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The aeroelastic stability of horizontal, suspended, shallow, iced cables is studied via a continuummodel. Both external and internal
damping, consistent with the Rayleigh model, are taken into account. The quasi-static theory of the aerodynamic forces is applied.
An in-plane nonlinear model of galloping is formulated, displaying the importance of internal damping, both on the critical
velocity and on the limit-cycle amplitude. A perturbation procedure is developed for nonlinear analysis in nonresonant conditions
(monomodal galloping). The modification of the galloping mode due to quadratic nonlinearities is studied, and its real or complex
character is discussed.

1. Introduction

Cables are slender structures that can significantly suffer
wind effects. For instance, in cold regions, those structures
might undergo galloping, resulting in large vibrations at low
frequencies. The phenomenon is indeed associated with the
wind interacting with noncircular cable cross-sections, as
molded by ice or sleet accretions. In [1], the triggering of
galloping is addressedwith reference to a reducedmechanical
model of cable, in response to vanishing of the total damping
of the structure, which is the sum of both mechanical and
aerodynamic contributions. Recently, richer models have
been developed, e.g., taking into account coupled in-plane
and out-of-plane motions to analyze the incipient instability
[2] or considering nonlinear effects to address the postcritical
behavior [3]. In some cases, the contribution of the twist
and bending of the cable is taken into account, in order
to consider the complete stiffness amount furnished by the
structure [4]; there, continuum models of cables are used
and then reduced via Galerkin projections to few degrees
of freedom (d.o.f.) systems. In [5], a direct approach to the
nonlinear problem, based on a continuum model of cable, is
proposed; there, referring to classical flexible models [6–8],
themechanical damping of the cable is considered as an exter-
nal contribution, i.e., proportional to the cable velocity and

related to the energy dissipation due to the interaction of the
structure with the surrounding fluid. However, richer models
of mechanical damping might be possibly proposed, where
viscoelasticity of the structure material is taken into account,
even in the linear field. For instance, this is easily done in case
of beams [9, 10], where the Kelvin-Voigt rheological model
is adopted and a strain-rate dependent term, proportional
to the elastic stiffness and associated with internal energy
dissipation, is introduced. Nevertheless, in case of cables, the
problem is much more complicated, with the stiffness being
of mixed type, i.e., of both elastic and geometrical kind. In
particular, the elastic stiffness could still resort to the Kelvin-
Voigt model. However, for the geometric stiffness, a more
sophisticated micromechanical model should be developed,
referring to the real geometry of the rope and accounting for
the friction interactions which occur among the strands that
constitute the cable. Such a model, unfortunately, is far from
being developed in literature, even if a promising mechanical
model for hysteretic damping on ropes was recently proposed
[11].

In this paper, a continuum mechanical model of cable
is considered where, besides the classical external damping,
an internal damping contribution related to viscous effects
is introduced. In the spirit of Rayleigh damping model,
it is taken as proportional to the linear stiffness operator.
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Figure 1: Shallow horizontal cable under normal wind flow. Thin line: in-plane equilibrium position under self-weight; thick line: current
configuration under the action of both self-weight and wind.

Combined with the aerodynamic forces, formulated in the
framework of the quasi-steady theory, the effect of both the
damping contributions is addressed with reference to the
galloping phenomenon. Dealing with cables far from the
cross-over point [6], the critical conditions of monomodal
galloping are evaluated from the linear problem. Then, the
nonlinear problem is addressed via a perturbation method,
namely, the multiple scale method (MSM) [12–14], in order
to evaluate the postcritical behavior and the amplitude and
shape of limit-cycle. Comparison is carried out via numerical
integration of the equations relevant to two companion
finite-dimensionalmodels, one formulatedwith amultimode
Galerkin projection, and the other with the finite difference
method.

The paper is organized as follows: in Section 2 the
mechanical and aerodynamic model of the cable is formu-
lated; in Section 3 the linear problem is addressed and the
critical conditions are evaluated; in Section 4 the nonlinear
problem is dealt with; in Section 5 the finite-dimensional
models are formulated; in Section 6 numerical outcomes
are presented; and finally in Section 7 some conclusions are
drawn.

2. Continuum Model

2.1. Formulation. We analyze galloping of iced, small-sag,
horizontal cables. Under self-weight, the cable hangs on
points 𝐴 and 𝐵 in the vertical plane, spanned by the unit
vectors (a𝑥, a𝑦), and occupies the equilibrium configuration
shown in thin line in Figure 1. Possible evaluation of the equi-
librium configuration via perturbation methods is discussed
in [15, 16]. An orthogonal uniform windU = 𝑈a𝑧 is assumed
to flow, which causes the cable to reach an unknown current
configuration, shown in thick line in Figure 1. At the abscissa𝑠 and time 𝑡, the dynamic displacement due to the wind is
described in the intrinsic basis (a𝑡, a𝑛, a𝑏) by the tangential,
normal (in-plane), and binormal (out-of-plane) components,
referred to as 𝑢(𝑠, 𝑡), V(𝑠, 𝑡), 𝑤(𝑠, 𝑡), respectively.

The equations of motion of the cable, with the tangent
displacement 𝑢(𝑠, 𝑡) condensed and flexural and torsional
stiffness ignored, were derived, e.g., in [4] for the transverse
motion V(𝑠, 𝑡), 𝑤(𝑠, 𝑡). In particular, the static condensation of𝑢(𝑠, 𝑡) is carried out under the reliable hypothesis of much
larger celerity of the longitudinal waves with respect to the
transverse ones [3, 6, 7, 17–19]. Here, however, we ignore
the out-of-plane displacement 𝑤(𝑠, 𝑡), which was shown in

the literature to weakly affect the galloping phenomenon
(except in resonant cases, here excluded, [2]). Therefore, the
equations ruling the in-plane motion read as follows.

(𝑇0 + 𝐸𝐴𝑒) V + 𝐸𝐴𝑘𝑒 − 𝑚V̈ + 𝑓𝑑𝑛 + 𝑓𝑎𝑛 = 0
𝑒 = −𝑘𝑙 ∫

𝑙

0
V𝑑𝑠 + 12𝑙 ∫

𝑙

0
V2𝑑𝑠

V𝐴 = 0,
V𝐵 = 0

(1)

Here𝑇0 is the prestress, assumed constant on 𝑠;𝐸𝐴 is the axial
stiffness;𝑚 is the mass per unit length, possibly including the
ice accretion; 𝑙 is the length of the cable, taken nearly equal to
the chord; 𝑘 fl 𝑚𝑔/𝑇0 is the prestress curvature, also assumed
to be constant; 𝑒(𝑡) is the dynamic unit extension, constant on𝑠, from which the dynamic tension is evaluated as �̃� = 𝐸𝐴𝑒;
and 𝑓𝑑𝑛 are damping forces and 𝑓𝑎𝑛 aerodynamic forces, all
per unit length, acting in the normal direction, respectively.
Subscripts 𝐴 and 𝐵 indicate evaluation of the variable at the
points𝐴 and𝐵, namely, at 𝑠 = 0 and 𝑠 = 𝑙, respectively; finally,
the dot stands for time-differentiation and the prime for 𝑠-
differentiation.

2.2. Damping Model. In a galloping problem, it is mandatory
accounting for damping. As is well known [20–22], there
exist two forms of damping: an external damping, accounting
for the medium resistance, and an internal damping, which
describes various dissipation sources in the body via an
‘equivalent’ viscous mechanism. However, while it is easy
to model linear external damping forces as proportional to
velocities, i.e., −𝑐𝑒V̇, with 𝑐𝑒 > 0 a damping coefficient, the
same does not happen for internal damping. Indeed, differ-
ently from what happens in beams, in which the rheological
Kelvin-Voigt model naturally leads to viscous operators
proportional to the elastic stiffness operators [9], in cables
such a similarity does not hold, since the relevant stiffness is
ofmixed nature, elastic and geometric. Concerning the elastic
stiffness, by still resorting to Kelvin-Voigt model, a local force
as 𝜂𝐴𝑘 ̇𝑒 should be considered, with 𝜂 a viscosity coefficient;
concerning the geometric stiffness, a more sophisticated
micromechanical model should be developed, referring to
the real geometry of the rope and accounting for the friction
interactions which occur among the strands that constitute
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the cable. Such a model, unfortunately, is far from being
developed in literature. By attributing the energy loss to an
equivalent viscousmechanism, we could heuristically assume
that internal damping actions are proportional to the rate
of curvature of the cable, which is responsible for relative
velocities among the strands, namely, 𝜁V̇ with 𝜁 > 0 a second
viscosity coefficient, independent of 𝜂, related to a different
dissipationmechanism. Such amodel, however, would lead to
a nonproportional damping, with the occurrence of complex
modes. As a first, rough approach to the problem, the
Rayleighmodel of damping [23] is adopted here, by assuming
that 𝜂 and 𝜁 are related to each other, namely, 𝜂/𝐸 =𝜁/𝑇0. Accordingly, the internal damping operator is taken
proportional to the linear stiffness operator (the external
damping being proportional to the mass), namely,

𝑓𝑑𝑛 = −𝑐𝑒V̇ + 𝜁(𝐸𝐴𝑇0 𝑘 ̇𝑒 + V̇) . (2)

The equations of motion therefore read as follows.

𝑇0 (1 + 𝜁𝑇0 𝜕𝑡) V
 + 𝐸𝐴𝑘(1 + 𝜁𝑇0 𝜕𝑡) 𝑒 + 𝐸𝐴𝑒V

 − 𝑚V̈
− 𝑐𝑒V̇ + 𝑓𝑎𝑛 = 0

𝑒 = −𝑘𝑙 ∫
𝑙

0
V𝑑𝑠 + 12𝑙 ∫

𝑙

0
V2𝑑𝑠

V𝐴 = 0,
V𝐵 = 0

(3)

Concerning the aerodynamic force 𝑓𝑎𝑛 , we neglect the small
curvature of the cable as typically done in the literature [1, 11,
24, 25]. In other words, we assume that an element of curved
cable is subjected to the same aerodynamic forces which act
on a long cylinder oriented as the local triad. Therefore,

𝑓𝑎𝑧 = 12𝜌𝑈2𝑏(A0 − A1 ( �̇�𝑈) − A2 ( �̇�𝑈)
2 − A3 ( �̇�𝑈)

3

+ . . .)
(4)

where 𝜌 is the air density, 𝑏 is a characteristic length of the
cross-section, and A𝑖 are aerodynamic coefficients depending
on the shape of the iced cross-section, taken in average sense
constant along the span. Consistently with the hypothesis of
zero-static response to wind, we take A0 = 0.
3. The Linear Problem

In order to evaluate the critical galloping velocity 𝑈𝑐, the
linear problem is addressed first; it reads

𝑇0 (1 + 𝜁𝑇0 𝜕𝑡) V
 + 𝐸𝐴𝑘(1 + 𝜁𝑇0 𝜕𝑡) 𝑒 − 𝑚V̈− (𝑐𝑒 + 𝑈𝑐𝑐𝑎1) V̇ = 0

𝑒 + 𝑘𝑙 ∫
𝑙

0
V𝑑𝑠 = 0

V𝐴 = 0,
V𝐵 = 0

(5)

where 𝑐𝑎1 fl (1/2)𝜌𝑏A1.
3.1. The Space Eigenvalue Problem. By taking into account
the periodicity of motion at the bifurcation, we separate the
variables, via V(𝑠, 𝑡) = V̂(𝑠) exp(𝑖𝜔𝑐𝑡), 𝑒(𝑡) = 𝑒 exp(𝑖𝜔𝑐𝑡), with𝜔𝑐 being the unknown frequency.A space eigenvalue problem
follows:

V̂ + 𝐸𝐴𝑘𝑇0 𝑒 + 𝛽
2V̂ = 0

𝑒 + 𝑘𝑙 ∫
𝑙

0
V̂𝑑𝑠 = 0
V̂𝐴 = 0,
V̂𝐵 = 0

(6)

where we define the following.

𝛽2 fl 𝑚𝜔2𝑐 − 𝑖𝜔𝑐 (𝑐𝑒 + 𝑈𝑐𝑐𝑎1)𝑇0 (1 + 𝑖 (𝜁/𝑇0) 𝜔𝑐) (7)

This problem is formally identical to that governing the linear
free oscillations of a cable [6], except for the definition of𝛽. Therefore, (V̂(𝑠), 𝑒) = (V̂𝑗(𝑠), 𝑒𝑗), 𝑗 = 1, 2, . . ., is the 𝑗th
natural mode (symmetric or antisymmetric), and 𝛽 = 𝛽𝑗 is
the associated wave-number which solves the characteristic
equation, i.e., sin(𝛽𝑙/2) = 0 in the antisymmetric case, or the
transcendental Irvine equation [6]

tan(𝛽𝑙2 ) = −(𝛽𝑙2 )
3 4𝜆2 + (𝛽𝑙2 ) (8)

in the symmetric case, where 𝜆 = √𝐸𝐴(𝑘𝑙)2/𝑇0. Once 𝛽𝑗 is
known, by separating real and imaginary parts in (7), we get
the two unknowns (with index denoting the 𝑗th root).

𝑈𝑐𝑗 = 𝑐𝑒 + 𝜁𝛽
2
𝑗𝑐𝑎1 , 𝑐𝑎1 < 0

𝜔𝑐𝑗 = 𝛽𝑗√𝑇0𝑚
(9)

Since𝑈𝑐 := min𝑗𝑈𝑐𝑗 = 𝑈𝑐1, according to this model, the cable
gallops in its first natural mode.

From (9) the role of the internal damping 𝜁 clearly
emerges. It splits the coalescence of infinitely many critical
velocities, each associated with different natural mode, which
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would manifest themselves simultaneously if the cable were
non-internally damped. Such a case, however, is quite unreal-
istic, since it would entail the modal damping ratio decreases
as 1/𝜔𝑗. Such a circumstance is obscured in discrete models,
where different damping ratios are attributed to the natural
modes on an heuristic basis, without any derivation from a
model.

3.2. The Adjoint Eigenvalue Problem and the Solvability
Condition. In view of a nonlinear perturbation analysis, we
need the adjoint problem of (6), together with the solvability
condition for the following nonhomogeneous problem:

V̂ + 𝐸𝐴𝑘𝑇0 𝑒 + 𝛽
2V̂ = 𝑓 (𝑠)

𝑒 + 𝑘𝑙 ∫
𝑙

0
V̂𝑑𝑠 = ]

V̂𝐴 = 0,
V̂𝐵 = 0

(10)

in which𝑓(𝑠), ] are known terms. To this end, it is convenient
to recast it in the integrodifferential form:

𝜙 + 𝛽2𝜙 − 𝐸𝐴𝑘2𝑇0𝑙 ∫𝑙
0
𝜙𝑑𝑠 = 𝑓 (𝑠) − 𝐸𝐴𝑘𝑇0 ]

𝜙𝐴 = 0,
𝜙𝐵 = 0

(11)

in which, for notational convenience, we define 𝜙 fl V̂(𝑠).
The relevant Extended Green Identity then reads as

follows.

∫𝑙
0
𝜓[𝜙 + 𝛽2𝜙 − 𝐸𝐴𝑘2𝑇0𝑙 ∫𝑙

0
𝜙 (𝑠) 𝑑𝑠] 𝑑𝑠

= ∫𝑙
0
𝜙[𝜓 − 𝐸𝐴𝑘2𝑇0𝑙 ∫𝑙

0
𝜓 (𝑠) 𝑑𝑠 + 𝛽2𝜓]𝑑𝑠

+ [𝜙𝜓 + 𝜙𝜓]𝑙
0

(12)

We conclude that problem (6) is self-adjoint, entailing 𝜓 ≡ 𝜙.
Moreover, the solvability condition reads as follows.

∫𝑙
0
𝜙 (𝑠) (𝑓 (𝑠) − 𝐸𝐴𝑘𝑇0 ])𝑑𝑠 = 0 (13)

4. The Nonlinear Problem

To investigate the behavior of the cable in the nonlinear field
and close to the dynamic bifurcation, we carry out a nonlinear
analysis. The equation governing the motion is

𝑇0 (1 + 𝜁𝑇0 𝜕𝑡) V
 + 𝐸𝐴𝑘(1 + 𝜁𝑇0 𝜕𝑡) 𝑒 − 𝑚V̈

− (𝑐𝑒 + 𝑈𝑐𝑎1) V̇ + 𝐸𝐴𝑒V − 𝑐𝑎2V̇2 − 𝑐𝑎3𝑈 V̇3 = 0

𝑒 = −𝑘𝑙 ∫
𝑙

0
V𝑑𝑠 + 12𝑙 ∫

l

0
V2𝑑𝑠

V𝐴 = 0,
V𝐵 = 0

(14)

where 𝑐𝑎𝑘 fl (1/2)𝜌𝑏A𝑘, (𝑘 = 1, . . . 3).
4.1. Multiple Scale Analysis. To solve (14), we use the asymp-
totic multiple scale method [12–14]. The method consists in
expanding the dependent variables in formal series of a small
perturbation parameter 𝜖 (to be reabsorbed at the end of the
procedure), as well as introducing independent time scales
(fast, slow, slowest,...,). Substitution of these expansions in
the nonlinear equations and separation of terms of different
orders lead to linear equations being solved in sequence.
Accordingly, we expand the variables and the bifurcation
parameter as

V = 𝜖V1 + 𝜖2V2 + 𝜖3V3
𝑒 = 𝜖𝑒1 + 𝜖2𝑒2 + 𝜖3𝑒3
𝑈 = 𝑈𝑐 + 𝜖2𝑈2

(15)

with 𝑈𝑐 being the critical velocity, which is now a known
parameter. By introducing the time scales 𝑡0 fl 𝑡, 𝑡2 fl 𝜖2𝑡
and the consequent differentiation rules

𝜕𝑡 = 𝜕0 + 𝜖2𝜕2
𝜕2𝑡 = 𝜕20 + 2𝜖2𝜕0𝜕2 (16)

where 𝜕𝑗 fl 𝜕/𝜕𝑡𝑗, 𝑗 = 0, 2, the perturbation equations follow
after collecting the coefficients at the various orders of 𝜖.

Order 𝜖:
𝑇0 (1 + 𝜁𝑇0 𝜕0) V


1 + 𝐸𝐴𝑘(1 + 𝜁𝑇0 𝜕0) 𝑒1 − 𝑚𝜕

2
0V1

− (𝑐𝑒 + 𝑈𝑐𝑐𝑎1) 𝜕0V1 = 0
𝑒1 + 𝑘𝑙 ∫

𝑙

0
V1𝑑𝑠 = 0

V1𝐴 = 0,
V1𝐵 = 0

(17)

Order 𝜖2:
𝑇0 (1 + 𝜁𝑇0 𝜕0) V


2 + 𝐸𝐴𝑘(1 + 𝜁𝑇0 𝜕0) 𝑒2 − 𝑚𝜕

2
0V2

− (𝑐𝑒 + 𝑈𝑐𝑐𝑎1) 𝜕0V2 = 𝑐𝑎2 (𝜕0V1)2 − 𝐸𝐴V1 𝑒1
𝑒2 + 𝑘𝑙 ∫

𝑙

0
V2𝑑𝑠 = 12𝑙 ∫

𝑙

0
V21 𝑑𝑠

V2𝐴 = 0,
V2𝐵 = 0

(18)
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Order 𝜖3:
𝑇0 (1 + 𝜁𝑇0 𝜕0) V


3 + 𝐸𝐴𝑘(1 + 𝜁𝑇0 𝜕0) 𝑒3 − 𝑚𝜕

2
0V3

− (𝑐𝑒 + 𝑈𝑐𝑐𝑎1) 𝜕0V3 = 2𝑚𝜕0𝜕2V1 − 𝜁𝜕2V1
− 𝜁𝐸𝐴𝑇0 𝑘𝜕2𝑒1 + (𝑐𝑒 + 𝑈𝑐𝑐𝑎1) 𝜕2V1 + 𝑈2𝑐𝑎1𝜕0V1
+ 2𝑐𝑎2 (𝜕0V1) (𝜕0V2) + 𝑐𝑎3𝑈𝑐 (𝜕0V1)

3

− 𝐸𝐴 (V2 𝑒1 + V1 𝑒2)

(19a)

𝑒3 + 𝑘𝑙 ∫
𝑙

0
V3𝑑𝑠 = 1𝑙 ∫

𝑙

0
V1V

2𝑑𝑠 (19b)

V3𝐴 = 0, (19c)

V3𝐵 = 0 (19d)

By excluding internal resonances among the natural
modes, the (monomodal) solution to the order 𝜖 reads

(V1𝑒1) = 𝐴 (𝑡2) (
V̂𝑐 (𝑠)𝑒𝑐 ) 𝑒

𝑖𝜔𝑐𝑡0 + 𝑐.𝑐. (20)

where 𝐴(𝑡2) is a complex modulating function, (V̂𝑐(𝑠), 𝑒𝑐) is
the real critical (first in-plane natural) mode of the cable,𝜔𝑐 is the associated frequency, and c.c. stands for complex
conjugate.

By solving in sequence (18) and (19) and enforcing to
this latter the solvability condition, the following ordinary
differential equation for the amplitude is found (see the
appendix for details):

�̇� = −𝑈2𝑐1𝐴 + (𝑐3𝑅 + 𝑖𝑐3𝐼) 𝐴2𝐴 (21)

which is the well-known normal form for Hopf bifurcation
[26]. By letting 𝐴(𝑡) = (1/2)𝑎(𝑡)𝑒𝑖𝜑(𝑡), followed by the
separation of real and imaginary parts and some algebraic
manipulation, the real form of the bifurcation equation is
derived.

̇𝑎 = −𝑈2𝑐1𝑎 + 𝑐3𝑅4 𝑎3 (22a)

𝑎�̇� = 𝑐3𝐼4 𝑎3 (22b)

The equilibrium solutions of (22a) are 𝑎0 = 0 (trivial motion)
and 𝑎1,2 = ±2√𝑐1/𝑐3𝑅 (limit-cycle amplitude). An eigenvalue
analysis of the same equation states that 𝑎0 is stable for𝑈2 < 0
and unstable for𝑈2 > 0, whereas the bifurcated branches 𝑎1,2,
emanating from 𝑈2 = 0, are stable for 𝑈2 > 0 (i.e., the Hopf
bifurcation is supercritical).

In terms of the physical variables, the motion of the cable
on the limit-cycle is

V (𝑠, 𝑡) = 𝑎 (𝑡) V̂𝑐 (𝑠) cos (𝜔𝑐𝑡 + 𝜑 (𝑡)) + 12𝑎 (𝑡)2
⋅ [𝜒20 (𝑠) + 𝜒22𝑅 (𝑠) cos (2 (𝜔𝑐𝑡 + 𝜑 (𝑡)))
− 𝜒22𝐼 (𝑠) sin (2 (𝜔𝑐𝑡 + 𝜑 (𝑡)))]

(23a)

𝑒 (𝑡) = 𝑎 (𝑡) 𝑒𝑐cos (𝜔𝑐𝑡 + 𝜑 (𝑡)) + 12𝑎 (𝑡)2 [𝜂20+ 𝜂22𝑅cos (2 (𝜔𝑐𝑡 + 𝜑 (𝑡)))− 𝜂22𝐼sin (2 (𝜔𝑐𝑡 + 𝜑 (𝑡)))]
(23b)

where quantities are defined in the appendix. The 𝜒𝑠 func-
tions account for the pattern modification and reveal the
complex nature of the nonlinear normal mode, i.e., the
deflected shape of the cable changes during a period.

5. Finite-Dimensional Models

In view of numerical applications and comparisons of results,
two finite-dimensional models for galloping analysis are
obtained via (i) the finite difference method and (ii) the
Galerkin method.

5.1. Finite Difference Method. The space interval [0, 𝑙] is
divided into 𝑁𝑠 > 2 equispaced subintervals of amplitudeΔ = 𝑙/𝑁𝑠. The following notation is adopted:

𝑠𝑗 fl 𝑗Δ, 𝑗 = 0, 1, . . . , 𝑁𝑠,
V𝑗 fl V (𝑠𝑗, 𝑡) , 𝑗 = 0, 1, . . . , 𝑁𝑠,
V𝑗 fl V (𝑠𝑗, 𝑡) , 𝑗 = 0, 1, . . . , 𝑁𝑠.

(24)

By computing the integral via the trapezoidal rule and
the space derivatives via the central finite differences, the
equations in (14) become

𝑚V̈𝑗 + (𝑐𝑒 + 𝑈𝑐𝑎1) V̇𝑗 − 𝜁 V̇𝑗+1 − 2V̇𝑗 + V̇𝑗−1Δ2 + 𝑐𝑎2V̇2𝑗
+ 𝑐𝑎3𝑈 V̇3𝑗

= (𝑇0 + 𝐸𝐴𝑒) V𝑗+1 − 2V𝑗 + V𝑗−1Δ2
+ 𝐸𝐴𝑘(𝑒 + 𝜁𝑇0 ̇𝑒) , 𝑗 = 1, . . . , 𝑁𝑠 − 1,

(25)

in which

𝑒 = −Δ𝑘𝑙
𝑁𝑠−1∑
𝑘=1

V𝑘 + 14𝑙Δ [V21 + V2𝑁𝑠−1

+ 12
𝑁𝑠−1∑
𝑘=1

(V𝑘+1 − V𝑘−1)2] ,
̇𝑒 = −Δ𝑘𝑙

𝑁𝑠−1∑
𝑘=1

V̇𝑘 + 12𝑙Δ {V1V̇1 + V𝑁𝑠−1V̇𝑁𝑠−1

+ 12
𝑁𝑠−1∑
𝑘=1

[(V𝑘+1 − V𝑘−1) (V̇𝑘+1 − V̇𝑘−1)]} ,
V0 = V𝑁𝑠 = 0.

(26)

Here, in computing 𝑒 (and ̇𝑒) the space derivatives of the
displacement at 𝑠 = 0, 𝑙 were evaluated as

V0 = V1Δ ,
V𝑁𝑠 = −V𝑁𝑠−1Δ , (27)
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via forward and backward finite differences, respectively, by
taking into account V0 = V𝑁𝑠 = 0.

Equations (25) are a set of 𝑁𝑠 − 1 ordinary differential
equations for the unknown nodal displacements V𝑗(𝑡), 𝑗 =1, . . . , 𝑁𝑠 − 1.
5.2. Galerkin Method. The transverse displacement is
assumed as the truncated series:

V (𝑠, 𝑡) = 𝑁𝑒∑
𝑗=1

𝜙𝑗 (𝑠) 𝑞𝑗 (𝑡) , (28)

where 𝑞𝑗 are generalized coordinates and

𝜙𝑗 (𝑠) = √ 2𝑚𝑙 sin(𝑗𝜋𝑙 𝑠) (29)

are trial functions satisfying

∫𝑙
0
𝜙𝑖𝜙𝑗𝑑𝑠 = 1𝑚𝛿𝑖𝑗,

∫𝑙
0
𝜙𝑖𝜙𝑗𝑑𝑠 = 1𝑚 (𝑗𝜋𝑙 )

2 𝛿𝑖𝑗,
(30)

in which 𝛿𝑖𝑗 is the Kronecker symbol.

By substituting the expansion (28) in the governing
equation (14), weighting the residual of the partial differential
equation via the same trial functions 𝜙𝑖, and using the ortho-
normalization properties (30), the following equations are
obtained:

̈𝑞𝑖 + 1𝑚 [𝜁 (𝑖𝜋𝑙 )
2 + 𝑐𝑒 + 𝑈𝑐𝑎1] ̇𝑞𝑖

+ 𝑇0 + 𝐸𝐴𝑒𝑚 (𝑖𝜋𝑙 )
2 𝑞𝑖

− (1 + (−1)𝑖+1𝑖 ) 𝑙𝜋√ 2𝑚𝑙𝐸𝐴𝑘(𝑒 + 𝜁𝑇0 ̇𝑒)

+ 𝑐𝑎2
𝑁𝑒∑
𝑗=1

𝑁𝑒∑
ℎ=1

(Γ𝑖𝑗ℎ ̇𝑞𝑗 ̇𝑞ℎ)

+ 𝑐𝑎3𝑈
𝑁𝑒∑
𝑗=1

𝑁𝑒∑
ℎ=1

𝑁𝑒∑
𝑘=1

(Γ𝑖𝑗ℎ𝑘 ̇𝑞𝑗 ̇𝑞ℎ ̇𝑞𝑘) = 0,
𝑖 = 1, . . . , 𝑁𝑒,

(31)

where

𝑒 = − 𝑘𝜋√ 2𝑚𝑙
𝑁𝑒∑
ℎ=1

(1 + (−1)ℎ+1ℎ 𝑞ℎ) + 𝜋22𝑚𝑙3
𝑁𝑒∑
ℎ=1

(ℎ2𝑞2ℎ) ,

̇𝑒 = − 𝑘𝜋√ 2𝑚𝑙
𝑁𝑒∑
ℎ=1

(1 + (−1)ℎ+1ℎ ̇𝑞ℎ) + 𝜋2𝑚𝑙3
𝑁𝑒∑
ℎ=1

(ℎ2𝑞ℎ ̇𝑞ℎ) ,

Γ𝑖𝑗ℎ fl
{{{{{{{{{{{{{{{{{{{

0 𝑖 = 𝑗 + ℎ,
or 𝑗 = 𝑖 + ℎ,
or ℎ = 𝑖 + 𝑗

4𝜋√ 2𝑚3𝑙
[(−1)𝑖+𝑗+ℎ − 1] 𝑖𝑗ℎ

(𝑖 + 𝑗 + ℎ) (𝑖 − 𝑗 + ℎ) (𝑖 + 𝑗 − ℎ) (𝑖 − 𝑗 − ℎ) otherwise

Γ𝑖𝑗ℎ𝑘 fl

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

32𝑚2𝑙 𝑖 = 𝑗 = ℎ = 𝑘
− 12𝑚2𝑙 𝑖 = 𝑗 + ℎ + 𝑘, or 𝑗 = 𝑖 + ℎ + 𝑘,

or ℎ = 𝑖 + 𝑗 + 𝑘, or 𝑘 = 𝑖 + 𝑗 + ℎ
12𝑚2𝑙 𝑖 + 𝑗 = ℎ + 𝑘, 𝑗 ̸= ℎ, 𝑗 ̸= 𝑘

or 𝑖 + ℎ = 𝑗 + 𝑘, ℎ ̸= 𝑗, ℎ ̸= 𝑘
or 𝑗 + ℎ = 𝑖 + 𝑘, ℎ ̸= 𝑖, ℎ ̸= 𝑘

1𝑚2𝑙 𝑖 = 𝑗, ℎ = 𝑘, or 𝑖 = ℎ, 𝑗 = 𝑘, or 𝑖 = 𝑘, 𝑗 = ℎ
0 otherwise.

(32)
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Figure 2: Case-study 1: symmetric mode and second order corrections.

Equations (31) are a set of𝑁𝑒 ordinary differential equations
for the generalized coordinates 𝑞𝑗(𝑡), 𝑗 = 1, . . . , 𝑁𝑒.
6. Numerical Results

A cable of the following geometrical and mechanical char-
acteristic is considered: 𝑚 = 1.80 kg/m, 𝑙 = 267 m, 𝐸𝐴 =2.97 × 107 N. The internal damping coefficient is 𝑐𝑒 = 0.022
kg/(ms) and the external one is 𝜁 = 48.939 kgm/s.

The aerodynamic parameters are taken from [24, 25],
where an U-shaped conductor is considered, with its maxi-
mum ice eccentricity aligned to the mean wind velocity. The
drag and lift coefficients are

𝑐𝑑 (𝛾) = 1.08334 + 0.735935𝛾2
𝑐𝑙 (𝛾) = −1.5979𝛾 + 4.77362𝛾3 (33)

with 𝛾 being the angle of attack (evaluated in the cross-section
plane and formed between the unit vector a𝑏 and wind axis
a𝑧) and assumed valid in the range −0.6 < 𝛾 < 0.6 rad.
Furthermore, the air mass per unit volume is 𝜌 = 1.25 kg/m3
and the cable mean diameter is 𝑏 = 0.0281m.

Two case-studies are considered, differing from each
other in the sag 𝑑 ≃ 𝑚𝑔𝑙2/8𝑇0: (1) the cable is below the first
cross-over condition (𝑑 = 5m, and consequently 𝜆 = 4.602 <2𝜋); (2) the cable is above the first cross-over condition (𝑑 =7.0m, and consequently 𝜆 = 7.624 > 2𝜋).

In case-study (1), the first linear mode is symmetric
(Figure 2(a)), the dynamic unitary extension is 𝑒𝑐 = −5.901 ×

10−4, and the critical conditions, as obtained from (9), are𝜔𝑐 = 2.547 rad/s and 𝑈𝑐 = 4.465 m/s. The second order
corrections to the modal shape 𝜒20(𝑠), 𝜒22𝑅(𝑠), and 𝜒22𝐼(𝑠)
are shown in Figures 2(b)–2(d) and the corrections to the
dynamic unitary extension are 𝜂20 = −7.939 × 10−5, 𝜂22𝑅 =1.314 × 10−4, and 𝜂22𝐼 = 1.255 × 10−6.

The obtained bifurcation diagram is shown in Figure 3(a),
where the classical supercritical Hopf bifurcation behavior is
evident, whereas the space and time postcritical evolution of
the cable is shown in Figure 3(b), as obtained from (23a), for𝑈2/𝑈𝑐 = 0.11.

A comparison of the time evolution of the cable for
the same postcritical condition 𝑈2/𝑈𝑐 = 0.11 is shown in
Figure 4, where the displacements at half-span and quarter-
span, as obtained from MSM (green line), Galerkin method
with 𝑁𝑒 = 20 (blue line), and finite difference method with𝑁𝑠 = 100 (orange line), are in good agreement, highlighting
the reliability of the asymptotic procedure. The phase plots,
shown in Figure 5 for half-span and quarter-span, exhibit
feeble modification of the elliptical form and highlight the
slight modification of the oscillation shape during a period,
due to the nonlinear contributions.

In case (2), the first linear mode is antisymmetric (Fig-
ure 6(a)), the dynamic unitary extension is 𝑒𝑐 = 0, and the
critical conditions, as obtained from (9), are 𝜔𝑐 = 2.630 rad/s
and 𝑈𝑐 = 5.454 m/s. The second order corrections to the
modal shape 𝜒20(𝑠), 𝜒22𝑅(𝑠), and 𝜒22𝐼(𝑠) are shown in Figures
6(b)–6(d) and the dynamic unitary extension is corrected by𝜂20 = 2.369×10−5, 𝜂22𝑅 = 2.191×10−4, and 𝜂22𝐼 = 1.643×10−6.
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Figure 3: Case-study 1: (a) bifurcation diagram (solid line: stable; dashed line: unstable); (b) reconstituted displacement V(𝑠, 𝑡) of the cable
for 𝑈2/𝑈𝑐 = 0.11.
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Figure 4: Case-study 1: reconstituted time evolution of the displacement V(𝑠, 𝑡) for𝑈2/𝑈𝑐 = 0.11 at (a) half-span and (b) quarter-span (green
line: multiple scale method; blue line: Galerkin method; orange line: finite difference method).
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Figure 5: Case-study 1: reconstituted phase plot (V, V̇) for 𝑈2/𝑈𝑐 = 0.11 at (a) half-span and (b) quarter-span (green line: multiple scale
method; blue line: Galerkin method; orange line: finite difference method).
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Figure 6: Case-study 2: antisymmetric mode and second order corrections.
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Figure 7: Case-study 2: (a) bifurcation diagram (solid line: stable; dashed line: unstable); (b) reconstituted displacement V(𝑠, 𝑡) of the cable
for 𝑈2/𝑈𝑐 = 0.09.

The obtained bifurcation diagram is shown in Figure 7(a),
where still the classical Hopf bifurcation behavior is obtained,
whereas the space and time postcritical evolution of the cable
is shown in Figure 7(b), as obtained from (23a), for 𝑈2/𝑈𝑐 =0.09.

The comparison of the time evolution of the cable for𝑈2/𝑈𝑐 = 0.09 is shown in Figure 8, where the displacements
at half-span and quarter-span, as obtained fromMSM (green

line), Galerkin method with 𝑁𝑒 = 20 (blue line), and finite
difference method with 𝑁𝑠 = 100 (orange line), are in
good agreement, highlighting the reliability of the asymptotic
procedure. Moreover, in Figure 8(a) the prevalent contribu-
tion of the static drift due to the quadratic nonlinearities
is evident. The phase plot at the quarter-span, shown in
Figure 9, highlights the slight modification of the oscillation
pattern during a period, due to the nonlinear contributions.
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Figure 8: Case-study 2: reconstituted time evolution of the displacement V(𝑠, 𝑡) for𝑈2/𝑈𝑐 = 0.09 at (a) half-span and (b) quarter-span (green
line: multiple scale method; blue line: Galerkin method; orange line: finite difference method).
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Galerkin method; orange line: finite difference method).

7. Conclusions

Monomodal galloping of horizontal cables is addressed in the
paper in a direct approach to a continuum model of flexible
cable. Besides the classical external damping, an internal
damping contribution is considered in the spirit of the
Rayleigh model. In particular, it is related to the viscoelastic
behavior of the material and is taken as proportional to the
stiffness operator. Its contribution to the critical conditions
of galloping is analyzed, as it turns out that it splits the
critical wind velocities associated with each mode. Moreover,
the postcritical behavior is addressed through the nonlinear

problem, evaluating the shape modifications of the critical
mode and the amplitude of the limit-cycle; this is carried
out directly applying a perturbation method to the partial
differential equations ofmotion. Numerical results are shown
with regard to two case-studies, far from the cross-over point,
where the critical mode is of symmetric or antisymmetric
form, respectively. They are in good agreement with out-
comes of relevant finite-dimensional models obtained via the
application of the finite difference method or the Galerkin
method. The effect of the internal damping term turns out
to be essential in the evaluation of the critical velocity, and it
participates in the definition of the shape modification.

Appendix

Details on Perturbation Analysis

With the generating solution (20), the 𝜖2-order perturbation
equation (18) admits the solution

V2 = 𝐴2𝜒22 (𝑠) exp (2𝑖𝜔𝑐𝑡0) + 𝐴𝐴𝜒20 (𝑠) + c.c.
𝑒2 = 𝐴2𝜂22exp (2𝑖𝜔𝑐𝑡0) + 𝐴𝐴𝜂20 + c.c. (A.1)

where the (complex) function 𝜒22(𝑠) and constant 𝜂22 solve
the following boundary value problem:

𝑇0 (1 + 2𝑖𝜔𝑐 𝜁𝑇0)𝜒

22 + 𝐸𝐴𝑘(1 + 2𝑖𝜔𝑐 𝜁𝑇0) 𝜂22

+ (4𝑚𝜔2𝑐 − 2𝑖𝜔𝑐𝑐𝑒 − 2𝑖𝜔𝑐𝑈𝑐𝑐𝑎1) 𝜒22 = −𝜔2𝑐 𝑐𝑎2V̂2𝑐
− 𝐸𝐴V̂𝑐 𝑒𝑐

𝜂22 + 𝑘𝑙 ∫
𝑙

0
𝜒22𝑑𝑠 = 12𝑙 ∫

𝑙

0
V̂2𝑐 𝑑𝑠

𝜒22𝐴 = 0,
𝜒22𝐵 = 0

(A.2)
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and the (real) function 𝜒20(𝑠) and constant 𝜂20 solve the
following one.

𝑇0𝜒20 + 𝐸𝐴𝑘𝜂20 = −𝐸𝐴V̂𝑐 𝑒𝑐 + 𝜔2𝑐 𝑐𝑎2V̂2𝑐
𝜂20 + 𝑘𝑙 ∫

𝑙

0
𝜒20𝑑𝑠 = 12𝑙 ∫

𝑙

0
V̂2𝑐 𝑑𝑠

𝜒20𝐴 = 0,
𝜒20𝐵 = 0

(A.3)

By going ahead to the 𝜖3-order equation (19), the solvability
condition (13)must be enforced. To this end, we substitute the
integral expression for 𝑒3 (19b) into the field equation (19a)
and formulate this latter into the integrodifferential form (11):

𝑇0 (1 + 𝜁𝑇0 𝜕0) V

3 − 𝐸𝐴𝑘

2

𝑙 (1 + 𝜁𝑇0 𝜕0)∫
𝑙

0
V3𝑑𝑠

− 𝑚𝜕20V3 − (𝑐𝑒 + 𝑈𝑐𝑐𝑎1) 𝜕0V3
= (𝑞 (𝑠, 𝑡2) − 𝐸𝐴𝑘(1 + 𝑖𝜔𝑐 𝜁𝑇0) ] (𝑡2)) 𝑒

𝑖𝜔𝑐𝑡0

+NRT + c.c.

(A.4)

where NRT stands for nonresonant terms and

𝑞 (𝑠, 𝑡2) fl 𝑖𝑐𝑎1𝑈2𝜔𝑐𝐴V̂𝑐 + 3𝑖𝑐𝑎3𝑈𝑐 𝜔
3
𝑐𝐴2𝐴V̂3𝑐

+ 4𝑐𝑎2𝜔2𝑐𝐴2𝐴V̂𝑐𝜒22 − 𝐸𝐴𝑒𝑐𝑘𝜁𝑇0 𝐴
+ (𝑐𝑒 + 𝑐𝑎1𝑈𝑐 + 2𝑖𝑚𝜔𝑐) 𝐴V̂𝑐 − 𝜁𝐴V̂𝑐
− 𝐸𝐴 (2𝜂20 + 𝜂22) 𝐴2𝐴V̂𝑐
− 𝐸𝐴𝑒𝑐𝐴2𝐴(2𝜒20 + 𝜒22)

] (𝑡2) fl 𝐴2𝐴𝑙 ∫𝑙
0
V̂𝑐 (2𝜒20 + 𝜒22) 𝑑𝑠.

(A.5)

Solvability then requires that the known term of this latter is
orthogonal to V̂𝑐(𝑠), i.e.,

∫𝑙
0
V̂𝑐 (𝑠) 𝑞 (𝑠, 𝑡2) 𝑑𝑠
− 𝐸𝐴𝑘(1 + 𝑖𝜔𝑐 𝜁𝑇0) ] (𝑡2) ∫

𝑙

0
V̂𝑐 (𝑠) 𝑑𝑠 = 0.

(A.6)

This latter, after backward resorting to the true time,
supplies the bifurcation equation (21). In it, the following
positions hold:

𝑐1 = 𝑐𝑎12𝑚,
𝑐3𝑅 = − 1

2𝑚𝜔𝑐 ∫𝑙0 V̂2𝑐𝑑𝑠
[3𝑐𝑎3𝜔3𝑐𝑈𝑐 ∫𝑙

0
V̂4𝑐𝑑𝑠

+ 4𝑐𝑎2𝜔2𝑐 ∫𝑙
0
V̂2𝑐𝜒22𝐼𝑑𝑠 − 𝐸𝐴𝑘𝑙 ∫𝑙

0
V̂𝑐𝑑𝑠

⋅ (𝜁𝜔𝑐𝑇0 ∫
𝑙

0
V̂𝑐 (2𝜒20 + 𝜒22𝑅) 𝑑𝑠 + ∫𝑙

0
V̂𝑐𝜒22𝐼𝑑𝑠)

− 𝐸𝐴𝜂22𝐼 ∫𝑙
0
V̂𝑐V̂

𝑐 𝑑𝑠 − 𝐸𝐴𝑒𝑐 ∫𝑙

0
V̂𝑐𝜒22𝐼𝑑𝑠]

𝑐3𝐼 = 1
2𝑚𝜔𝑐 ∫𝑙0 V̂2𝑐𝑑𝑠

[4𝑐𝑎2𝜔2𝑐 ∫𝑙
0
V̂2𝑐𝜒22𝑅𝑑𝑠 − 𝐸𝐴𝑘𝑙

⋅ ∫𝑙
0
V̂𝑐𝑑𝑠

⋅ (𝜁𝜔𝑐𝑇0 ∫
𝑙

0
V̂𝑐𝜒22𝐼𝑑𝑠 − ∫𝑙

0
V̂𝑐 (𝜒22𝑅 + 2𝜒20) 𝑑𝑠)

− 𝐸𝐴 (𝜂22𝑅 + 2𝜂20) ∫𝑙
0
V̂𝑐V̂

𝑐 𝑑𝑠

− 𝐸𝐴𝑒𝑐 ∫𝑙
0
V̂𝑐 (𝜒22𝑅 + 2𝜒20) 𝑑𝑠]

(A.7)

and 𝜒22(𝑠) = 𝜒22𝑅(𝑠) + 𝑖𝜒22𝐼(𝑠), 𝜂22 = 𝜂22𝑅 + 𝑖𝜂22𝐼.
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