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Abstract. 
Grain boundary (GB) diffusion in engineering materials at elevated temperatures often determines the evolution of microstructure, phase transformations, and certain regimes of plastic deformation and fracture. Interpreting experimental data with the use of the classical Fisher model sometimes encounters contradictions that can be related to violation of Fick’s law. Here, we generalize the Fisher model to the case of non-Fickian (anomalous) diffusion ubiquitous in disordered materials. The process is formulated in terms of the subdiffusion equations with time-fractional derivatives of order  and  for grain volume and GB, respectively. It is shown that propagation along GB for the case of a localized instantaneous source and weak localization in GB () is approximately described by distributed-order subdiffusion with exponents  and . The mean square displacement is calculated with the use of the alternating renewal process model. The tail of the impurity concentration profiles along the  axis is approximately described by the dependence  for all , as in the case of normal GB diffusion, so the 6/5-law itself can serve as an identifier of a more general phenomenon, namely, anomalous GB diffusion.

1. Introduction
Grain boundary (GB) diffusion can control many processes in materials and determine the evolution of microstructure, phase transformations, and some regimes of plastic deformation and fracture [1]. Usually, atoms diffuse along grain boundaries (GB) by orders of magnitude faster than in crystalline grains. In recent decades considerable progress has been made in the accuracy and reliability of measurements of GB diffusion parameters [1–3]. However, many fundamental aspects including mechanisms at the atomic level remain unclear. One of the reasons for this discrepancy is that experimental data on GB diffusion is usually interpreted with the Fisher model [4] and its modifications [1–3] based on the Fick law, which can be violated. The goal of the present paper is to generalize the classic model to the case of non-Fickian (anomalous) diffusion and compare predictions of the new model with the classic solutions.
The Fisher model considers a system with a single isolated GB of thickness  placed in a semi-infinite medium. Usually, the diffusion coefficient  along GB is assumed to be significantly larger than  in grain volume. The impurity atoms initially located on the surface of a semi-infinite medium diffuse along GB and in volume, at a constant annealing temperature  during the time  [5]. The propagation in such a system is usually described by a set of diffusion equations. The exact solutions for the Fisher model with constant and instantaneous source were found by Wipple and Suzuoka [6, 7]. Levin and McCallum [8] have shown that the dependence of the average concentration  on  is linear for sufficiently large  [1]. Such dependence often serves as an identifier of the GB diffusion phenomenon. It is natural to expect the anomalous GB diffusion to be characterized by index different from 6/5.
Several papers discuss slowing down the diffusion of light elements due to GBs. In [9], various aspects of the interaction of hydrogen with grain boundaries in nickel (Ni) were investigated by first-principle calculations by means of the density functional theory. Localization and migration of hydrogen strongly depend on type of GB. GBs can act as a two-dimensional obstacle (wall) for H migration. In [10] molecular dynamics simulation of dissolution and diffusion of hydrogen in GB  of tungsten has shown that high local concentration of H in GB (for example, 30% at 900 K) leads to an unordered structure of GB that can provide trapping of H. Autoradiography [11] applied to polycrystals with different grain sizes showed that the increased GB area leads to the suppression of migration of C isotope in -iron. The opposite effect is observed for Co isotope. The authors of [11] conclude that GBs in -iron act as traps for interstitial atoms and slow down their diffusion.
Besides that, a number of experimental facts indicate anomalous diffusion (mainly, subdiffusion) of impurities and defects in disordered materials (see, e.g., [12–16]). Usually the phenomenon is characterized by the expansion law for the diffusion packet . In the case of , the diffusion packet width increases with time more slowly (subdiffusion), and in the case  faster (superdiffusion) than in the normal case. Diffusion equations with fractional-order derivatives are an effective tool to describe anomalous diffusion [15, 17]. GB diffusion also demonstrates anomalous diffusive behavior [1, 18]. In [19], the fractional calculus approach for GB diffusion is justified within the classic Fisher model.
In the present paper, we consider a model of anomalous diffusion along the grain boundaries accounting for localization in grains and GB. The process is described by the anomalous diffusion equations containing time derivatives of fractional orders  and  for grains and boundary, respectively. The mean square displacement  along GB and the penetration depth distribution are calculated for the case of a localized instantaneous source and weak localization (). The propagation along the boundary is approximately described by subdiffusion with a mixture of dispersion parameters  and . The solutions are examined by the Monte Carlo simulation. Numerically, we also consider the cases of constant and instantaneous source on the surface. The impurity density and the mean square displacement are calculated with the use of the alternating renewal process model. It is remarkable that the tail of the impurity concentration profiles along GB ( axis) is approximately described by the same dependence  for all , as in the case of normal GB diffusion.
2. Anoamlous Diffusion and Fractional Stable Distributions
Despite of different specific mechanisms generating anomalous diffusion processes in different physical phenomena its main features can be obtained from the continuous time random walk (CTRW) scheme as time  [20, 21].
The basic idea of the simplest (one-dimensional decoupled) version of CTRW model is that different jump lengths , as well as waiting times  between two successive jumps, are random variables independent of each other and among themselves. One supposes that jump lengths and waiting times have the following distributions: and both directions for a test particle leaving a trap are equal in probabilities. If  and  we observe normal diffusion; all other values of  and  lead to anomalous diffusion with characteristic exponents . The anomalous diffusion packet  for  and . When  we have subdiffusion regime; when  we observe superdiffusion regime. The asymptotic term of the probability density function  (propagator) obeys the fractional diffusion equation (see, e.g., [22]):Here is the Riemann-Liouville fractional derivative and  is a fractional power of the Laplace operator (see for details [23]). This equation has a solution in the self-similar form: where the functionis the so-called fractional stable density [24, 25] expressed through the one-sided stable density  and symmetric stable density . The stable densities are usually defined by their characteristic functions. In the one-dimensional case Here,  is an asymmetry parameter. The asymmetric fractional stable density is simply defined by
The characteristic function of a fractional stable lawis expressed through the Mittag-Leffler function
Further, we consider only subdiffusive case for transport in GB and bulk, because this type of anomalous diffusion is observed more frequently in disordered solids. General representation (7) will be helpful for calculation of MSD with the use of an alternating renewal process.
3. Fractional Generalization of the Fisher Model
In the Fisher model, GB is modeled as a high-diffusivity uniform slab of width  perpendicular to the surface; this slab is embedded into a low-diffusivity isotropic medium [1, 4]. Diffusive motions in GB and surrounded medium are characterized by coefficients  and  such that . In a typical experiment, a layer of impurity atoms or tracer atoms is created at the surface and then the sample is annealed at a constant temperature  during time  [2].
Consider the modified Fisher model, accounting for the generalized diffusion in the grains  and in GB . The width of GB . Equation for subdiffusion in grains isThe same equation with  instead of  and  instead of  is used for diffusion in GB ().
For small GB thicknesses, assuming slight variation in diffusant concentration across GB, we arrive at a single boundary condition for the modified Fisher model 
Using the Fourier transformation on  and Laplace transformation on  of equation (10) and boundary condition (11) in the case of instantaneous source with initial condition , we obtain This transform solution generalizes Suzuoka’s solution [7]. For a particular case when parameters and concentration of traps in grains and GB coincide (), the expression can be inverted and represented in the formwhere  is the Suzuoka solution [7] with anomalous diffusion coefficient instead of the ordinary one and  is the one-sided -stable density [26]. The integral in (13) can be calculated by simple Monte Carlo algorithm by averaging over one-sided -stable variables . The expression similar to (13) is applicable for the case of a constant source and the Whipple solution [6].
4. Fractional Alternating Renewal Process and Grain Boundary Diffusion
It is useful to consider the process in terms of a single-particle random walk. The displacement of a particle along  depends on the distribution of times that the particle spends in GB and grains [19]. Let us simplify the situation by considering an instantaneous source at GB at  (the case of a localized source). The time scale is divided into intervals of motion in grains and GB. To determine the distribution of total time spent in GB we consider the alternating renewal process [27]. Renewal events are associated with the transitions from the grains to GB and vice versa. For definiteness, we assume that at time  the particle enters GB. In [27], we derived an expression for the double Laplace transform of PDF  of total residence time in one of the states (e.g., in GB):where  and  are the Laplace images of PDF’s of waiting times  and  in GB and, in the grain volume,are images of the corresponding distribution functions. The elementary times  and  are independent random variables.
We consider the subordinated Brownian motion directed by fractional Poisson processes with different order and rate for grains and GB (see Appendix A). The density and distribution of waiting time in GB are characterized by the following asymptotic Laplace transforms:and in grain volume:where small shift  from the boundary is introduced to overcome the problem of return times for the Brownian motion (then we assume ). Here,  and  are orders of fractional Poisson process for grains and GB,  and  are corresponding rates, and  and  can be considered as average times between subsequent localization events. Substituting these expressions into (15)  goes down and we came to the following transform: where The inverse double Laplace transform leads to an expression (see details in [27])containing one-sided fractional-stable densities 
If , that is valid for  in the case  (weak localization in GB), we have
Knowing distribution of the displacement along GB, due to the motion in grains and due to motion in GB one can write PDF of the total displacement along GB as a convolution, As a result, we have 
The mean square displacement averaged over an ensemble of tracers is Taking the following property of the stable subordinator into account we obtain the subdiffusive behavior with two fractional exponents:
Averaging over time  with the use of (23) (see Appendix B) leads to
Density (23) is an asymptotic expression for the case . It leads to MSD consisting of two power laws with exponents  and . This behavior is well confirmed by simulation for  and . But for , Monte Carlo computation indicates an additional component in  proportional to : This term is clearly interpreted, when the process of propagation along GB is considered a distributed-order subdiffusion. When , diffusion along GB is accompanied by trapping into sites distributed in GB and delay due to sojourn in grains characterized by time distribution (18). In this case, the process is approximately described by the following distributed-order fractional equation: where  denotes the fractional Caputo derivative. So, the MSD evolution is characterized by three power laws with exponents , , and .
If , we have the following scaling:which is well confirmed by Monte Carlo simulation (see Figure 1).




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
		
		
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 1: The mean square displacement along the grain boundary for different values of  for subdiffusion in grains in the case of an instantaneous localized source.


5. Monte Carlo Verification
The process of diffusion in grains and in GB was simulated as the subordinated Brownian motion. The motion during the operational time  (the delocalization time) is modeled according to the Langevin equation where  is a two-dimensional white noise  and . The diffusion coefficients  along the -th direction depend on the position of the particle (GB or grain). Diffusion in grains is isotropic with coefficient  for the parent process. In GB, the parent Brownian motion along GB is characterized by , and across GB the diffusion coefficient . The displacement for a small interval of the operational time  is determined by the relation , where  are standard normal random variables with zero mathematical expectation and unit variance. After each displacement, the particle can be trapped with probability  in GB and probability  in grain volume.
Figures 1 and 2 demonstrate the Monte Carlo simulation results for the cases  and , respectively. In Figure 1, parameters  and  (i.e., trapping in GB is absent), , , , ,  and different values of subdiffusion exponent  in grains. The figure shows that the dependence (34) is confirmed.




	
	
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
		
		
			
		
			
		
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
			
		
			
		
		
			
		
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
			
				
			
				
			
				
			
				
		
	


Figure 2: The mean square displacement along the grain boundary in the case of localized instantaneous source and subdiffusion in grains () and in GB () for different values of trap concentration  in GB.


In Figure 2 the parameters are the same, except  with , and  and different  indicated in figure. The influence of traps in GB is amplified for increased  and the intermediate asymptotic behavior of the mean squared displacement can be described by the law . GB subdiffusion along  can be approximately considered as subdiffusion with a mixture of localization time distributions characterized by two fractional orders  and . Suchbehavior can be described by fractional diffusion equations with multifractal memory kernelsconsidered in details in [28].
Figure 3 shows calculated PDF of the penetration depth along the grain boundary for the case of subdiffusive motion in grains and a localized instantaneous source. It is worthy to note that the tails of these distributions are also successfully approximated by the dependence , well known from the theory of normal diffusion along the grain boundaries [1–3]. The importance of this dependence is that it serves as an indicator of GB diffusion that distinguishes the phenomenon from ordinary (bulk) diffusion. Moreover, this fact is confirmed by the corresponding tails of the symmetric fractional stable density , which is an approximate solution of the subordinated diffusion equation. These tails are also straightened out in the coordinates  vs  (Figure 4).




	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
		
			
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
			
		
		
		
			
		
		
		
			
		
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
			
		
		
			
				
			
				
			
				
			
				
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
			
				
			
				
			
				
					
		
	


Figure 3: Histograms of the penetration depth of impurity particles along GB for subdiffusion in grains from a localized instantaneous source (MC simulation).






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
		
	


Figure 4: Tails of symmetric fractional-stable density  in the coordinates ‘’ vs ‘’ and their ‘straightening’ in coordinates ‘’ vs ‘’ for different values  of the subdiffusion index in grains.


In Figure 5, the results of Monte Carlo simulation for the density distribution of the tracer penetration depth along the grain boundary for subdiffusion in grains in the case of a constant distributed source on the surface for different values of  are shown. Other parameters ; , , , , , , .








	
	
		
			
		
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
	


Figure 5: Monte Carlo trajectories of grain boundary diffusion in disordered granular medium and the distribution of the penetration depth of impurity particles along the grain boundary at subdiffusion in grains in the case of a constant distributed source on the surface for different values of . Other parameters ; , , , , , , .


6. Conclusion
Interpreting experimental data with the use of the classical Fisher model sometimes encounters contradictions that can be related to violation of Fick’s law. Here, we generalize the Fisher model to the case of non-Fickian (anomalous) diffusion ubiquitous in disordered materials. The process is formulated in terms of the subdiffusion equations with time-fractional derivatives of order  and  for grain volume and GB, respectively. We found that, for the case of a localized instantaneous source and weak localization in GB (), the GB diffusion along  is approximately described by distributed-order subdiffusion with exponents  and . It is remarkable that tails of the tracer concentration profiles along the  axis are approximately described by dependence  for all , as in the case of normal GB diffusion, so the 6/5-law itself can serve as an identifier of a more general phenomenon, namely, anomalous GB diffusion.
Appendix
A. Subordinated Brownian Motion Directed by Fractional Poisson Process
 We model subdiffusion in grains and GB as a subordinated Brownian motion directed by fractional Poisson process. Below, main definitions and relations used in our calculations are given.
Let  be a Markovian process with one-dimensional density  and  a process with nonnegative increments. The following terminology is used:  is called the parent process,  is the directing process, and  is said to be subordinated to the parent process  using the operational time . The one-dimensional probability density for the subordinated process  is expressed through the density of the directing process  by 
We consider subordinated Brownian motion with zero mean, so the parent process obeys the simple stochastic differential equation where  is a standard Brownian motion with  and  is a diffusion coefficient.  has the following characteristic function: Characteristic function of the subordinated process is where 
To model subdiffusion, we take the fractional Poisson process [29, 30] as directing process defined by the Laplace transform of waiting time density :The original function is the so-called ‘fractional exponential density’ expressed via the Mittag-Leffler function: The density  is expressed through the one-sided Lévy stable density the corresponding Laplace transform is where  can be interpreted as an average time between two subsequent localization events.
If operational time  is given, the probability density function  of the total time is also expressed through the stable density: 
The distribution density of first passage time or exit time  for the subordinated process is related to the corresponding density  for the Brownian motion by expression: In terms of the Laplace transformation: 
The density  of the subordinated Brownian motion directed by fractional Poisson process of order  satisfies the subdiffusion equation containing the fractional Riemann-Liouville derivative of the same order: 
B. To Calculation of the Mean Square Displacement
 To obtain (31), we average (30) over total time  in GB according to using approximate PDF (23). For asymptotic large times , . From the first term in (30) we derive the following: From the second term in (30), we obtain 
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