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Abstract. 
We present the dimensional regularization approach to the renormalization group theory of the generalized sine-Gordon model. The generalized sine-Gordon model means the sine-Gordon model with high frequency cosine modes. We derive renormalization group equations for the generalized sine-Gordon model by regularizing the divergence based on the dimensional method. We discuss the scaling property of renormalization group equations. The generalized model would present a new class of scaling property.



1. Introduction
The sine-Gordon model is an interesting model and plays an important role in physics [1–13]. There are many phenomena that are related to the sine-Gordon model. In this sense, the sine-Gordon model has universality. In the weak coupling phase the sine-Gordon model is perturbatively equivalent to the massive Thirring model [1, 14–16]. The two-dimensional (2D) sine-Gordon model describes a crossover between weak coupling region and strong coupling region. The renormalization equations are the same as those for the Kosterlitz-Thouless transition of the 2D classical XY model [17–19]. The 2D sine-Gordon model is mapped to the Coulomb gas model where particles interact with each other through logarithmic interaction [4, 20, 21]. The Kondo problem belongs to the same universality class where the renormalization group equations are given by the same equations for the 2D sine-Gordon model [20–27]. The renormalization group equations in the Kondo problem was derived before those by Kosterlitz and Thouless. The one-dimensional Hubbard model is mapped to the 2D sine-Gordon model by using a bosonization method [28–31], where the Hubbard model is an important model that describes the metal-insulator transition and high-temperature superconductivity [32–39]. The sine-Gordon model appears in a multiband superconductor where the Nambu-Goldstone modes become massive due to the Josephson couplings [40–47]. The Josephson plasma oscillation in layered high-temperature superconductors was analyzed based on the sine-Gordon model [48]. In a series of papers [41–43, 45, 46] we introduced the sine-Gordon model into the study of superconductivity and examined significant excitation modes in superconductors. A generalization from  to a compact continuous group G for the sine-Gordon model was also investigated [49] where the sine-Gordon model considered in this paper and in references cited above is a model with  group.
In this paper, we investigate the renormalization group theory for the 2D generalized sine-Gordon model by using the dimensional regularization method to regularize the divergence [50–52]. Here the generalized sine-Gordon model is a sine-Gordon model that includes high frequency cosine potential terms such as  for an integer n. The renormalization of the generalized sine-Gordon model was investigated [53] by the Wegner-Houghton method [54] and by the functional renormalization group method [55]. We use the dimensional regularization method in deriving the renormalization group equation for the generalized sine-Gordon model. The divergence is regularized near two dimensions by putting the dimension . The divergent part of integral is evaluated as a pole in the form . This is called the minimal subtraction method. Then the beta function for the coupling constant is derived.
2. Lagrangian
Let us consider a real scalar field . The Lagrangian of the generalized sine-Gordon model is given bywhere  is a bare real scalar field and  and  are bare coupling constants. The second term indicates the potential energy of the scalar field . The generalized sine-Gordon model contains high frequency terms such as  (n = 1, 2, ). We write the renormalized coupling constants as  and , respectively. We adopt that  and .  for some  may be zero, but at least one  should be positive (nonzero). The dimensions of  and  are given as  and  where  is a parameter representing the energy scale. The scalar field  is dimensionless. The relations between bare and renormalized quantities are given bywhere  and  are renormalization constants.  and  are dimensionless constants by virtue of the energy scale . We define the renormalized field  bywhere  is the renormalization constant for the field . The Lagrangian with renormalized quantities is written aswhere  denotes the renormalized field . The second term represents the interaction of the field  as seen by expanding  as a power series. There is the other representation of interaction parameters. We can absorb the parameter  in the definition of the field  and the parameter . In this case, field  in the interaction term includes the parameter in the form  where . We will obtain the same result since it does not depend on the representation.
3. Renormalization of 
We consider the renormalization of  up to the lowest order of . By considering tadpole diagrams in Figure 1, the cosine function is renormalized to Since the expectation value  diverges, we regularize it using the dimensional regularization method:for  where  is introduced to avoid infrared divergence,  is the solid angle in  dimensions and  was put as 1. In order to remove the divergence, the constant  is determined as follows:Since the bare coupling constant  is independent of , we have . This results inWe set  up to the lowest order of , so that we have . The beta function for  at the lowest order in  is given by has a zero at :for . There is a fixed point of  for each .




	
	
		
		
		
		
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 1: One-loop contributions to the renormalization of .


4. Renormalization of 
There is an effect of renormalization on the coupling constant  that is the correction to the kinetic term. Let us consider the two-point function . The bare lowest order two-point function is given byThis corresponds to the kinetic part of the bare Lagrangian:
4.1. Real Space Formulation
The lowest order correction to the two-point function is given by a second-order term for  () such as . From the formula , the correction to the action comes fromwhere we consider connected contributions. By taking into account the contribution of tadpole diagrams, this reduces toThe expectation value  is given bywhere  is the 0th modified Bessel function. Because  increases divergently as  approaches zero,  is approximated aswhere we put . The cosine function  would oscillate as a function of , the contribution for  will be small. Thus, we consider only the contributions with :We extract the divergent term in . There may be two ways to do this. We discuss these methods in the following.
 In the first method, we regularize  by introducing a cutoff  in the real space:by replacing  with . By using the asymptotic relation  with the Euler constant , the integral with respect to  is performed as follows [49]:near  where we set . We consider the case where  is close to the critical value :where  represents the deviation from the critical point. In the lowest order of , we haveThen we obtainThe constant  was absorbed for the renormalization of . Then, by taking the sum from each term, the kinetic part  is renormalized toThis indicates that we choose and  appear as a ratio  in this order, and then the coupling constant  is renormalized as  or we can choose . The equation  results inLastly, we put  to obtainThe numerical coefficient is not important and this depends on the choice of the cutoff .
 In the second way, the divergence comes from  where we adopt that the integral with respect to  is finite. This treatment is similar to that in [31] where the Wilson renormalization group method was used. The correction  is written asIn order to let the integral for  be dimensionless, we change the variable  and putby introducing a cutoff in the integral. Then, we have This results in the same beta function  with the numerical factor being slightly different:
4.2. Momentum Space Formulation
In the momentum space, we evaluate the two-point function by calculating the diagrams in Figure 2 [6]. This set of diagrams gives the self-energy .  is written as a sum of  that comes from the interaction term . The diagrams in Figure 2 are summed up to givewhere we putSince  is divergently large as ,  is approximated asUsing the expansion , we keep the  term. By using the formula  for small ,  is written asThe integral diverges when  and . Then we consider the case , which gives the correction to the two-point function  when  as follows:where we set . This term mainly comes from the region where . The two-point function up to this order isThe renormalized two-point function is given as . The renormalization constants are determined as shown above and thus we obtain the same renormalization group equation.




	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
		
			
		
			
		
			
		
			
	


Figure 2: The contributions to the two-point function  up to the order of .


5. Renormalization Group Flow
Let us consider the case with two parameters  and . The renormalization group equations areWe have the critical value  for  and  for . The parameter  is an increasing function of  in two dimensions . The space  may be divided into four regions which are classified by the values to which the pair  is renormalized as  increases. We call them regions I, II, III, and IV:In region , we put , , and . The equations readWhen  is small, the equations reduce to those of the conventional sine-Gordon model (Kosterlitz-Thouless transition).
When , we put  and  to obtainIn this region,  acts as a perturbation to the scaling equation of the conventional sine-Gordon model. We show the renormalization group flow as  increases in Figure 3.




	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
				
		
		
			
		
		
		
			
		
		
		
			
		
			
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
	


Figure 3: Renormalization group flow as  for  and .


6. Summary
We have discussed the dimensional regularization approach to the renormalization group theory of the generalized sine-Gordon model. There are multiple critical points for the coupling constant  given as . In the case where  is close to  for some , the renormalization group equations are approximated by those for the sine-Gordon model with single-cosine potential (conventional sine-Gordon model). A nontrivial simple generalized model is the sine-Gordon model with  and . When  is ,  acts as a perturbation for  and . The renormalization flow as  or  depends on an initial set of parameters , , and . This can be viewed as a competition between two interactions  and . This may lead to a generalization of the Kosterlitz-Thouless transition, the crossover phenomenon in the Kondo effect, and other phenomena. In the Kondo problem, the appearance of logarithmic singularity [22, 56, 57] suggested the renormalizability of the model. In materials with many magnetic impurities, the interaction between magnetic impurities, called the RKKY interaction [58–60], should be considered. In this case the renormalization group flow is drawn on a two-dimensional plane of two parameters. There may be a relation to the generalized sine-Gordon model.
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