTherefore, we have the following:
Theorem 3.  The -valued torsion-free connection on  is determined bywhere , , and  are defined, respectively, by , , and .
By definition (10) of the covariant differentiation, the covariant derivatives for the frame field  are deduced aswhere . It follows from here that the vector fields  and  are covariantly constant along themselves with respect to the metric compatible connection.
As it is seen directly from (58) and (59), a PDE with one dependent and two independent variables defines codimension one distribution in three spaces. Let us denote this distribution by . Since  is spanned pointwisely by the orthonormal vector fields , the curvature of  is determined by the equationThe following proposition states the intrinsic and extrinsic properties of an integral surface of (17). For the geometry of submanifolds in a Riemannian manifold, see, for instance, [35].
Proposition 4.  Any integral surface of (17) is an intrinsically flat and totally geodesic submanifold of .
Proof.  Due to ,  defines a normal vector field of the integral surfaces of (17). Since  on an integral surface, Riemannian metric (51) reduces to Euclidean metricon an integral surface . The intrinsic curvature of the surface  is determined by the single independent component of Riemannian curvature tensor associated with (62). Therefore, any integral surface defines intrinsically flat surface. The second fundamental form of an integral surface identically vanishes, since on an integral surface we have . It follows from here that any integral manifold of (17) is a totally geodesic submanifold of Riemannian manifold .
Now, let us state and prove the theorem manifesting that the scalar curvature of the Riemannian manifold  is determined by the integrability condition for (17) and the Gaussian curvatures of the surfaces corresponding to the characteristic differential equations (25).
Theorem 5.  The scalar curvature of the Riemannian manifold  constructed from the system of equations (17) is determined bywhere  and ,  are the Gaussian curvatures of the surfaces corresponding to equations in (25), respectively.
Proof.  The proof is based on the straightforward calculation. From the second structure equations , we determine the curvature 2-form associated with the connection  in terms of the coframe  as Components of the Riemann curvature tensor  are found as where . The sectional curvatures of the two-dimensional subspaces of the tangent bundle spanned by the orthonormal pair of the vector fields , , and  are determined by , , and , respectively. Accordingly, from (7) and (8), the scalar curvature is found by It follows from here thatUsing identity (34) for the Gaussian curvature of a surface corresponding to a given ODE, if we denote the Gaussian curvatures of the surfaces corresponding to equations in (25) by  and , respectively, then the theorem follows.
As a consequence of this theorem, the following are immediate:
Corollary 6.  Scalar curvature of the Riemannian manifold  identically vanishes if and only if .
Corollary 7.  For all points on an integral manifold of (17), scalar curvature of the Riemannian manifold  is determined by
It is also suitable to note here that a Riemannian manifold  is said to be flat if and only if all of the sectional curvatures identically vanish on . Accordingly, we have the following.
Corollary 8.  Riemannian manifold  is flat iff the following system of equations holds for all points of :
It follows from this corollary that in the case of a flat manifold there exists a unique integral surface passing through each point of  due to the Frobenius theorem. An integral surface is obtained by successive solutions of the system of characteristic equations in (25) determined by the concomitant Burgers’ equations  and , both of which describe intrinsically flat surfaces in .
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