Advances in Mathematical Physics
Volume 2019 (2019), Article ID 9382079, 8 pages
https://doi.org/10.1155/2019/9382079
Research Article
Quantum Stochastic Cable Equation Acting on Functionals of Discrete-Time Normal Martingales
Yuling Tang,1 Caishi Wang,1 Suling Ren,1 and Jinshu Chen2
1School of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070,  China
2School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050,  China
Correspondence should be addressed to Caishi Wang; cswangnwnu@163.com
Received 11 August 2018; Accepted 4 December 2018; Published 1 January 2019
Academic Editor: Soheil Salahshour
Copyright © 2019 Yuling Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
Let  be a discrete-time normal martingale satisfying some mild conditions. Then Gel’fand triple  can be constructed of functionals of , where elements of  are called testing functionals of , while elements of  are called generalized functionals of . In this paper, we consider a quantum stochastic cable equation in terms of operators from  to . Mainly with the 2D-Fock transform as the tool, we establish the existence and uniqueness of a solution to the equation. We also examine the continuity of the solution and its continuous dependence on initial values.



1. Introduction
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. It was originally proposed for developing mathematical models of signal decay in submarine (underwater) telegraphic cables. However, its utility for neuroscience was not recognized until many years later, after nerve axons came to be regarded as “core conductors.” Neurons are the basic unit in the brain; it transmits electrical signals through axons and receives electrical signals through dendrites. Axons and dendrites can be described as cables with special properties. Thus, the cable equation has been useful to explain different phenomena in dendrites and axons (see, e.g., [1–3]).
The potential of the responses of nerve cells may evolve through a combination of diffusion and random fluctuation. To describe the change of such potential, Walsh [4, 5] introduced a stochastic cable equation, which is a second-order, parabolic, partial differential equation with a certain stochastic term. In 1998, Applebaum [6] proposed a quantum stochastic cable equation in the framework of Fock space, which can be viewed as a quantum version of Walsh’s stochastic cable equation and was intended to describe the microtubular potential as an observable that evolves in space and time through diffusion and quantum effects.
Hida’s white noise analysis is essentially a theory of infinite dimensional calculus on generalized functionals of Brownian motion (also known as Gaussian white noise generalized functionals). In 2000, a quantum stochastic cable equation was considered in the framework of white noise analysis [7]. The main features of the equation considered in [7] lie in that the role of quantum noises was played by a family of generalized operators, which are continuous operators defined on Gaussian white noise testing functionals and valued in Gaussian white noise generalized functionals, and can be regarded as quantum Gaussian noises.
Functionals of discrete-time normal martingales have attracted much attention in recent years (see, e.g., [8–12]). Let  be a discrete-time normal martingale satisfying some mild conditions. Then, by using a specific orthonormal basis for the space  of square integrable functionals of , Gel’fand triple can be constructed [11], where elements of  are called testing functionals of , while elements of  are called generalized functionals of . Recently, a transform, called 2D-Fock transform, has been introduced [13] for operators from  to . It has been shown [13] that continuous linear operators from  to  are completely determined by a growth condition on their 2D-Fock transforms. Let  denote the set of all continuous linear operators from  to . Then one can define the convolution  in  by means of the 2D-Fock transform, which makes  form a commutative algebra.
In this paper, we consider the following quantum stochastic cable equation in terms of operators from  to :where  is a given constant,  stands for the convolution of operators,  is a given map,  and  are -valued quantum stochastic processes, and the solution , if it exists, will be a -valued quantum stochastic process. Compared to the equation considered in [7], (2) might be used to describe quantum stochastic evolution in space and time of a quantum system in the presence of quantum Bernoulli noises.
The rest of the paper is organized as follows. In Section 2, we briefly recall some notions and results on continuous linear operators from  to , which will be used in our later discussion. Sections 3 and 4 are our main work. Here, by using the 2D-Fock transform, we establish the existence and uniqueness of a solution to (2). We also examine the continuity and continuous dependence on initial values of the solution to (2).
Throughout this paper,  designates the set of all nonnegative integers and  the finite power set of , namely, where  means the cardinality of  as a set.
2. Preliminaries
In this section, we briefly recall some notions and results on continuous linear operators from  to . For details, see [10–14] and references therein.
Let  be a given probability space and  the usual Hilbert space of square integrable complex-valued functions on  with inner product  and norm , respectively. By convention,  is conjugate-linear in its first argument and linear in its second argument.
Let  be a discrete-time normal martingale on  that has the chaotic representation property. Denote by  the Hilbert space of square integrable functionals of , which shares the same inner product and norm with , namely,  and . It is known that  has an orthonormal basis  defined by  and  where  is the discrete-time normal noise associated with  (see [11] for details).
By using the orthonormal basis , one can construct [11] a dense linear subspace  of , which itself is a countable Hilbert nuclear space and continuously contained in . Let  be the dual of  endowed with the strong topology. Then, by identifying  with its dual, one comes to Gel’fand triplewhich is the framework where we will work. Elements of  are called testing functionals of , while elements of  are called generalized functionals of . As mentioned above, we denote by  the set of all continuous linear operators from  to .
Lemma 1 (see [11]).  Let  be the -valued function on  given byThen, for , the positive term series  converges and moreover
Definition 2 (see [13]).  For an operator , its 2D-Fock transform is the function  on  defined aswhere  is the canonical bilinear form on .
Much like generalized functionals of , continuous linear operators in  are also completely determined by their 2D-Fock transforms.
Lemma 3 (see [13]).  Let  and  be continuous linear operators. Then  if and only if .
The following lemma is known as the characterization theorem of operators in  through their 2D-Fock transforms.
Lemma 4 (see [13]).  Let  be a function on . Then  is the 2D-Fock transform of an element  in  if and only if it satisfiesfor some constants  and . In that case, for , one has and in particular  takes values in , where where .
Definition 5 (see [13]).  Let  and  and then their convolution  is defined by
It can be verified that  forms a commutative algebra with a unit. The next definition describes convergence of sequences in .
Definition 6 (see [14]).  A sequence  in  is called to converge strongly to , if for any , we have  in the strong topology of .
Lemma 7 (see [14]).  Let  be a sequence of operators in  and  an operator in . Then the sequence  converges strongly to  if and only if:
(1)  for all ;
(2) there exist constants  and , such that 
Lemma 8 (see [14]).  Let  be a measure space and  be a -valued function satisfying the following conditions:
(1) for any , the function  is measurable;
(2) there exist  and a positive function , such that for -a.e.,  it holds that Then  is Bochner integrable with respect to  on  and its Bochner integral satisfies the following norm inequality: where . In particular, .
Definition 9 (see [14]).  Let  be a compact metric space. A map  is said to be continuous, if for each sequence  in  that converges to , one has  converges to .
Lemma 10 (see [14]).  Let  be a compact metric space and  is a -valued function. Then  is continuous if and only if
(1)  is continuous for any ;
(2) there exist  and , such thatfor each  and .
3. Existence and Uniqueness of Solution
In the present section, we establish the existence and uniqueness of a solution to quantum (2). Recall that  is the space of all continuous linear operators from  to , which forms a commutative algebra with the convolution .
Let  be the Green’s function associated with the classical cable equation. Then  has following properties (see[5] for details):
(1)  is continuous;
(2) ;
(3) ;
(4) for each , there exists , such thatAnd we put Then, obviously, , , .
Let  be a -valued function. Then,  is said to be a solution to Equation(2) if it satisfies the following integral equation: where , the integral is the Bochner integral of operator valued function in .
Definition 11.  Let  be a map. If there exists a constant , such that
(1) for any  and , we have (2) for any , we have .
Then  is said to satisfy Lipschitz and linear growth conditions by means of 2D-Fock transforms.
Theorem 12.  Let  and  satisfy
(1) for any , the functions  and  are continuous;
(2) there exist constants  associated with , and , such that In addition, let  satisfy Lipschitz and linear growth conditions. Then there exists a sequence of -valued functions , satisfying
(1) for any  and , the function  is continuous;
(2) for , it holds that (3) for , we have 
Proof.  By properties of the Green’s function and the conditions of Theorem 12, the integral  exists and belongs to  for . Put Then, for any , the function  is continuous. For , , let Then, we have , which implies that the function is continuous. Furthermore, we have where  and . By Lemma 8, the integral exists and belongs to . Now we define  as Then, by 2D-Fock transform, we have , which implies that the function  is continuous and satisfies Assume that, for some ,  has been defined and the function  is continuous and satisfies For , define Similarly, for any , the function  is continuous, and by computation we have where  and . Hence, the integral exists and belongs to . So we can define  as . For , the function  is continuous and satisfiesNote that Thus from (38), we get . Hence, by induction we come to our conclusion.
Theorem 13.  Let the noise process , initial value process , and the map  in (2) satisfy the conditions in Theorem 12. Then there exists a unique continuous -valued function  which satisfies (2). Moreover, the solution  has following estimate:
Proof (existence).  Consider the sequence of -valued functions  given in Theorem 12. We assert that, for any , . In fact, this is obviously true for . Now, we assume that the inequality is satisfied for some , then, for , we have . By induction, we come to the assertion.
For , consider the sequence ; we have for any . Hence, the sequence  converges in . On the other hand, from the Theorem 12, we have , which together with Lemma 7 implies that  converges in .
Let ; then, it is easy to see that  and Thus, for any , the integral  exists and belongs to .
Moreover, by the dominated convergence theorem, for each , On the other hand, we have , so , which implies that  is a solution to (2).
For the continuity of , we should only show that for any  is continuous on . In fact, for any , we have  So  which means that the function  is continuous. In addition, we have . Then by Lemma 10, the function  is continuous.
Finally, we prove the uniqueness of the solution. Assume that  is a another continuous solution to (2). Then for any , we have where . Hence,  By Gronwall inequality, we obtain that By Lemma 3,  and ; namely, the solution is unique.
4. Stability of Solution
In this section, we will prove that the solution to (2) continuously depends on the initial values.
Let  be the set of continuous functions from  to , namely, . For any , we define seminorm  on  as  and endow  with the topology generated by the family of seminorms . Then  becomes a Hausdorff topological linear space. In the following, we always assume that the map  satisfies Lipschitz and linear growth conditions in terms of 2D-Fock transform, and the noise process  satisfies conditions:
(1) For any , the function  is continuous;
(2) there exist constants  and  associated with , such that 
Theorem 14.  For each , there exists a unique continuous valued function  satisfying (2); moreover, for each .
Proof.  By Theorem 13, we should only prove that there exist constants , , and , such thatandIn fact, because , so by Lemma 10, there exist , such that Set ; then for any , we have ; hence, and 
For , we denote by  the solution to (2) with J as its initial value. Then, we have the following estimate:In fact, because . Therefore, . Then, by Gronwall inequatily, we come to the estimate (64).
Using estimate (64) and 2D-Fock transform and together with the theory of classical cable equation, we obtain the next theorem, which shows that the solution to (2) depends continuously on the initial value.
Theorem 15.  For each , define a map  as ; then  is a family of continuous injective maps and .
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