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In this paper, we consider the three-dimensional Cauchy problem of the nonisentropic compressible Euler equations with
relaxation. Following the method of Wu et al. (2021, Adv. Math. Phys. Art. ID 5512285, pp. 1-13), we show the existence
and uniqueness of the global small H*(k >3) solution only under the condition of smallness of the H> norm of the initial
data. Moreover, we use a pure energy method with a time-weighted argument to prove the optimal Lf- L1
(1<p<2,2<g<00)-type decay rates of the solution and its higher-order derivatives.

P=p0,
1. Introduction (2)

1
e= ——0,
In this paper, we shall study the nonisentropic compressible y-1

Euler equations with relaxation (cf. [1]):

where y > 1 is the adiabatic exponent. Using the constitutive

p, +div (pu) =0 relations (2), the system (1) is reduced to
t bl

1
(pu), +div (pu® u)+VP = — P p, +div (pu) =0,
: L o, P . vp _ !
(P8), +div (put +uP) =~ —pu’ + ~(g(p) - 0). U +u-Vu+0 ) VO =——u, (3)
1 1 1
) ﬁ9t+y_lu-V9+0 div uz;(g(p)—@).

Here, (x,t) € R? x [0,00), and the unknown variables p
=p(x,t), u=u(x,t), 0=0(x,t), and P=P(x,t) denote the We supplement (3) with the initial condition
density, the velocity, the absolute temperature, and the pres-

sure, respectively. The total energy per unit mass & =1/2 (P 1h,0) (%, 1),y = (Po» tho» 0) (¥) — (1,0, 1), | x| — o0.
|ul* + ¢, and e is the internal energy per unit mass. The con- R 4

stant 7 > 0 is the relaxation parameter. The function g(p) is (4)
smooth with respect to p. The system (1) can be used to

model a compressible gas flow through a porous medium Now, we review the known research results for the com-
[2-4]. Assuming that the gas is perfect and polytropic, then  pressible Euler equations with relaxation. When considering
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the isentropic or isothermal case, the system (1) becomes

p, +div (pu) =0,

(5)
(pu), +div (pu® u)+VP = —%pu.

There are a lot of research works on the system (5). For
the one-dimensional Cauchy problem, one can refer to [5, 6]
for the existence of the global BV solutions, to [7-12] for the
global L® entropy-weak solutions with vacuum, and to [13,
14] for small smooth solutions. For the one-dimensional
initial-boundary value problem, one can refer to [15, 16]
for the existence of the global L entropy-weak solutions
and to [17-19] for small smooth solutions. For the asymp-
totics of solutions, we refer to [9-12] for L™ entropy-weak
solutions and to [14, 20-22] for small smooth solutions. In
addition, there are some results on the one-dimensional non-
isentropic compressible Euler equations with relaxation (cf.
[1-4, 23, 24]). The global existence and large-time behavior
of solutions to the multidimensional isentropic compressible
Euler equations with relaxation were studied by many
researchers (cf. [16, 25-36] and the references cited therein).

To the best of our knowledge, there are few results on the
three-dimensional nonisentropic compressible Euler equa-
tions with relaxation (1). In this paper, following the similar
discussions in [37], we shall use a delicate energy method to
obtain a refined global existence and uniqueness result, in
which we only require the initial H> norm to be small. More-
over, we will prove the optimal L - L9(1 <p <2,2<g<00)
-type decay rates of solutions as well as its higher-order deriv-
atives by employing the negative Sobolev or Besov estimates as
well as some interpolation and time-weighted estimates.

1.1. Notation. Throughout this paper, V¥ with an integer k
> 0 represents the spatial derivatives of order k. When k <
0 or k is not a positive integer, V¥ means A* defined by A*
f=F " (|&|*Ff), where F is the usual Fourier transform

operator and F ! is its inverse. We denote by L?(R*)(1<p
<00) the usual Lebesgue spaces with the norm ||-||;,. For

simplicity, we write ||-|| = [|-|| ;2. We use H*(R®) for some
integer k>0 to denote the usual Sobolev spaces with the
norm || +. We use H (R?)(s € R) to denote the homoge-
neous Sobolev spaces with the norm |||+ defined by
fll = ||V*f]|- Tt is clear for H® = H° = 2.

We introduce the homogeneous Besov spaces. Let ¢ €
C3°(Ry) satisty that ¢(&) = 1if [§| <1 and ¢(§) =0 if [ >2
. Define ¢(&) = ¢(&) — ¢(2&) and goj(§) = (27¢) for jeZ.
Then, };.,¢;(&) =1 if £+ 0. Define A]f = 9’1((pj) * f. For
s€R and 1< p< oo, we denote by B;’OO(IR3) the homoge-
|3 defined by

P00

neous Besov spaces with the norm |-

||f||1§;;00 = StueZZSJHAijLp-

The notation A < B means that A < CB for a generic pos-
itive constant C. We denote A ~ Bif A< Band B< A. We use
C, to denote a positive constant depending additionally on
the initial data. For simplicity, we write ||(4, B)||yx = ||Allx
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+||Blx and [ f:= [;fdx. The notation Ck0, T; X)(k=0)
denotes the space of X-valued k-times continuously differen-
tiable functions on [0, T].

Our main results are stated in the following.

Theorem 1. Let k > 3 be an integer. Assume that (p,— 1, u,
,0,— 1) € H satisfying

1(Po = 1 tig> 89 = 1) 2 < S, (6)

for some small constant 8, > 0. Suppose that g(p) is a smooth
function of p satisfying g(1)=1 and g'(1)=0. Then, the
Cauchy problem (3)-(4) admits a unique global solution (p,
u,0)(t) such that for all t > 0 and 3<L<k,

[(p= 1,1, 0 = 1)(1)]| 1

t 112
+([Lomete s o= D &) @

0

<Cll(pg— L g, 05 = 1)]| o>

where C > 0 depends only on y and T.

Theorem 2. Under the assumptions of Theorem 1 and g''
(1)=0, if further (p,—1,uy 0y~ 1) € H " for some s € |0,
312) or (p,— 1, ug, 0, — 1) € B, for some s€ (0,3/2], then
for all t>0,

Hvl(p - 1)(t)H <C1+17 2 0<i<k  (8)

Hv’(u, 0- 1)(t)H <C(1+8) 192 ogi<k—1,

Hvk(u, 0- 1)(t)” < Cy(1+t) k972,
(9)

By Lemmas A.1, A.5, and A.6, we easily obtain the fol-
lowing Lf - Li-type decay rates.

Corollary 3. Under the assumptions of Theorem 2, if (p, —
1,uy,0,—1) € LP for some p € [1, 2], then for 2< q < 0o,
HVI(P _ I)U)Hm <Cy(1+ 1) (Hp)-()=12)
Hvl(”’ 0-1)(t) HU < Cy(1+£) R Dt ~((t+112),
HVIH(M’ 0- 1)(t)HLq <Cy(1+ t)-(3/2) ((11p)=(1/9)~((2Kk=3)14)~(1/2q)

(10)

Some remarks for Theorems 1 and 2 and Corollary 3 are
given in the following.

Remark 4. From Theorem 1, when k>3, we only require
that the H® norms of the initial density, velocity, and tem-
perature are small, while the higher-order Sobolev norms
can be arbitrarily large.
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Remark 5. We claim that the decay rates in Theorem 2 and
Corollary 3 are optimal in the sense that they are consistent
with those in the linearized case.

Remark 6. By Corollary 3, we prove the optimal L? — LI-type
decay rates without the smallness assumption on the L?
norm of the initial data.

Remark 7. The additional restriction g''(1) =0 in Theorem
2 is necessary to obtain the negative Sobolev or Besov esti-
mates of solutions since the density perturbation is degener-
ately dissipative.

The rest of this paper is organized as follows. In Section
2, we establish some refined energy estimates (see Lemmas
8-11) which help us to derive important energy estimates
with the minimum derivative counts (see Lemma 12). Then,
we prove the global solution (Theorem 1) and the decay
rates (Theorem 2) in Sections 3 and 4, respectively. In
Appendix A, we list some useful lemmas which will be fre-
quently used in the previous sections. The detailed proof of
Lemma 15 is given in Appendix B.

2. Energy Estimates

We choose the constant equilibrium state (1,0, 1). Define
the perturbations

e=p-1
u=u-0, (11)
©=0-1.

Then, the Cauchy problem (3)-(4) is equivalently writ-
ten as

Q =-u-Vo-(1+9Q)div u, (12)
1 1+0
U+ —utVO = —u-Vu - Vo, (13)
T I+
1 1 1
O, +-0=- u-ve
y-1 T y-1

(14)
-(1+0)div u+ %[g(g+l)—l],

with
(@ 4, 0)|,_y = (Qo g @) = (P = Lt 6, = 1) (15)

Next, we will derive the a priori estimates for equations
(12)-(14) by assuming that for sufficiently small § >0 and
some T >0,

sup ||(Q 4, ®)(t)]| s < 6. (16)

0<t<T

By Sobolev’s inequality, (16) implies

N

N W N W

<l+o

SN I NS Y

<1+0

N

By Taylor’s expansion, we have

gle+1)=g(1)+g'(1)e+0(¢*) =1+0(¢*),  (18)

where we have used the assumptions that g(1)=1 and
g'(1) =0. Thus, we have

gle+1)-1=0(0). (19)
First, we derive the zero-order energy estimate for (g, u, ®).

Lemma 8. Let § < 1. If supc,r|/(Q, 4, ®)(t)|| 2 < 6, then

2
+C)|(w )7 <8]V(e. ©)|”

d 1
. y U —®
i (e 7=°)
(20)
Proof. Multiplying equations (12)-(14) by @, u, and ©,

respectively, summing the resulting identities up, and then
integrating over R® by parts, by (19), we get

2
1 2 1 2
+ [l + |

1d 1 )
2a|\*" =T
= | di N(u-vur €%
—J V(Qu)QJu u 1+QQ

w#J(@dNu+ ! wV@—lo@ﬂ)®

y-1 T
(21)

Now, we estimate (21) term by term. For the term — |
div (Qu)qQ, by integrating by parts, Hélder’s, Sobolev’s, and
Cauchy’s inequalities, we obtain

- [ div (ewe= [ ou- Vo< el uls Vel <o Vel
22)

By Holder’s, Sobolev’s, and Cauchy’s inequalities and
(17), we obtain

R

—Ju-Vu-u<||Vu 1

®—Q ®—Q 2 2
- Vo-u<|—— \% <O(|V .
[ Trove-us|Tog| vl <a(1wel® + )

(23)



4
Similarly, we have
1
—J(@ div u + = u'V®)®S(§(||u||2 + ||V®||2), (24)
Loex 0| <&(||Ve|* + @]
~0(0")® < el llell sl < ([ Vel|* + [©])-
(25)
Plugging the estimates (22)-(25) into (21), since § < 1,
we deduce (20). O

Next, we construct the higher-order energy estimates for
(@, 4, ®), which include the dissipation estimates for u and
O of order k.

Lemma 9. Let k>3 and & < 1. If supyc,.r|| (@, t, O)(t)|| s
<6, then for 3<€<k,

d
pr J@e (1) +C||V'(u, ©)|” < 8]| V%o (26)
where
1+O
64 () = |Vl + (1+)|V* div uf’
ne 27)
o1 I I+¢
+ ’V curl u| + — |V @‘
y-11+0
Proof. For equations (12)-(14), computing
1+©
J [ 11 0 V' - V¥ (equation (12))
+(1+Q)V"! div u- V! div (equation (13)) (28)
1+Q ey ot A
+ mv O - V*(equation (14))],

by (19), we have

1d ([1+0
L[t et

%::g)wfeﬁ + 1“(1+9)‘VH div u|2
1+0 1+®
1+@}V"'®| = —Ha[< >‘veQ| +0 Q‘VE ! div u‘

1 1+@ ¢ B 1+0 ¢ .
ﬁa,(m)v @@ J{va V(1 + Q) div u]
+(L+0)V ! div u- V¥ div <1+

1+(;DVQ)}

+Q
®V'Z® Vz[(l +0) div u]}

J{(1+Q)V€ Vdiv u- V& lA@+

1+0
—J 1: Vio-Vi(u-vo)- J(1+q)v“ div u- V! div (u- V)
Q
1 1+Q e 1(1+Q e ey (2 :
- VIO -V u-vO) + = | —= V'O -V'O(?) = ) I,
y- _[1+® (u )+TJ1+® (©) ;’
(29)
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Now, we estimate the terms I,-I,. By (12), (14), and (17)
and Holder’s and Sobolev’s inequalities, we have

< (18]l + [l )| (@ . ©) |

. . (30)
< (e u,® "< 8]V (e uw0)"

g ||V (@1, ©)

By the commutator notation (A.3), the commutator esti-
mates (A.4), (17), integrating by parts, and Lemma A.3, we have

I, :—J[a +0)V'- V' div u+ (1+©)V" div u- V' Ag]

B 1+®VE
J rvg

4, 1+0 [
. {Vl ! div, TQj| Vo} < J|V®||V€QHVEu|

1+©
+J|V€Q||[Ve,l+Q]Vu|+J|Veu| {v“, 1+Q]VQ'
< VOl ||V [[V¥u]| + (9] [[[V*, 1 + ] V|

{ve (;)] Vo

V%l Vel 7wl + [[Viell I Vall) + [ V°u]
v 1+ 1+ v
LGS (Tro)|ivel-

< 8[|V (0. u, ®)|’,
I =—J(1 +QV ! div u- V' A® + (1 +Q)V'O - Vi div u

1+Q
1+®

+ wa@mv@, 1+0]Vu| < Voo ||v*0)|[[ V4|

[V51+¢] div u+ (1+Q)V*" div u

+HV£uH <|IVO 1w VEuHHV“QH

o]+

V'@ [V, 1+0)] div us J|VQ||VE@||V€ " div uf

+ VO (|[VO| o [V us]| + [V ||| 1)
<8 v4(u, )|’

(31)

By (17), Lemma A.2, integrating by parts, and Holder’s,
Sobolev’s, and Cauchy’s inequalities, we have

1+0

1+® 2
I,=- 7o Q Ve(u Vo) = 2J1+Q V‘VKQ‘
1+0 1. [1+0 2
- 1+QVEQ.[Ve,u].VQ=2Jd1V<1+Qu)|VEQ|
1+0 2
- | g o [Vhu] Ve[l + |7l [ 4]

Vel <8|[Vie||” + | V'el|(I1Vull - | Vel
+ [V ul[IVell) < 8]V (@ 0"
(32)
Note that the vector formula
div (u-Vu)=Vu: (Vu)" +u-Vdiv u, (33)

where the double dots : means that A : B= Y j-14;;b;j for two
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3 x 3 matrices A = (a;;) and B = (b;;). By integrating by parts,
(17) and (33), Holder’s, Sobolev’s, and Cauchy’s inequalities,
and Lemma A.2, we estimate

Is=—|(1+Q)V"" div u- V¥ div (u- Vu)
- (1 +Q)V€ Udiv u- V& 1[Vu (Vu)T+u-Vdiv u}
- la+QVv*" div u-v* l[Vu (Vu)T]
(1 +)V ! div u- VY (u- Vdiv u)

— @ +vt! div u. vt [VM : (Vu)T]

%_%%%

- % [(1 +Q)u- V|VE ! div u{ [ 1+Q)V€ Ldiv u- [V@’l,u} -Vdiv u

:7J'(1 +Q)V! div u- V! [Vu : (Vu) ]
" %J‘div [(1+ Q)u] [V div - J (1+Q)V*" div u- [V&1, u] - Vdiv u
< ||V div u||HVH [Vu : (Vu) ]H +[|div [(1+ Q)] | VE div
[V div ||| [V, u) - Vv af| < |9 ul] [V o || V]| + 8] 9]
[V (19 Vi ]+ 1] [V v ]| ) < 69,

1 1
16=—7J "9t . vt (4. vO)

y-1)J1+0
- y_ [Hgv“@) u- vv“@—%[liqv“@ [V, u] -V
f ( >\v‘@\ %Jl VO
Q 2
<||aiv <1+®u> el
1+0 2
[ire] _Iveli:a ey sejvel

+]| V40| (|| Vul[|VO| oo + || V]| oo ||V VO ) < 8| VE (145 o).
(34)

By (17), the product estimates (A.5) of Lemma A.2, and
Corollary A.4, we have

1({1+0
17_TJ1 5V Vo() < J\V@HV“QHO

<8||v*(e.®

(35)
I

Plugging the estimates for I, -I, into (29), by (17), since J is
small, we deduce
@}2]

%JE:§| vt | (1+Q)|V*" div u|
(36)

+C([[v div |’ + Vo )sauvﬂ@, u)Hz.

Rewrite equation (13) as

1 -0
U+ -u=-Vo-VO -u-Vu + 0 Vo. (37)
T 1+0

Applying curl to (37), we obtain

1 -0
(curl u), + — curl u=-curl (u-Vu)+V (Q> x Vg,
T 1+0

(38)
where x represents the cross product of vectors. Applying V¢!
to (38), multiplying the resulting identity by V¢! curl u, and

integrating over R?, we obtain

1d

35 ||V£_1 curl uHZ

J|V€ Ucurl u|
- JVE_I curl (u-Vu)- V& curl u
®
Jvf I[V(Q > XVle Y curd w=Ig + 1.
1+0
(39)

By (17), integrating by parts, Holder’s, Sobolev’s, and
Cauchy’s inequalities, and Lemmas A.2 and A.3, we estimate

Iy = -J V& carl (u- Vu) - V! curl u=—%Ju
V|V curd u|2—J[v“ curl, u] - Vu- V! curl u
div u|V*! curl u|2—J[V“ curl, u]

Vu- V! curl < 8)|VE! curl |’

+{[[V% u] - Vu||90u] < 8]|VE ! curd u]|?

9% 7] ]9 cun
+ ||V”HL°°||V€

e
I, = Jv"' 1[V<Q ) va]
1+0
-0
*(5e) |
1+0
. ||Ve_1 curl u|| < (‘ Ve( )H|VQ|LOO

( )H 9]V curl u]

< ([ @ ©)[llellix + (@ ©)[[7'e])
[Vl 8|V (@ w )|

VL curl u

(40)
Plugging the estimates for Iy and I, into (39), we obtain

EJ 9" curl )’ + C[| V! curl u)> < 8]V (e 1 @)

dt
(41)



Adding (41) to (36), noting

98" = | V¥ div " + ||V cudl u’,  (42)
since § < 1, we deduce (26). O
Corollary 10. Let k>3 and S<1. If supy.r

|(Q, 4, ®)(t)|| 3 <6, then for ISL<k-1,

d

2
at +C|[v @ O)| <3]|v* @ ©)]"

vt (Q, u, %@)
(43)

Combining with Lemma 8, we have for 0< €<k -1,

2
+ ||V (1,0)” < 8]V (0. @)

dt

vt (Q, u, \/%@)
(44)

Proof. Applying V* to equations (12)—(14), then multiplying
the resulting identities by V'q, V'u, and V'@, respectively,
summing them up, and then integrating over R* by parts,
we obtain

1d

2dt

2+1\|vf(u o)
19

1
vt (Q, u, @>
Vy-1
=— Jve div (u) - V- J {Ve(u -Vu) Vvt <(?T_QQ VQ> . Vzu}
1 ) 1
- [ Lﬁve(u "VO) V'O +VY(© div u) V'O - -V (0(¢’)) .vee} :

(45)

Then, as in the proof of Lemma 9, we easily deduce (43)
from (45). O

We shall derive the dissipation estimates for @ up to
order k.

Lemma 11. Let k>3 and § < 1. If supyc,.r|| (@, 4, ©)(t)|| s
<6, then for 0<€<k—1,

d 2 2 2
ajvﬁu.vwgq;v%u < [V + 95 (w,0)
(46)
Proof. Rewrite equation (13) as
1 Q-
VQ:—ut—;u—V(@—u~Vu+ 1+QVQ. (47)

Applying V* to (47), multiplying the resulting identity by
VV'q, and then integrating over R®, by Holder’s and Cau-
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chy’s inequalities, we have
[vte]] < - [a,v"u- vVia s [viul + |70
(D

By (12), we integrate by parts to obtain

+[|VE - V)| +

d
- J 0,V'u-vvig= —EJV“u VW + Jv“u -VV',

d
=—= Viu-vvio + Jve div u - [V* div u+ V* div (Qu)]
d
S- Vi - VY IV Ul + [VE (Qu) I
_d ¢ ¢ e+l 112 0+1 2
S-4 Viu- WV + ||V ul|” + 6| VF (@ u) ||

(49)

where we have used the product estimates (A.5) of Lemma
A.2 to estimate

IV (@)l] < llell [V al] + 9" e[l < 8]V (@ )]
(50)

By Lemmas A.2 and A.3, we have

||V?‘(u-Vu)H < ||u|\LmHVMuH + HVeuH [Vul|;» S(?HVE“u

I

L6|

(51)
-0
7 (855ve) | < e o7l
o (52)
¢ _ 2+
v($50)| el selve o)
Plugging (49)-(52) into (48), we deduce (46). O

Finally, we collect all the dissipation estimates for (g, u, ®)
in Lemma 9, Corollary 10, and Lemma 11 to derive the follow-
ing energy inequality with the minimum derivative counts.

Lemma 12. Let k>3 and T > 0. If supyc,.r|| (0, t, ©)(t)|| s
<8 < 1, then there exists an energy functional &f(t), which

is equivalent to ||V'(Q, u, @)(t)Hi[H, such that for any t € [0,
Tl and 0<I<k-1,

9 k(1) + v e(t)]

2 2
i et [F0©)0)

Hk*l

<0. (53)

Proof. Let k> 3 and 0 <! <k — 1. Summing up (44) of Corol-
lary 10 from € = [ to € = k — 1 and adding the resulting identity
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to (26) of Lemma 9 which £ = k, since § is small, we obtain

tllon eyl

Y, @)(t)H;Z < G0 V') ’

g

2

Hk—l—l (54)

+C,

Summing up (46) of Lemma 11 from€=[to €=k -1, we
obtain

%Jki Viu- Vvl + C3HV”1Q(t)‘ ’

kalfl
<c,([rucr]

Hkll>

Multiplying (55) by (2C, §)/C; and then adding it to (54),
since § <« 1, we deduce

o[-

. 2C25JZV2 VVQQ:| (56)
G Ja

(55)
HVM@ )’

2

+J@%ﬂ

Hk*l*l

I 2
(|7, [P, ) <o
We define
1 1 2
%k - 1 U,
il
57
2C8 Kl
+J(s:" J Viu - vvig]
G Ja
Note that
1+® 2
(1) = — ‘ng‘ 1+Q)’Vk_l divu‘
(58)
11
+’Vk’1 curl u‘ +_- 1*Q V@‘
y-11+0

By (17) and (42), since § <« 1, we can deduce from (57)
and (58) that there exists a positive constant ¢ such that for
any t € [0, T,

2 2

. (59)

Hk!

v wex

<&t <c|ve o

Hk
Hence, the proof of Lemma 12 is completed. O

3. Global Solution

In this section, we will prove the existence and uniqueness of
the global solution, namely, Theorem 1. We first record the
local solution (cf. [38]).

Proposition 13 (local-in-time solution). Assume that (g,
Uy ®,) € H* and inf __ps{Q,(x) + 1} > 0. Then, there exists a
constant T > 0 such that the Cauchy problem (12)-(15) admits
a unique solution (Q, u, ®)(t) € &(0, T ; H?) satisfying

inf xt)+1}>0,
x€R3, 0<t<T{Q( ) }

(60)
S::E [[(@ u ©)(t) |5 < C;l(Qo> o> Op) [ g
where C, > 1 is some fixed constant. Here,
&0, T;H) = {(eu,0)(x,1): (@, u,®)(x, 1) € C’ (61)

(0, T;H) nC'(0, T H)}.

Then, we construct the a priori estimates by using the
energy estimates given in Lemma 12.

Proposition 14 (a priori estimates). Let k>3 and T > 0.
Assume that for some sufficiently small & > 0,

sup |[(0> 4 ®) (1) | <. (62)

0<t<T

Then, we have for any t € [0, T] and 3< €<k,

1/2

(@ 14, ©) ()| e + <J0(IIVQ(<)II§H s [C3 @)(C)Iliﬂ)dC>

< Gl(Qp> 4g» ©p) | e
(63)

where C, > 1 is some fixed constant.

Proof. Let k>3 and 3 <€<k. Letting /=0 and k=¢ in (53)
of Lemma 12, we obtain

L0+ IVl + (WO <0 (60

Integrating (64) in time, we obtain

& (t) + JO(IIVQ(C)I\ﬁe—l +[1( ©)(6)lz) ds < E5(0)- (65)

Letting I =0 and k = ¢ in (59), we obtain for any t € [0, T
and some ¢ > 0,

%II(Q» 1, 0) (1) 1 < Eo(t) <cll(@ 1 O)(£)[[e- (66)

We immediately deduce (63) from (65) and (66). O

Finally, we perform a continuous argument to extend the
local solution given in Proposition 13 to the global one.



Let k> 3. Assume (Q, Uy, ®,) € H* satisfying

é
1| (Qo> 10> ©) || 2 < m’ (67)

where C, > 1, C, > 1, and § > 0 are given by Propositions 13
and 14. Since

)

[1(Qo» 4> ©) || s < c (68)
1

by Proposition 13, there exists a constant T, > 0 such that
the Cauchy problem (12)-(15) has a unique local solution

(0 uO®)(t) € €(0, T, ; HY), (69)
which satisfies

(@ 1 ©)(t) [ < Cill(Qo> 0> @) g <6, Ve € [0,T1].

(70)

By (70) and Proposition 14, we obtain for any ¢ € [0, T} ]
and 3<e<k,

which, together with (67), implies

@ wO)(D) <Coll @0 Ol (71)

(0w ®)(T)) € Y,

s (72)

@ ®)(T))] s < -
1

Then, choosing T > 0 as the new initial time instant, by
Proposition 13 again, we obtain that the Cauchy problem
(12)—-(15) has a unique local solution

(@ u,0)(t) € &(T, 2T, ; H), (73)

such that
(@1 @) (1) || s < Cy[|(@ s O) (T )| s <8, VEE[T), 2T,].
(74)

From the above, we have proved that the Cauchy prob-
lem (12)-(15) has a unique local solution

(@ u,0)(t) € &(0,2T, ; H), (75)
such that
l@w®)®)y <8 Vic[02T,.  (76)

By (76) and Proposition 14, we obtain for any ¢ € [0, 2T ]
and 3<e<k,

1@ 1 ©) ()l < Coll (@0t @) lgr (77)
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which, together with (67) again, implies

(0 1 ®)(2T,) € H’,

(e ©)CT)lhy < o 7

By repeating the above procedures, we can extend the
local solution to the global one only if (g, uy, ®,) € H*(k
> 3) satisfying that [|(Qy, t4p, @) ||y is suitably small, as
(67). So, we can choose 8, =8/(C; C, ) in Theorem 1. Hence,
the proof of Theorem 1 is completed.

4. Decay Rates

In this section, we shall derive the decay rates (8) and (9) in
Theorem 2. We will divide the proof into four parts.

4.1. Part 1: Decay Rates of the Solution Itself and Its
Derivatives up to the k — 1-Order. First, we show that the neg-
ative Sobolev or Besov norms of the solution (g, u, ®)(t) can
be bounded by the initial data.

Lemma 15. Under the assumptions of Theorem 1 and g''(1)
=0, if further (Qy> g, ®,) € H * for some s € [0, 3/2) or (Qys
Uy, ®,) € B;OO for some s € (0, 3/2], then for all t >0,

(@ u, ®)(1)]| -+ < Co» (79)

or

1(@ u, ©)(1)]

B <C,. (80)

Proof. The detailed proof can be found in Appendix B. O

Then, we prove the following differential inequality with
respect to time.

Lemma 16. Let k > 3. Under the assumptions of Theorem 1, it
holds that for all t 2 0 and 0< 1< k-1,

d 141 ? I 2
&)+ Hv Q(t)‘ et Hv (u, @)(t)‘ <0, (81)
where
k I 2
g0~ |veweyo| . (82)
Proof. Tt follows from Lemma 12 and Theorem 1. O

Next, we can use Lemmas 15 and 16 to prove the decay
rates of the solution itself and its derivatives up to the k-1
-order. For 0 < /< k-1, by Lemmas A.7 and A.8, we have

1+(1/(l+s))

>

Hvl+1f Vlf (83)

—-1/(1
|2 A1

i
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1+(1/( l+s))

vt = (84)

v'f

Combining (79) and (80) with (83) and (84), we have

1+(1/(l+s))

HVH]Q (85)

)ZCOHVIQ

This together with (7) infers for 0 <I<k -1,

2 1+(1/(I+s))
kar) !

(86)

vl+lQ( )

Hvl(u o)t )H;I ZCO(HVI(Q, 1, ©)

Hkll

From the differential inequality (81) of Lemma 16, we
obtain for 0<I<k -1,

k) + co(%f(t) <0. (87)

1+(1/(1+s))
a )

Solving the above inequality directly, we get for 0 <<
k-1,
&) < Cy(1+1)" ). (88)

By (82), we have for 0<I<k -1,

Hv’(q, u, @)(t)‘ <14y, (89)

H+!

Note that the decay rate of the k-order derivatives is the
same as one of the k — 1-order.

4.2. Part 2: Higher Decay of u and ©. We can further
improve the decay rates of (1, ®) as soon as we have the
whole decay rate of (@, u,®) by using the following
processes.

By (13) and (14), we have

1 O -
U+ —u=-VO-Vo-u-Vu-— QVQ> (90)
T 1+0

1 , 1
_lu-V®f®dlv u+ ;O(Q3), (91)

1 1 )
—— 0O, +-0=-div u-
y-1 T

0 to

where we have used g(1)=1 and g'(1)=g"'(1)=

obtain
glo+ 1)—1=O(Q3). (92)

Let k>3 and 0 </< k- 2. Applying V' to (90) and (91),
multiplying the resulting identities by V'u and V'®, respec-

9
tively, and integrating over R?, we obtain
Ld 2 1o |12
2™+ 7
2dt T
® -
—JVZ<V®+VQ+u~Vu+ QVQ)-VZM,
1+0
1 2
Vel lvel
—12dt
1 1
——Jvl<divu+ u-VO + 0O div u——O(Q3))'VZ®‘
y-1 T
(93)

By Holder’s, Sobolev’s, and Cauchy’s inequalities,
Lemmas A.2 and A.3, and (89), we obtain

sl cfef

® -
(vl“@, Vi, V(- Vi), V! (Q VQ))
1+0

2 2 2
<[V @ @) ]| 7| Vel + e |9

2

+[ve-o v

2 2 2
Vel + 118 - el

2 2 I+1 2
+l(@uwO): V" (@10

< C()(l + t)—(l+1+s)’

< HVHI (Qa @)

(94)

alvel +clvel

SH(VIHLI,VZ(M-V@) O div u), Vl )H
2 2

< [l [ vl + 7]
L6

2 2 2
1 2 2 I 1 4
+||v'e|| 1vulih + 1|7 ]|+ Ve el

I+1 2
V(e u, ®)

< Hvl+lu

2 2
e wO)
< Co(l + t)f(l+1+s).

(95)

Applying Gronwall’s inequality to (94) and (95), we
obtain for 0<I< k-2,

t
~Ct —-C(t=c) —(l+1+s)
e "+C,| e 1+
OJO (1+g) (96)

2

2
Hvlu < Hvluo

d(,' < CO(I + t) (l+l+s)

t
HVZQHZ < Hvl@()Hze,ct N CoJ e CU9 (1 4 ) (19
0 (97)

~de < Cy(1+ ) 1),

4.3. Part 3: Decay Rates of the k-Order Derivatives of the
Solution. We continue to derive the decay rate of the k
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-order derivatives by using a time-weighted argument
recently developed in [39].

Lemma 17. Let k > 3 and s be given in Lemma 15. It holds
that for 0 <e, < 1,

k+s k 2
(1+1) v (u,@)H dr<C,

Vk(o u, ®)H2 +C(1+ t)’va;(l + 1)kt

(98)

Proof. Let k > 3. As with the proof of Lemma 9, by using the
known decay rates (89), (96), and (97), we easily obtain

2
>

(99)

%J@k(t) + || v, @)H2 <c(+n|vie

where
1+0© 2 2 2
@k(t) = J__Q’qu‘ +(1 +Q)‘Vk_1 div u‘ + ‘Vk_l curl u‘
I 1+0Q | k.2 k 2
— vke| ~ VA (o, u,©)] .
—rve" e -[Tewe)

(100)

Let 0 < &, < 1. Multiplying (99) by (1 + £)"*** and inte-
grating over [0, t] in time, by (100), we have

Vk( ©® 2 ! k+s+e,
ou,®)| +C| (1+1)
0

2
(1 + t)k+s+so Vk(u, @) H

dr< Hvk(QO’ ", ®0)H2 +CJ’(1 +T)k+5+s(,*lek(Q) u,@)szT.
0

(101)

Next, we estimate the integral term on the right-hand
side of (101). Letting I =k — 1 in (81), we have

gt 1)+ HV"Q(t)HZ 0 et @)(t)H2 <0,

102
dt H! (102)

where &5 (1) ~ V¥ (@, u, ©)(t)| 1. Multiplying (102) by
(1+ 1) by (88), we have

d kt+s+ey—1 ok k+s+ey—1
Zlaenreng ) (e

(el 7ol

S (L+)Frveo2gk (1) < Co(1 + )70,

(103)
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Integrating (103) over [0, t] in time, we have
t

(1 + t)k+s+sg—1 gé_l(t) +J (1 + T)k+s+£0—1
0

. {HkaHZ + HVk_l(u, @)H;} dr<& (0)  (104)
+ C(,Jt (L+7) "0 dr< Cy(1 +1)%,
0

which implies
t 2
J (1+ r)"*S”O“HV"(Q, u, @)H dr<Cy(1+1)2.  (105)
0

Plugging (105) into (101), we have

k 2 ' k+s+eg,
Vi u,®)]| +C| (1+7)
0

2

(1 + t)k+s+£0 Vk(u, @)

~dr < Cy(1+1)%,

(106)

which infers (98). O
By Lemma 17, we have

[ @)(t)HZSCO(1+t)’(k“>. (107)

4.4. Part 4: Conclusion. Repeating Part 2 (Section 4.2) with
(107), we can obtain for 0<I<k—-1,

I 2 ~(I+14s)
Vi(u, ®)(1)|| <Cy(1+1) . (108)

Thus, the decay rates (8) and (9) of Theorem 2 hold
from (89), (107), and (108). Hence, we complete the proof
of Theorem 2.

Appendix
A. Tools

We will give some lemmas which are often used in the pre-
vious sections. We first recall the Gagliardo-Nirenberg-
Sobolev inequality.

Lemma A.1. Let 0< m, a <] and 2 < p < 0o. Then, we have

o m e 19|l 9
19 e < 1901 |[9'7| (A1)
where 0<9< 1 and  satisfy
32Dy Cma—9y (A2)
o 37 5)° ( )+ 19. .

Here, we require that 0<9< 1, m<a+1, and [>a+2,
when p = o0.
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Proof. See [40] (Theorem, p. 125). O
We give the commutator and product estimates.

Lemma A.2. Let m be a nonnegative integer. Define the com-
mutator

V" flg=V"(fg) - fV"g. (A3)

Then, we have for m > 1,

V™ A1gM < 1V 1 [V | + 19" F 1l s 190
(A.4)

and for m 2 0,

IV DN < UF s 197 Gl o + IV F N s Gl oir - (A-5)

where p,p;, Py P3Py € [1,00] and 1/p=1/p, + 1/p,=1/p; +
1/p,.

Proof. Refer to [41] (Lemma 3.1) or [42] (Lemma A.4). O

The following lemma gives the convenient Lf estimates
for well-prepared functions.

Lemma A.3. Assume that ||g||;~ <1 and ||®||;» < 1. Let f
(0,®) be a smooth function of @ and ® with bounded
derivatives of any order; then, for any integer k>1 and 2
Sp< oo,

|V (f(e.@)

k
<
LPNHVQ

+ HV"@
)93

(A.6)

)7
Proof. See [43] (Lemma A.2). O

As a byproduct of Lemma A.3, we immediately have the
following.

Corollary A.4. Assume that ||Q||; < 1. Let f(Q) be a smooth
function of @ with bounded derivatives of any order; then, for
any integer k> 1 and 2< p < 00,

[*s, |7, (87)

Finally, we list some useful estimates or interpolation
inequalities involving the negative Sobolev or Besov spaces.

Lemma A.5. Let 1<p<2and 1/2+5s/3=1/p. Then, 0<s<
3/2 and
Il = [1f [l (A.8)

Proof. Tt follows from the Hardy-Littlewood-Sobolev theo-
rem (cf. [44] (Theorem 1, p. 119)). O

11

Lemma A.6. Let 1< p<2and 1/2+s/3=1/p. Then, 0<s<
3/2 and

1A, < Nl (A.9)
Proof. See [45] (Lemma 4.1). O
Lemma A.7. Let s> 0 and [ > 0. Then,
[ <7 s 9= (A10)
= H” I+s+1° '
Proof. See [46] (Lemma A.4). O
Lemma A.8. Let s> 0 and 1> 0. Then,
1-9 1
% HsHv’“ H L . (Al
2 B 1 S e ey TR (1)

I.’ioof. We refer to [45] (Lemma 4.2) by noting that B;; C
Bzfq for p<q. O

B. Proof of Lemma 15

Here, we will prove Lemma 15. For this purpose, we first
derive the negative Sobolev and Besov estimates of (g, u, ®)
in the following lemmas.

Lemma B.1. Suppose that g(p) is a smooth function of p sat-
isfying g(1)=1 and g'(1)=g''(1) = 0. For s€(0,1/2], we
have

d
PTALCES O)[IF + Cll(1.0) 7~ < V(@ ©) | [l (@ t ©) | =
(B.1)
and for s € (1/2, 3/2), we have
4 @) + Cl O3
dt bl bl H bl H (B.Z)

(5/12)-s

<@ w @) V(1 ©) ;7 (@ )|

Proof. Since g(1)=1 and g'(1)=g''(1) =0, equation (14)
becomes

1 1 1
— O, + -O=-
y-1 T y-1

1
VO - (1 di —0(a%).
u-VO - (1+0) div u+TO(Q)
(B.3)
Applying A™* to (12), (13), and (B.3), multiplying the

resulting identities by A0, A™u, and A™°®, respectively,
summing them up, and then integrating over R? by parts,
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we obtain

2

+ 2w O)OI

ZdtH (Q’ ! %@ o) |
_ J[A'S div (Qu) A+ A™(u-Vu) - A™u

+A”° (?; q u) . Asu}
Q

1
- J {FA (u-VO)ATO + A(div u®)A— 0O

- _A¥(0(@)

Vi, ©Vu, Vi, u- VO, div u0,Q’) | ;-

A0 <||(Vo-u,@div u, u

(@ 1, O)|
(B.4)

Then, we need to estimate the right-hand side of (B.4). If
s€(0,1/2], then (1/2) + (s/3) < 1 and (3/s) = 6. By Lemmas
A.1 and A.5 and Holder’s and Young’s inequalities, we have

Ve ull < [IVe- ul| puuam < [V |||
1/2-s
< [[Velll| Vel "2 VA < VeVl < 1V (@ )17
(B.5)

Similarly, we obtain

ll(ediv u, u-Vu, ®Vu, @Vu, u- VO, div u®)| ;< ||V(0, U, ®)||?,1,

(B.6)
€7+ < [|e*[[llells < llellzs el < llell < Vel + [ Vellz-
(B.7)
where we have used g''(1)=0; otherwise, we have to
encounter
[1Q°]1 - < llellllell» < llellllell» < [lell* + [[Vel|z (B.8)
Q Hs~Q Q[ S [|Q[1[Q|| sz = ||Q@ Q|5 .

and thus, this will make the later estimate (B.14) fail since @
is degenerately dissipative. Thus, plugging the estimates
(B.5)-(B.7) into (B.4), we deduce (B.1).

Then, if s€(1/2,3/2), we will estimate the right-hand
side of (B.4) in a different way. In this case, (1/2) + (s/3) <
1 and 2 < (3/s) < 6. Thus, by the different Sobolev interpola-
tion, we easily obtain

|(Ve-u,Qdiv u, u- Vi, OVu, @Vu, u- VO, div u®, Q*)|| ;-

< |IV(e:w 0)][[[ (e us @)\|5—<”2>||V(Q 1, @) 412
- (5/2)-
<l uw®)~ V(1 ©) 57
(B.9)

Hence, plugging the estimate (B.9) into (B.4), we deduce
(B.2). [
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Lemma B.2. Suppose that g(p) is a smooth function of p sat-

isfying g(1)=1 and g'(1)=g''(1)=0. For se (0,1/2], we
have

d
2@ u®)E: +ClwmO)F: <|V(eu6)|5 (@ uo);: .

(B.10)

and for s € (1/2, 3/2], we have

d
1@ ® )5 +Cllw )l

s— (5/12)-
< l(@ u©)||"?)||V(e, u, ©)

157710 ©)lg

(B.11)

Proof. Applying Aj to (12), (13), and (B.3), multiplying the
resulting identities by AjQ, Aju, and A]-@, respectively, sum-

ming them up, and then integrating over R* by parts, we
obtain

1d

i E Jawero|

e- .
QVu)'A-u}
1+0 /

- ”y_il Ai(u-VO)A® + A(div u®)AE - %4(0(&))4@} :

A (Q, u, \/%6) (1)
) J {Aj div (pu)A,Q + A,(u- Vu) - A+ Aj(

(B.12)

Further, multiplying the above identity by 272/ and then
taking the supremum over j € Z, we have
~ll

< supzzsj{— J [Aj div (Qu)AjQ + Aj(u -Vu) - A]u
j€Z

+A <2V ) A]u}}+sup223j
1+ jez.

. {_ J {FA (u-VO)AO + A, (div u®)AO

1. .
- 140@))Ae)] |
<||(Ve-w @ div u, u-Vu, OVu, QVu, u - VO, div u0, Q*)||
57, (@ u O)| .

2

1d

1 2
CPT: + (@) (Ol

(B.13)

The rest of the parts are totally similar to Lemma B.1 by
replacing Lemma A.5 with Lemma A.6, so we omit it.? [

Now, we prove (79) and (80) in Lemma 15.
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First, we prove (79) by Lemma B.1. For s € (0, 1/2], inte-
grating (B.1) in time, by (7), we have

(0w @)D
C“W&%@@%W&%@@Mﬂ

< (o> o> ®o)||H”

(B.14)
-dg<C, <1 + 0sup I(@ u, @)(q)”H)
<est
By Young’s inequality, we have
1
II( us @)(t)||H—s <C, forse {O, 2], (B.15)

and thus, this verifies (89) for s € [0, 1/2].
Then, we prove (79) for s € (1/2,3/2). We have (@, ty»

©,) e H " since H°NI2cH foranys' €0,s]. We have
proved (89) for s € [0, 1/2]. Thus, when s = 1/2, we have

Hv’(g,u,@)(t)H <Gy O for -~ <l<k -1,

N~

(B.16)

By (B.16), integrating (B.2) in time, we obtain

1@ ©) (O < 1@ 0 O) -
| e w @)1 7@ 1 ©)(@) I

t
xm@w@@mmm<%+gj

(B.17)
F(14 ) ) dg Sup(@ @) ()]l
0<¢<
<Go(1+ swp (@ O)E) ).
ose<t
By Young’s inequality, we get
) . 13
(@ u, ®)(t)|;;= < Cp, forse 33) (B.18)

and thus, this verifies (89) for s € (1/2, 3/2).
Next, we prove (80) by Lemma B.2. Similar to (79), we
easily prove

3
(@ u©)(t)[3: <Cp forse (0, 5), (B.19)

and thus, this verifies (89) for s € (1/2,3/2). It remains to
prove the case s = 3/2. Note that

B, nL*cB,., foranys' €[0,s]. (B.20)

2,00?

For s=3/2, we also have (Q, g, ®,) € B;LO due to
(B.20). We have proved (80) and (89) for s € (0, 3/2). There-

13
fore, when s =1, we have
2
HVZ(Q, U, ®)(t)HHH <Cy(1+8) ™Y, forl=0,1. (B.21)
So, by (B.21), integrating (B.11) in time, we get
(@ ©)() 522 < (@0 tho» Oo) 02
' (1/2) (5/2)~
RIS IV (@ ©) ()l

x| (e u, )( >||B’3’2 ds< G, (B.22)

t
+C°J (1+¢) () dg sup||(Q, u,0)(s )HB—s/z
0

0<¢<t

<G, (1 + sup || (0, u, ®)(g )||B3/2>

0<¢st

Similarly, this gives (80) and thus verifies (89) under
s=3/2.
Hence, the proof of Lemma 15 is completed.
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