Research Article

Multiple Lump Solutions of the (4 + 1)-Dimensional Fokas Equation

Hongcai Ma,1,2 Yunxiang Bai,1,2 and Aiping Deng1,2

1Department of Applied Mathematics, Donghua University, Shanghai 201620, China
2Institute for Nonlinear Sciences, Donghua University, Shanghai 201620, China

Correspondence should be addressed to Hongcai Ma; hongcaima@hotmail.com and Yunxiang Bai; baiyunxiang429@163.com

Received 13 March 2020; Revised 6 May 2020; Accepted 11 May 2020; Published 10 June 2020

Academic Editor: Ming Mei

Copyright © 2020 Hongcai Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we investigate multiple lump wave solutions of the new (4 + 1)-dimensional Fokas equation by adopting a symbolic computation method. We get its 1-lump solutions, 3-lump solutions, and 6-lump solutions by using its bilinear form. Moreover, some basic characters and structural features of multiple lump waves are explained by depicting the three-dimensional plots.

1. Introduction

Nonlinear evolution equations can be used to simulate many nonlinear phenomena in the real world, which appear in many areas, especially in physical [1], engineering sciences [2], applied mathematics [3], chemistry, and biology [4]. Recently, it is well known that rogue waves play an essential role in helping us apprehending the qualitative properties of many phenomena; it is interesting that lump functions can provide approximate fitting prototypes to model rogue waves. In addition to appearing in the ocean [5], lump waves also actually appear in many other fields, such as atmosphere [6], superfluids [7], and capillary waves [8]. Further study of lump waves will help us interpret some unknown fields more deeply. Certain ways have been arranged to solve the lump wave solutions of some equations; they are inclusive of the Hirota bilinear method [9, 10], the inverse scattering transformation [11], the Darboux transformation [12], the Bäcklund transformation [13], the functional variable method [14], the reduced differential transform method [15], and so on. Many integrable equations which have lump wave solutions are enumerated here, for example, the (3 + 1)-dimensional KP equation [16], the Davey-Stewartson 1 equation [17], the (3 + 1)-dimensional nonlinear evolution equation [18, 19], and the nonlinear Schrödinger equation [20]. Generally speaking, it is easier to solve the lower order rational solutions than to solve the multiple lump waves of the nonlinear evolution equation. In this paper, we mainly work on a (4 + 1)-dimensional Fokas equation.

\[4u_{tx} - u_{xxy} + u_{xyyy} + 12u_xu_y + 12uu_{xy} - 6u_{ww} = 0, \]

(1)

which was first derived by Fokas by the generalization of two critical nonlinear evolution equations, which are the integrable KP equation and DS equation [21]. The (4 + 1)-dimensional Fokas equation could be applied to portray nonelastic and elastic interactions [21, 22]. In nonlinear wave theory, KP and DS equations can be used to characterize the surface waves and internal waves in straits or channels of varying depth and width, respectively [23–26]. The significance of the (4 + 1)-dimensional Fokas equation follows naturally from the physical applications of the KP and DS equations. Therefore, the (4 + 1)-dimensional Fokas equation could be adopted to represent a number of phenomena in fluid mechanics, optical fiber communications, ocean engineering, and many others. More recently, (4 + 1)-dimensional Fokas equation has been discussed by some scholars. Demiray et al. obtained the exact solutions of Equation (1) by applying...
of lump waves of Equation (1) are studied when the subscript

2 Advances in Mathematical Physics

a short conclusion and discussion.

2.1-Lump Solutions

where \(f_n \) is equal to \(y - \alpha \), and \(Z \) and \(\alpha \) are all real parameters. With the help of variable transformation

\[
\begin{align*}
\phi(x, y, z, t, \omega) &= (m^2 - 1) \left((X - \beta)^2 - \left(\frac{2m(Z - \alpha)^2}{3c} - \frac{3(n^2 - 1)}{4m} \right) \right), \\
\end{align*}
\]

where \(X = x + mt, Z = z + cw, m, n, c, a, \) and \(\beta \) are arbitrary real constants. The 1-lump wave (9) has the structure for three wave peaks. One peak is higher than the water level, and the other two are opposite. Figure 1 presents the three dimensional plot, the density plot, and the corresponding contour plot of the 1-lump wave solution of Equation (1). From

\[
\begin{align*}
\phi(x, y, z, t, \omega) &= (m^2 - 1) \left((X - \beta)^2 - \left(\frac{2m(Z - \alpha)^2}{3c} - \frac{3(n^2 - 1)}{4m} \right) \right), \\
\end{align*}
\]
3. 3-Lump Solutions

In the section, in order to construct the multiple lump solutions, we propose the notation just like this:

\[F_n(X, Z) = \sum_{k=0}^{n(n+1)/2} \sum_{i=0}^{k} a_{n(i+1)-2k,2i} Z^{2i} X^{n(i+1)-2k}, \]

\[P_n(X, Z) = \sum_{k=0}^{n(n+1)/2} \sum_{i=0}^{k} b_{n(i+1)-2k,2i} Z^{2i} X^{n(i+1)-2k}, \]

\[Q_n(X, Z) = \sum_{k=0}^{n(n+1)/2} \sum_{i=0}^{k} c_{n(i+1)-2k,2i} Z^{2i} X^{n(i+1)-2k}, \]

where \(a_{ij}, b_{ij}, \) and \(c_{ij} \) are arbitrary constants. Then, we take \(n = 1, \)

\[f(X, Z) = F_1(X, Z) + 2aZP_1(X, Z) + 2\beta XQ_1(X, Z) + (\alpha^2 + \beta^2), \]

and

\[f(X, Z) = F_2(X, Z) + (a_{2,0} + a_{2,2}Z^2 + a_{2,4}Z^4)X^2 + (a_{0,0} + a_{0,2}Z^2 + a_{0,4}Z^4 + a_{0,6}Z^6), \]

\[P_1(X, Z) = b_{0,0} + b_{0,2}Z^2 + b_{2,0}Z^2, \]

\[Q_1(X, Z) = c_{0,0} + c_{0,2}Z^2 + c_{2,0}Z^2. \]

Substituting Equation (11) into Equation (4) and collecting all the coefficients of \(X^i, Z^j, \) we can get a group of constraining relationships for the parameters. Dealing with these equations, one gets
where \(b_{0,2} \) and \(c_{2,0} \) are arbitrary constants. Thus, the 3-lump solution of Equation (1) is shown by

\[
u = u_0 + (m^2 - 1)(\ln f)_{XX},
\]

where \(f \) is given in Equation (11), in which \(X = x + my + nt \), \(Z = z + cw \). By increasing the value of \(\alpha \) and \(\beta \), 3-lump wave merge and their centers form a triangle (see Figure 2). The 3-lump wave is the arrangement of three 1-lump waves in the plane \((X, Z) \).

4. 6-Lump Solutions

To get the 6-lump solution of Equation (1), the 6-lump solution waves of a \((4 + 1)\)-dimensional Fokas equation can be presented if we choose \(n = 2 \),

\[
f(X, Z) = F_3(X, Z) + 2\alpha ZP_2(X, Z) + 2\beta XQ_2(X, Z) + (\alpha^2 + \beta^2)F_1(X, Z),
\]

where

\[
F_3(X, Z) = X^{12} + (a_{0,0} + a_{0,2}Z^2)X^{10} + (a_{0,0} + a_{2,0}Z^2 + a_{4,0}Z^4 + a_{6,0}Z^6)X^8 + (a_{0,0} + a_{2,0}Z^2 + a_{4,0}Z^4 + a_{6,0}Z^6 + a_{8,0}Z^8)X^6 + (a_{0,0} + a_{2,0}Z^2 + a_{4,0}Z^4 + a_{6,0}Z^6 + a_{8,0}Z^8 + a_{10,0}Z^{10})X^4 + a_{0,0}Z^8 + a_{0,10}Z^{10} + a_{0,12}Z^{12},
\]

\[
a_{0,0} = \frac{-5625n^9 - 192\beta^2c_{2,0}m^3 - 16875n^7 + 32\alpha^2cn^2b_{0,2} + 192\alpha^2m^3 + 192\beta^2m^3 + 16875n^5 - 5625n^3 - 475n^2 (n^4 - 2n^2 + 1)}{192m^3},
\]

\[
a_{0,2} = -\frac{475n^2 (n^4 - 2n^2 + 1)}{24cm},
\]

\[
a_{0,4} = -\frac{17n(n^2 - 1)m}{9c^2},
\]

\[
a_{0,6} = \frac{8m^3}{27c^3},
\]

\[
a_{2,0} = -\frac{125n^2 (n^4 - 2n^2 + 1)}{16m^2},
\]

\[
a_{2,2} = \frac{15n(n^2 - 1)}{c},
\]

\[
a_{2,4} = \frac{4m^2}{3c^2},
\]

\[
a_{4,0} = \frac{-25n(n^2 - 1)}{4m},
\]

\[
a_{4,2} = -\frac{2m}{c},
\]

\[
b_{0,0} = -\frac{5b_{0,2}n(n^2 - 1)}{12m},
\]

\[
b_{2,0} = \frac{2mb_{0,2}}{9c},
\]

\[
c_{0,0} = \frac{c_{2,0}n(n^2 - 1)}{4m},
\]

\[
c_{0,2} = \frac{2mc_{2,0}}{c},
\]

\[
c_{2,0} = c_{2,0},
\]

\[
b_{0,2} = b_{0,2},
\]
\[P_2(X, Z) = b_{0,0} + (b_{2,0} + b_{2,2}X^2 + b_{2,4}X^4)Z^2 \\
+ (b_{4,0} + b_{4,2}X^2)Z^4 + Z^6 + b_{0,2}X^2 \\
+ b_{0,4}X^4 + b_{0,6}X^6, \\
Q_2(X, Z) = c_{0,0} + c_{0,2}Z^2 + c_{0,4}Z^4 + c_{0,6}Z^6 \\
+ (c_{2,0} + c_{2,2}Z^2 + c_{2,4}Z^4)X^2 \\
+ (c_{4,0} + c_{4,2}Z^2)X^4 + X^6, \\
F_1(X, Z) = X^2 + a_{0,2}Z^2 + a_{0,0}. \] (16)

Substitute (15) into (4) and let all the coefficients of the different powers of \(X^iZ^j \) equal to zero, we can get a set of constraining relations for the parameters. Figuring out these equations, one has

\[
a_{0,0} = \frac{1}{243c^5} (878826025m^2n^{17} - 5272956150m^2n^{15} + 13182390375m^2n^{13} - 17576520500m^2n^{11} + 472392\alpha^2c^2n^9 - 27648\beta^2m^2n^2 + 13182390375m^2n^9 - 472392\alpha^2c^2) \\
a_{0,10} = \frac{64m^6}{729c^6}, \\
a_{0,12} = \frac{64m^6}{729c^6}, \\
a_{0,2} = \frac{1}{2304m^6c(\alpha^2 + \beta^2 + 1)} (150448375m^2n^{15} - 752241875m^2n^{13} + 150448375m^2n^{11} - 1504483750n^9m^2 + 26244a^2c^2 - 1536m^2\beta^2 + 752241875m^2n^7 - 150448375m^2n^5), \\
a_{0,4} = \frac{16391725n^4(n^8 - 4n^6 + 6n^4 - 4n^2 + 1)}{1728m^2c^2}, \\
a_{0,6} = \frac{199745n^3(n^6 - 3n^4 + 3n^2 - 1)}{162c^3}, \\
a_{0,8} = \frac{1445n^2(n^4 - 2n^2 + 1)m^2}{27c^4}, \\
a_{10,0} = -\frac{49n(n^2 - 1)}{2m}, \\
a_{10,2} = -\frac{4m}{c}, \\
a_{2,0} = -\frac{1}{1536m^2} (79893275m^2n^{15} - 399466375m^2n^{13} + 79893275m^2n^{11} - 798932750m^2n^9m^2 + 26244a^2c^2 + 1536m^2\alpha^2 + 399466375m^2n^7 - 79893275m^2n^5), \\
a_{2,10} = -\frac{64n^5}{81c^5}, \\
a_{2,2} = -\frac{94325n^4(n^8 - 4n^6 + 6n^4 - 4n^2 + 1)}{64cm^3}, \\
a_{2,4} = -\frac{1225n^3(n^6 - 3n^4 + 3n^2 - 1)}{12c^2m}, \\
a_{2,6} = -\frac{17710n^2(n^4 - 2n^2 + 1)m}{27c^3}, \\
a_{2,8} = -\frac{760m^3n(n^2 - 1)}{27c^4}, \\
a_{4,0} = -\frac{5187875n^4(n^8 - 4n^6 + 6n^4 - 4n^2 + 1)}{768m^4}, \\
a_{4,2} = -\frac{18375n^3(n^6 - 3n^4 + 3n^2 - 1)}{8cm^2}, \\
a_{4,4} = -\frac{18725n^2(n^4 - 2n^2 + 1)}{18c^2}, \\
a_{4,6} = -\frac{2920m^2n(n^2 - 1)}{27c^3}, \\
a_{4,8} = \frac{80n^4}{27c^4}, \\
a_{6,0} = -\frac{18865n^3(n^6 - 3n^4 + 3n^2 - 1)}{48m^3}, \\
a_{6,2} = -\frac{4655n^2(n^4 - 2n^2 + 1)}{6cm}, \\
a_{6,4} = -\frac{1540mn(n^2 - 1)}{9c^2}, \\
a_{6,6} = -\frac{160m^3}{27c^3}, \\
a_{8,0} = \frac{735n^2(n^4 - 2n^2 + 1)}{16m^2}, \\
a_{8,2} = -\frac{115(n^2 - 1)}{c}, \\
a_{8,4} = -\frac{20m^2}{3c^2}, \\
b_{0,0} = \frac{169785n^3(n^6 - 3n^4 + 3n^2 - 1)c^3}{512m^6}, \\
b_{0,2} = \frac{17955c^2n^2(n^4 - 2n^2 + 1)}{128m^5}, \\
b_{0,4} = \frac{2835n^3n(n^2 - 1)}{32m^4}, \\
b_{0,6} = -\frac{135c^3}{8m^3}.

\]
Figure 3: The 6-lump solution \(u \) of Equation (1) with the parameter selections \(m = -2, n = 2, c = 1, u_0 = 0, \alpha = 80000, \beta = 80000 \). (a) Perspective view of the wave \(u(X, Z) \), (b) overhead view of the wave \(u(X, Z) \), and (c) the corresponding contour plot \(u(X, Z) \).

where \(f \) is given in Equation (15). Figure 3 shows that the 3D plot of the 6-lump wave consists of a central peak and five 1-lump waves in a ring. One can observe that the six peaks tend to the same height as \(|\alpha| \) and \(|\beta| \) increase.

5. Conclusions

In this work, we have analytically established and analyzed novel multiple lump solutions of a \((4 + 1)\)-dimensional Fokas equation based on the bilinear equation and a new ansatz. A series of rational solutions including the 1-lump wave solutions, the 3-lump wave solutions, and the 6-lump wave solutions are obtained. The 1-lump wave has one positive peak and two negative peaks. In order to search the 3-lump and the 6-lump solutions, three polynomial functions \(F_n, P_n \), and \(Q_n \) are utilized. It is notable that these lump waves all have the properties \(\lim_{x \to \pm \infty} u = u_0 \), \(\lim_{y \to \pm \infty} u = u_0 \), and \(\lim_{z \to \pm \infty} u = u_0 \). The 3-lump and 6-lump waves consist of three and six independent single 1-lump waves, respectively. All the peaks of the multiple lump waves tend to the same height when \(\alpha \) and \(\beta \) are large enough. The results of this paper enrich the types of solutions of the \((4 + 1)\)-dimensional Fokas equation. Comparing with the existing results in the literature, our results are new. We expect these results to provide some values for researching the dynamics of multiple waves in the deep ocean and nonlinear optical fibers. And it is very helpful for us to obtain the soliton molecules in the future.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (project Nos. 11371086, 11671258, and 11975145), the Fund of Science and Technology Commission of Shanghai Municipality (project No. 13ZR1400100), the Fund of Donghua University, Institute for Nonlinear
Advances in Mathematical Physics

Sciences, and the Fundamental Research Funds for the Central Universities.

References

