Research Article
Using Reproducing Kernel for Solving a Class of Fractional Order Integral Differential Equations

Zhiyuan Li, Meichun Wang, Yulan Wang, and Jing Pang
Department of Mathematics, Inner Mongolia University of Technology, Hohhot 010051, China
Correspondence should be addressed to Yulan Wang; wylnei@163.com
Received 30 December 2019; Accepted 24 February 2020; Published 11 March 2020
Academic Editor: Zengtao Chen
Copyright © 2020 Zhiyuan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is devoted to the numerical scheme for a class of fractional order integrodi
differential equations by reproducing kernel interpolation collocation method with reproducing kernel function in the form of Jacobi polynomials. Reproducing kernel function in the form of Jacobi polynomials is established for the first time. It is implemented as a reproducing kernel method. The numerical solutions obtained by taking the different values of parameter are compared; Schmidt orthogonalization process is avoided. It is proved that this method is feasible and accurate through some numerical examples.

1. Introduction
In this paper, the reproducing kernel interpolation collocation method with reproducing kernel function in the form of Jacobi polynomials is applied to solve the following linear fractional integrodi
differential equations (FIDEs):

\[
\begin{align*}
D^\mu u_1(x) + \int_0^t k_{11}(x,t)u_1(t) + k_{12}(x,t)u_2(t)dt &= f_1(x), \\
D^\mu u_2(x) + \int_0^t k_{21}(x,t)u_1(t) + k_{22}(x,t)u_2(t)dt &= f_2(x),
\end{align*}
\]

\[0 < x, t \leq 1, u_1(0) = 0, u_2(0) = 0,
\]

where \(0 < \mu \leq 1\), \(f_n(x), n = 1, 2\), and \(k_{ij}(x,t), i, j = 1, 2\), are given functions. \(D^\mu u_n(x)\) indicates that \(\mu\) is the Caputo fractional derivative defined by \(u_\alpha(x), n = 1, 2\).

Fractional order integrodifferential equation appears in the formulation process of applied science, such as physics and finance. However, it is very difficult to obtain the analytic solution of linear integrodifferential equations of fractional order, so many researchers try their best to study numerical solution of linear FIDEs and system of linear FIDEs in recent years [1–5]. Since the reproducing kernel method can not only obtain the exact solution in the form of series but also obtain the approximate solution with higher accuracy, the method has been widely used in linear and nonlinear problems, integral and differential equations, fractional partial differential equation, and so on [6–15]. But there are no scholars that use the reproducing kernel interpolation collocation method to solve the linear integrodifferential equations of fractional order. In this paper, linear integrodifferential equations of fractional order are solved by the reproducing kernel interpolation collocation method with reproducing kernel function in the form of Jacobi polynomials for the first time. The fractional derivative is described in the Caputo sense.

2. Preliminaries

Definition 1. The Caputo fractional derivative operator of order \(0 < \mu \leq 1\) is defined as

\[
D^\mu u(t) = \begin{cases}
\frac{1}{\Gamma(1-\mu)} \int_0^t (t-\tau)^{\nu-\mu} \frac{\partial u(\tau)}{\partial \tau} d\tau, & 0 < \mu < 1, \\
\frac{\partial u(t)}{\partial t}, & \alpha = 1.
\end{cases}
\]
2 Advances in Mathematical Physics

The set of reproducing kernel

\[\text{Figure 2: The set of reproducing kernel } R_{n}(y) \text{ with } n = 3, \alpha = \beta = 0. \]

2.1. The Shifted Jacobi Polynomials.

Let

\[K(x, \cdot) \in H \text{ for all } x \in \Omega \]

(i) \(f(x) = \langle f, K(\cdot, x) \rangle_{H} \) for all \(f \in H \) and all \(x \in \Omega \)

2.2. Reproducing Kernel Space

Definition 3. Let

\[H_{n}[0, 1] = \left\{ \frac{p_{i,n}^{\alpha,\beta}(x)}{\omega(x)} \bigg| \int_{0}^{1} \omega(x) \left| \frac{p_{i,n}^{\alpha,\beta}(x)}{\omega(x)} \right|^{2} dx < \infty, i = 1, \ldots, n \right\} \]

be the weighted inner product space of the shifted Jacobi polynomials on \([0, 1]\). The inner product and norm are defined as

\[\langle p_{i,n}^{\alpha,\beta}(x), p_{j,m}^{\alpha,\beta}(x) \rangle = \int_{0}^{1} \omega(x) \frac{p_{i,n}^{\alpha,\beta}(x)}{\omega(x)} \cdot \frac{p_{j,m}^{\alpha,\beta}(x)}{\omega(x)} dx, \]

where

\[\| p_{i,n}^{\alpha,\beta}(x) \|_{H_{n}} = \sqrt{\langle p_{i,n}^{\alpha,\beta}(x), p_{i,n}^{\alpha,\beta}(x) \rangle}_{H_{n}}, \]

\(\forall p_{i,n}^{\alpha,\beta}(x), p_{j,m}^{\alpha,\beta}(x) \in H_{n}[0, 1]. \)

Let \(L^{2}[0, 1] = \{ f(x) \bigg| \int_{0}^{1} \omega(x) |f(x)|^{2} dx < \infty \}. \) From [17–20], we can prove that \(H_{n}[0, 1] \) is a reproducing kernel Hilbert space. Its reproducing kernel is

\[R(x, y) = R_{n}(y) = \sum_{i=0}^{n} c_{i}(x) c_{i}(y), \]

where \(c_{i}(x) = \sqrt{(2k + \alpha + \beta + 1)k!/(2k + \alpha + \beta + 1) k!} p_{k}^{\alpha,\beta}(x). \)

Reproducing kernel is shown in Figures 1–4.

Definition 4. Let

\[\hat{H}_{n}[0, 1] = \{ u \mid u \in H_{n}[0, 1], u(0) = 0 \}. \]
Its norm is the same as the norm of $H_n[0,1]$. It can easily be shown that $H_n[0,1]$ is a reproducing kernel Hilbert space. According to [18–22], the reproducing kernel of $H_n[0,1]$ is

$$K(x, y) = K_x(y) = R(x, y) = \frac{R(0, x)R(y, 0)}{\|R(0, 0)\|^2}. \quad (11)$$

Definition 5. The inner product space is defined as

$$\tilde{L}_n[0, 1] \oplus \tilde{L}_n[0, 1] = \left\{ U(x) = [u_1(x), u_2(x)]^T \mid u_1(x), u_2(x) \in \tilde{H}_n[0, 1] \right\}. \quad (12)$$

Its inner product and norm are defined by

$$\langle U(x), V(x) \rangle = \sum_{i=1}^2 \langle u_i(x), v_i(x) \rangle_{H_n[0,1] \oplus \tilde{H}_n[0,1]},$$

$$\|U(x)\|^2 = \sum_{i=1}^2 \|u_i(x)\|_{H_n[0,1] \oplus \tilde{H}_n[0,1]}.$$ \quad (13)

It is easy to verify that $H_n[0,1] \oplus \tilde{H}_n[0,1]$ is a Hilbert space with the definition of inner product (13). Similarly, $L^2[0,1] \oplus L^2[0,1]$ is also a Hilbert space.

3. The Reproducing Kernel Interpolation Collocation Method

To solve equation (1), let

$$\begin{align*}
l_{11}u_1 &= D^u u_1(x) + \int_0^t k_{11}(x, t)u_1(t)dt, \\
l_{12}u_2 &= \int_0^t k_{12}(x, t)u_2(t)dt, \\
l_{21}u_1 &= \int_0^t k_{21}(x, t)u_1(t)dt, \\
l_{22}u_2 &= D^u u_2(x) + \int_0^t k_{22}(x, t)u_2(t)dt.
\end{align*} \quad (14)$$

So, equation (1) can be turned into

$$LU(x) = F(x), \quad (15)$$

where

$$L = \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix}. \quad (16)$$

The operator $L : \tilde{L}_n[0,1] \oplus \tilde{L}_n[0,1] \rightarrow L^2[0,1] \oplus L^2[0,1]$ is a bounded linear operator.

Assuming that $\{x_i\}_{i=1}^\infty$ is dense on the interval $[0,1]$, put $\phi_{ijk} = l_{ij}^* k_{jk}(x)$, where l_{ij}^* is the adjoint operator of l_{ij}. From [23–25], we have

$$\phi_{ijk}(x) = l_{ij}^* k_{jk}(x_k), \quad i,j = 1, 2, k = 1, 2, \cdots. \quad (17)$$

Putting

$$\Psi_{i1}(x) = (\phi_{11i}(x), \phi_{12i}(x))^T,$$

$$\Psi_{i2}(x) = (\phi_{21i}(x), \phi_{22i}(x))^T, \quad (18)$$

$$i = 1, 2, \cdots.$$

Theorem 6. For each fixed n, $\{\Psi_{ij}\}_{(i,j)}^{(n,2)}$ is linearly independent in $\tilde{L}_n[0,1] \oplus \tilde{H}_n[0,1]$.

Figure 3: Reproducing kernel $R_n(y)$ with $n = 3, \alpha = \beta = -0.5$.\]

Figure 4: Reproducing kernel $R_n(y)$ with $n = 3, \alpha = \beta = 0.5$.\]
Proof. Letting
\[0 = \sum_{i=1}^{\infty} (c_{i1}\Psi_{i1}(x) + c_{i2}\Psi_{i2}(x)), \]

\[U_k(x) = [u_{k1}(x), u_{k2}(x)]^T, \]

where \(u_{k1}(x) \in L^2[0, 1] \), when \(x = x_1, x_2, \ldots, x_{k-1}, x_{k+1}, \ldots x_n \), \(u_{k1}(x) = 0 \). But \(u_{k1}(x) \neq 0 \), when \(x \) take other value, \(0 \neq u_{k2}(x) \in L^2[0, 1] \).

When \(U_k \in \tilde{H}_n[0, 1] \oplus \tilde{H}_n[0, 1] \), we have \(L_{u_k} = F_k \).

So,
\[0 = \left(U_k, \sum_{i=1}^{n} (c_{i1}\Psi_{i1}(x) + c_{i2}\Psi_{i2}(x)) \right) \]
\[= \sum_{i=1}^{n} (c_{i1}\left(\left< U_k, \Psi_{i1} \right> + \left< u_{k1}, \phi_{i1} \right> \right) + c_{i2}\left(\left< U_k, \Psi_{i2} \right> + \left< u_{k2}, \phi_{i2} \right> \right)) \]
\[= \sum_{i=1}^{n} \left(c_{i1}(l_{i1}u_{k1}(x)) + l_{i2}u_{k2}(x)) + c_{i2}(l_{i2}u_{k1}(x) + l_{i2}u_{k2}(x)) \right) \]
\[= \sum_{i=1}^{n} c_{i1}u_{k1}(x) + c_{i2}u_{k2}(x) \]
\[= \sum_{i=1}^{n} c_{ik}u_{k1}(x), \]

So, \(c_{k1} = 0, k = 1, 2, \ldots, n \). Similarly, we have \(c_{k2} = 0 \).

The exact solution of equation (1) can be expressed as
\[U(X) = \sum_{i=1}^{m} \sum_{j=1}^{2} c_{ij}\Psi_{ij}(x), \]

and truncating the infinite series of the analytic solution, we obtain the approximate solution of equation (1).

\[U_m(X) = \sum_{i=1}^{m} \sum_{j=1}^{2} c_{ij}\Psi_{ij}(x). \]

Theorem 8. Let \(U \in \tilde{H}_n[0, 1] \oplus \tilde{H}_n[0, 1] \) be the exact solution of equation (1), \(U_m \) be the approximate solution of \(U \), then \(U_m \) converges uniformly to \(U \).

Proof.
\[\left| u_1(x) - u_{1,m}(x) \right| = \left| \left< u_1, u_{1,m} \right> \right| \]
\[\leq \left\| u_1 - u_{1,m} \right\|_{\tilde{H}_n[0, 1]} \left\| Kx \right\|_{\tilde{H}_n[0, 1]} \]
\[\leq M \left\| u_1 - u_{1,m} \right\|_{\tilde{H}_n[0, 1]} . \]

Similarly,
\[\left| u_2(x) - u_{2,m}(x) \right| \leq M \left\| u_2 - u_{2,m} \right\|_{\tilde{H}_n[0, 1]}. \]

If we can obtain the coefficients of each \(\Psi_{ij}(x) \), the approximate solution \(U_m(X) \) can be obtained as well. Using \(\Psi_{ij}(x) \) to do the inner products with both sides of equation (24), we have

\[\sum_{i=1}^{m} c_{i1}\left\langle \Psi_{i1}, \Psi_{n1} \right\rangle + \sum_{j=1}^{m} c_{ij}\left\langle \Psi_{i2}, \Psi_{n2} \right\rangle = f_1(x_n), \quad n = 1, 2, \ldots, m, \]
\[\sum_{i=1}^{m} c_{i1}\left\langle \Psi_{i1}, \Psi_{n2} \right\rangle + \sum_{j=1}^{m} c_{ij}\left\langle \Psi_{i2}, \Psi_{n1} \right\rangle = f_2(x_n), \quad n = 1, 2, \ldots, m. \]

Letting
\[L_{2m} = \begin{bmatrix} \left\langle \Psi_{11}, \Psi_{m1} \right\rangle & \cdots & \left\langle \Psi_{12}, \Psi_{m1} \right\rangle \\ \cdots & \cdots & \cdots \\ \left\langle \Psi_{i1}, \Psi_{m2} \right\rangle & \cdots & \left\langle \Psi_{i2}, \Psi_{m2} \right\rangle \end{bmatrix}_{i,j=1,2,\ldots,m}. \]

F is the vector of \(f_1(x_1), \ldots, f_1(x_m), f_2(x_1), \ldots, f_2(x_m) \)T.

It is obvious that the inverse of \(A_{2m} \) exists by Theorem 6. So, we have
\[(c_{11}, c_{12}, \ldots, c_{1m}, c_{21}, c_{22}, \ldots, c_{2m})^T = L_{2m}^{-1}F. \]
We consider the following linear integro-differential equations of fractional order [5]:

\[
\begin{align*}
D^{\beta}u_1(x) - \int_0^t (x+t)u_1(t) + (x+t)u_2(t) \, dt &= - \frac{1}{12} x^2 + \frac{4x^{3/2}(15 - 23x^2)}{15\Gamma(1/4)}, \\
D^{\beta}u_2(x) - \int_0^t \sqrt{xt}u_1(t) - \sqrt{xt}u_2(t) \, dt &= \frac{5x^3}{6} + \frac{9x^{1/3}}{2\Gamma(1/3)}, \\
u_1(0) = 0, u_2(0) = 0,
\end{align*}
\]

where the exact solution \(U(x) = (x - x^3, x^2 - x)^T \). The numerical results are given in Tables 1 and 2, and the absolute errors of Example 1 for \(m = 10, n = 3, \mu = 3/4, \alpha = \beta = 1/2 \) are plotted in Figures 5 and 6. Comparisons are made between the approximate and the exact solution for \(m = 10, n = 3, \mu = 3/4, \alpha = \beta = 1/2 \) in Figures 7 and 8. Errors of \(u_1 \) and \(u_2 \) for \(m = 10, n = 3, \mu = 3/4, \alpha = \beta = 1/2 \) are plotted in Figures 9 and 10.

Example 2. We consider the following linear integro-differential equations of fractional order [5]:

\[
\begin{align*}
D^{\beta}u_1(x) - \int_0^t 2xtu_1(t) + 2xtu_2(x, t) \, dt &= \frac{83x}{80} + \frac{25x^{65}(11 + 15x)}{33\Gamma(1/5)}, \\
D^{\beta}u_2(x) - \int_0^t (x + t)u_1(t) - (x + t)u_2(x, t) \, dt &= \frac{5x^3}{6} + \frac{9x^{1/3}}{2\Gamma(1/3)}, \\
u_1(0) = 0, u_2(0) = 0,
\end{align*}
\]

where the exact solution is \(U(x) = (x^3 - x^2, (15/8)x^2)^T \). We obtain the numerical results which are given in Tables 3 and 4, and the absolute errors of Example 2 for \(m = 10, n = 3, \mu = 4/5, \alpha = \beta = 1/2 \) are plotted in Figures 11 and 12. Comparisons are made between the approximate and exact solutions for \(m = 10, n = 3, \mu = 4/5, \alpha = \beta = 1/2 \) in Figures 13

Table 1: The numerical solutions of \(u_1(x) \) for Example 1.

| \(x \) | Exact solution | Approximate solution | \(|u_1(x) - u_{1,10}(x)| \) | \(|u_1(x) - u_{1,10}(x)/u_1(x)| \) |
|---|---|---|---|---|
| 0.1 | 0.099 | 0.099 | 6.85563E-15 | 7.37345E-14 |
| 0.2 | 0.192 | 0.192 | 1.05471E-15 | 3.15141E-14 |
| 0.3 | 0.273 | 0.273 | 4.77396E-15 | 1.22003E-15 |
| 0.4 | 0.336 | 0.336 | 3.05311E-15 | 7.48597E-14 |
| 0.5 | 0.375 | 0.375 | 1.24345E-14 | 7.50435E-15 |
| 0.6 | 0.384 | 0.384 | 1.09912E-14 | 8.67362E-16 |
| 0.7 | 0.357 | 0.357 | 5.43454E-14 | 1.14910E-13 |
| 0.8 | 0.288 | 0.288 | 1.09912E-14 | 7.17019E-14 |
| 0.9 | 0.171 | 0.171 | 1.87628E-14 | 2.66194E-14 |

Table 2: The numerical solutions of \(u_2(x) \) for Example 1.

| \(x \) | Exact solution | Approximate solution | \(|u_2(x) - u_{2,10}(x)| \) | \(|u_2(x) - u_{2,10}(x)/u_2(x)| \) |
|---|---|---|---|---|
| 0.1 | 0.099 | 0.099 | 3.55271E-15 | 9.15934E-14 |
| 0.2 | 0.192 | 0.192 | 3.85803E-15 | 7.11237E-15 |
| 0.3 | 0.273 | 0.273 | 6.82877E-15 | 3.46284E-14 |
| 0.4 | 0.336 | 0.336 | 5.55112E-16 | 2.33609E-14 |
| 0.5 | 0.375 | 0.375 | 8.21565E-15 | 1.17684E-14 |
| 0.6 | 0.384 | 0.384 | 8.82627E-15 | 9.25186E-16 |
| 0.7 | 0.357 | 0.357 | 1.88183E-14 | 4.83740E-14 |
| 0.8 | 0.288 | 0.288 | 3.66374E-15 | 2.35922E-14 |
| 0.9 | 0.171 | 0.171 | 9.88098E-15 | 2.71388E-14 |
Figure 5: Absolute errors of u_1 obtained by the present method for Example 1.

Figure 6: Absolute errors of u_2 obtained by the present method for Example 1.

Figure 7: Comparisons between numerical and exact solutions of u_1 obtained by the present method for Example 1.

Figure 8: Comparisons between numerical and exact solutions of u_2 obtained by the present method for Example 1.

Figure 9: Absolute errors of u_1 and u_2 obtained by the present method for Example 1.

Figure 10: Relative errors of u_1 and u_2 obtained by the present method for Example 1.
and 14. Absolute errors of \(u_1 \) for \(m = 10, n = 3, \mu = 3/4 \) are plotted in Figure 15. Absolute errors of \(u_2 \) for \(m = 10, n = 3, \mu = 3/4 \) are shown in Figure 16.

Example 3. We consider the following linear integro-differential equations of fractional order [4].

\[
\begin{align*}
D^\mu u_1(x) & - \int_0^t (x-t)u_1(t) + (x-t)u_2(x,t)dt = f_1(t), \\
D^\mu u_2(x) & - \int_0^t (x-t)u_1(t) + (x-t)u_2(x,t)dt = f_2(t), \\
u_1(0) & = 0, u_2(0) = 0,
\end{align*}
\]

(i) where \(f_1(t) = 1 + x - (t^3/3), f_2(t) = 1 - t - (t^4/12) \), the exact solution is \(U(x) = (x + (x^2/2), x - (x^3/2))^T \). By the proposed algorithm, we obtain the numerical results which are given in Tables 5 and 6, and the absolute errors of this example for \(m = 10, n = 2, \mu = 0.5, \alpha = \beta = 0 \) are plotted in Figures 17 and 18. Comparisons are made between the approximate and exact solutions in Figures 19 and 20. When taking different values of \(\alpha, \beta \), errors of \(u_1 \) and \(u_1 \) for \(m = 10, n = 2, \mu = 0.5 \) are plotted in Figures 21–24. Figures 25 and 26 illustrate the approximate solutions of \(u_1 \) and \(u_2 \) using the present method for different values of \(\mu \) which are in agreement with the exact solution. Figures 27 and 28 illustrate the approximate solutions for different values of \(\mu \) compared with the exact solution in Ref. [4]
Figure 14: Comparisons between numerical and exact solutions of u_2 obtained by the present method for Example 2.

Figure 15: Absolute errors of u_1 obtained by the present method with $\alpha = \beta = 1/2$ (red), $\alpha = \beta = 0$ (purple) for Example 2.

Figure 16: Absolute errors of u_2 obtained by the present method with $\alpha = \beta = 1/2$ (red), $\alpha = \beta = 0$ (purple) for Example 2.

Table 5: Comparison of the numerical result of $u_1(x)$ in Example 3.

| x | Exact solution | Present method approximate solution | Present method $|u_1(x) - n_{1,16}(x)|$ | Ref. [4] approximate solution |
|-----|----------------|-------------------------------------|-------------------------------------|-------------------------------|
| 0.1 | 0.105 | 0.105 | 4.16334$E-17$ | 0.332 |
| 0.2 | 0.220 | 0.220 | 2.22045$E-16$ | 0.492 |
| 0.3 | 0.345 | 0.345 | 0.0000 | 0.630 |
| 0.4 | 0.480 | 0.480 | 1.66533$E-16$ | 0.759 |
| 0.5 | 0.625 | 0.625 | 1.11022$E-16$ | 0.884 |
| 0.6 | 0.780 | 0.780 | 6.66134$E-16$ | 1.007 |
| 0.7 | 0.945 | 0.945 | 6.66134$E-16$ | 1.129 |
| 0.8 | 1.120 | 1.120 | 1.77636$E-15$ | 1.252 |
| 0.9 | 1.305 | 1.305 | 2.22045$E-15$ | 1.376 |
| 1.0 | 1.500 | 1.500 | 2.22045$E-15$ | 1.500 |

Table 6: Comparison of the numerical result of $u_2(x)$ in Example 3.

| x | Exact solution | Present method approximate solution | Present method $|u_2(x) - n_{2,16}(x)|$ | Ref. [4] approximate solution |
|-----|----------------|-------------------------------------|-------------------------------------|-------------------------------|
| 0.1 | 0.095 | 0.095 | 9.71445$E-17$ | 0.300 |
| 0.2 | 0.180 | 0.180 | 2.49800E-16 | 0.402 |
| 0.3 | 0.255 | 0.255 | 3.33067E-16 | 0.466 |
| 0.4 | 0.320 | 0.320 | 3.88578E-16 | 0.506 |
| 0.5 | 0.375 | 0.375 | 1.11022E-16 | 0.530 |
| 0.6 | 0.420 | 0.420 | 2.22045E-15 | 0.542 |
| 0.7 | 0.455 | 0.455 | 3.88578E-16 | 0.544 |
| 0.8 | 0.480 | 0.480 | 6.10623E-16 | 0.537 |
| 0.9 | 0.495 | 0.495 | 7.77156E-16 | 0.522 |
| 1.0 | 0.500 | 0.500 | 1.11022E-15 | 0.500 |

Figure 17: Absolute errors of u_1 obtained by the present method for Example 3.
where \(f_1(t) = (0.506344 - 1.86957x^{1.5} + 1.81521x^{1.7})/x^{0.5}, \ f_2(t) = 1.81521(-0.239522 - 0.42377x + x^{1.2}), \) the exact solution is \(U(x) = (x^{0.3} + x^2, x^2)^T. \) The absolute errors of this example for \(m = 200, n = 2, \mu = 0.2, \alpha = \beta = 0.5 \) are given in Figures 29 and 30.

\[f_1(t) = (0.506344 - 1.86957x^{1.5} + 1.81521x^{1.7})/x^{0.5}, \]
\[f_2(t) = 1.81521(-0.239522 - 0.42377x + x^{1.2}), \]
\[U(x) = (x^{0.3} + x^2, x^2)^T. \]

5. Conclusions and Remarks

In this paper, linear integrodifferential equations of fractional order have been solved by the reproducing kernel interpolation collocation method with reproducing kernel function in the form of Jacobi polynomials for the first time. Comparisons are made between the approximate and exact solutions. We verify the feasibility of this method by selecting different
Figure 24: Relative errors of u_2 obtained by the present method with $\alpha = \beta = 0$ (red), $\alpha = \beta = 0.5$ (purple), $\alpha = 0.5, \beta = -0.5$ (green), and $\alpha = 2/3, \beta = -1/3$ (black) for Example 3.

Figure 25: The numerical solution of u_1 obtained by the present method with $\mu = 0.75, 0.5, 0.25, 1$ and exact solutions for Example 3.

Figure 26: The numerical solution of u_2 obtained by the present method with $\mu = 0.75, 0.5, 0.25, 1$ and exact solutions for Example 3.

Figure 27: The numerical solution of u_1 with $\mu = 0.75, 0.5, 0.25, 1$ for Example 3 in Ref. [4].

Figure 28: The numerical solution of u_2 with $\mu = 0.75, 0.5, 0.25, 1$ for Example 3 in Ref. [4].

Figure 29: Absolute errors of u_1 obtained by the present method for Example 3.
parameters μ, α, β. From all tables and figures, we obtain that the algorithm is remarkably accurate and effective.

All computations are performed by the Mathematica 7.0 software package.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

This paper is supported by the Natural Science Foundation of Inner Mongolia (2017MS0103) and the National Natural Science Foundation of China (11361037).

References

