Research Article

Carbonatation and Decarbonatation Kinetics in the \(\text{La}_2\text{O}_3\text{-La}_2\text{O}_2\text{CO}_3 \) System under CO\(_2\) Gas Flows

Bahcine Bakiz, 1, 2 Frédéric Guinneton, 1 Madjid Arab, 1 Abdeljalil Benlhachemi, 2 Sylvie Villain, 1 Pierre Satre, 1 and Jean-Raymond Gavarri 1

1 Institut Matériaux Microélectronique & Nanosciences de Provence, UMR CNRS 6242, Université du SUD Toulon-Var, BP 20132, 83957 La Garde Cedex, France
2 Laboratoire Matériaux et Environnement, Faculté des Sciences, Université Ibn Zohr, BP 8106, 80000 Agadir, Morocco

Correspondence should be addressed to Jean-Raymond Gavarri, gavarri.jr@univ-tln.fr

Received 26 May 2010; Revised 2 July 2010; Accepted 5 August 2010

Academic Editor: Sridhar Komarneni

Copyright © 2010 Bahcine Bakiz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The carbonatation of \(\text{La}_2\text{O}_3 \) oxide and the decarbonatation of lanthanum carbonate phase \(\text{La}_2\text{O}_2\text{CO}_3 \) are investigated using thermal and thermogravimetry analyses under CO\(_2\) gas flow. The initial phase \(\text{La}_2\text{O}_3 \) is first elaborated from pyrolysis of a \(\text{LaOHCO}_3 \) precursor. Then, thermal and thermogravimetry analyses are carried out under CO\(_2\) flow, as temperature increases then decreases. The carbonatation kinetics of \(\text{La}_2\text{O}_3 \) is determined at three fixed temperatures. Electrical impedance spectroscopy is performed to determine the electrical responses associated with ionic mobilities and phase changes, in the temperature range 25 to 900°C. The electrical conduction during heating under CO\(_2\) gas flow should be linked to two regimes of ionic conduction of the carbonate ions. From these electrical measurements, the ionic mobility of carbonate ions \(\text{CO}_2\text{O}_3^- \) is found to be close to \(0.003 \cdot 10^{-4} \text{ cm}^2 \text{ s}^{-1} \text{ V}^{-1} \) at 750°C for the monoclinic \(\text{La}_2\text{O}_2\text{CO}_3 \) phase.

1. Introduction

The lanthanum-based system \(\text{La}_2\text{O}_3\text{-CO}_2\text{-H}_2\text{O} \) is characterized by successive phases \(\text{LaOHCO}_3, \text{La}_2\text{O}_2\text{CO}_3, \) and \(\text{La}_2\text{O}_3, \) stable in various temperature ranges [1–9], depending on the partial pressures of CO\(_2\) and H\(_2\)O [10–15]. It has been established that the decomposition of the hydroxycarbonate \(\text{LaOHCO}_3 \) under air generally gives the \(\text{La}_2\text{O}_2\text{CO}_3 \) dioxycarbonate phase [6]. However, this last phase exists under three polymorphic structural varieties with tetragonal, hexagonal, and monoclinic crystal lattices [16–19]. The carbonatation of \(\text{La}_2\text{O}_3 \) under pure CO\(_2\) generally gives the main \(\text{La}_2\text{O}_2\text{CO}_3 \) phase; however, the obtained system can be complex, with presence of several polymorphic structures depending on the experimental synthesis conditions [10, 18, 20]. In their work concerning the TG analysis of the \(\text{La}_2\text{O}_2\text{CO}_3 \) phase under CO\(_2\) gas, the authors of [2] showed that a small amount of \(\text{La}_2\text{O}(\text{CO})_2 \) was probably formed as an additional phase. This phase was also studied by authors of [21].

In room conditions, the lanthanum oxide is highly sensitive to environmental water. In a previous study [22], we have established correlations between the thermal decomposition and the electrical responses of compacted pellets of this \(\text{LaOHCO}_3 \) phase, subjected to pyrolysis under air: we have shown that strong variations in conductances accompanied these phase changes. We have also established that these \(\text{LaOHCO}_3, \text{La}_2\text{O}_2\text{CO}_3, \) and \(\text{La}_2\text{O}_3 \) phases have the capacity to convert carbon monoxide into CO\(_2\) at relatively low temperature: at 200–300°C, the L phase is a good catalyst converting CO into CO\(_2\), while it might be sensitive to CO\(_2\) only above 500°C.

In the present study, we focus our attention on phase changes during carbonatation and decarbonatation processes, respectively, of the \(\text{La}_2\text{O}_3 \) phase and of the \(\text{La}_2\text{O}_2\text{CO}_3 \) phase. The main objective of this approach should reside in connecting the weight variations due to these phase transformations with electrical responses, in order to appreciate their potential efficiency in gas sensing devices. These correlations between mass losses and electrical responses are
not known, and they could deliver interesting information on the electrical sensitivity of such systems.

2. Experimental Details

The LaOHCO$_3$ hydroxycarbonate was first prepared via a specific route [22, 23] based on a thermal treatment at 80°C of three aqueous solutions of La(NO$_3$)$_3$·6H$_2$O, urea CO(NH$_2$)$_2$, and polyvinyl-pyrolidone (PVP) polymer. The La$_2$O$_3$ oxide was obtained by pyrolysis of this LaOHCO$_3$ precursor.

The various chemical steps can be summarized as follows:

(i) First initial decomposition processes under air as temperature increases (25–1200°C):

\[
\text{LaOHCO}_3 \rightarrow \text{La}_2\text{O}_2\text{CO}_3 \ [1] + \text{H}_2\text{O} + \text{CO}_2, \quad (1)
\]

\[
\text{La}_2\text{O}_2\text{CO}_3 \ [1] \rightarrow \text{La}_2\text{O}_3 \ [1] + \text{CO}_2. \quad (1')
\]

(ii) Carbonatation and decarbonatation under pure CO$_2$ as temperature increases (25–1200°C):

\[
\text{La}_2\text{O}_3 \ [1] + \text{CO}_2 \rightarrow \text{La}_2\text{O}_2\text{CO}_3 \ [2], \quad (2)
\]

\[
\text{La}_2\text{O}_2\text{CO}_3 \ [2] + \text{CO}_2 \rightarrow \text{La}_2\text{O}_3 \ [2] + 2 \text{CO}_2. \quad (2')
\]

(iii) Recarbonatation under pure CO$_2$ as temperature decreases (1200 to 25°C):

\[
\text{La}_2\text{O}_3 \ [2] + \text{CO}_2 \rightarrow \text{La}_2\text{O}_2\text{CO}_3 \ [3]. \quad (3)
\]

In the previous equations, in bracket [1 to 3] we have designated phases obtained after a transformation process (decomposition, carbonatation, and decarbonatation). Theses phases have not the same characteristics (various morphologies and specific surfaces).

The polycrystalline samples were systematically analyzed by X-ray diffraction, using a D5000 Siemens-Bruker diffractometer, equipped with a copper X-ray source (wavelength $\lambda = 1.54 \times 10^{-10}$ m), and with a monochromator eliminating Kβ radiation. The experiments were carried out using classical θ – 2θ configuration.

Thermal and Thermogravimetric analyses (DTA-TG) were carried out using SETARAM DSC 92 equipment, with a thermal rate of 10°C/minute, under CO$_2$ pure gas (rate of flow of 33 cm3·s$^{-1}$).

Electrical measurements under CO$_2$ gas flow were performed using a Solartron electrical impedance spectrometer working with a maximal tension of 1 V, in the frequency range 100 to 107 Hz. A reactive homemade cell was used to perform experiments under various gas flows (air, CO$_2$) at various temperatures ranging between 25 and 900°C. The spectrometer delivers Nyquist representations of the resulting impedances recorded at fixed temperatures: the resistance value is classically obtained by extrapolation of the experimental Nyquist circles, and using electrical equivalent circuits (parallel R-C circuits) generated by the software. We have selected specific electrical circuits with a resistance (R) parallel to a constant phase element $CPE = (jC^*\omega)^n$ where the exponent n is comprised between 1 and 0, and C^* is a term similar to a capacitance for $n = 1$ (the unit of C^* depends on n).

To obtain electrical analyses of sample surfaces reacting with gas flows, the powder samples were first compacted under a pressure of 5 kbar in a cylindrical cell. Then, the obtained cylindrical pellet was cut in form of a rectangular plate, with platinum electrodes fixed on two parallel faces (dimensions 2.3 x 8 mm). The distance between the electrodes is 9 mm. This configuration (adapted to the reactive cell) allows a determination of the electrical properties of a significant material surface exposed to gas action. In a later step, these results might be used to test a hypothetical gas sensor sensitive to CO$_2$.

3. Results

3.1. Carbonatation-Decarbonatation Processes

3.1.1. Heating Process under CO$_2$ Flow. The La$_2$O$_3$ sample, initially obtained from thermal decomposition of LaOHCO$_3$, has been subjected to thermal and thermogravimetry analyses under CO$_2$ gas flow, with temperature increasing from 25 to 1200°C. The resulting TG-DTA curves are reported on Figure 1. A strong exothermic DTA peak is observed at 525°C; it is related to the carbonatation of La$_2$O$_3$ with formation of the La$_2$O$_2$CO$_3$ phase. Then, at 960°C, we observe an endothermic feature corresponding with the decomposition of the carbonate phase. Above 980°C the La$_2$O$_3$ phase stabilizes. A small endothermic feature is observed at 375°C: it might be associated with a partial dehydration of the sample due to the high sensitivity to environmental water of La$_2$O$_3$. The progressive mass evolution observed in the TG curve of Figure 1, as temperature increases, is directly associated with the classical buoyancy. A similar effect will be observed during the cooling process.

3.1.2. Cooling Experiments under CO$_2$ Flow. Using cooling experiments, we have analyzed the carbonatation of La$_2$O$_3$ from 1200°C to 25°C. The results are represented on Figure 2. The formation of La$_2$O$_2$CO$_3$ starts from 820°C and is maximum at 750°C. The exothermic peak associated with the crystallization of La$_2$O$_2$CO$_3$ carbonate is observed at 790°C. This temperature of carbonatation is strongly different from the one obtained during the heating process.

At each step involving a stabilized phase, we have carried out X-ray diffraction analyses to identify the obtained phases. We have confirmed that, in the case of thermal decomposition under air of LaOHCO$_3$ phase, two different tetragonal and hexagonal La$_2$O$_2$CO$_3$ structures are simultaneously observed. In the case of carbonatation of the La$_2$O$_3$ phase in the temperature range 500 to 700°C, we observe the formation of the La$_2$O$_2$CO$_3$ phase. The La$_2$O(CO$_3$)$_2$ phase was not observed in our experiments. This fact was previously reported by other authors [10, 18]. On Figure 3, we have reported the X-ray diffraction pattern characteristic
Table 1: Parameters extracted from Avrami's model: k_1 and k_2 kinetics parameters and p_1 and p_2 exponents, respectively, associated with the fast and slow regimes (1st and 2nd periods).

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Time range (min)</th>
<th>k_1</th>
<th>p_1</th>
<th>Time range (min)</th>
<th>k_2</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>45 → 112</td>
<td>1.5 10^{-2}</td>
<td>3.3</td>
<td>167 → 320</td>
<td>0.02</td>
<td>0.9</td>
</tr>
<tr>
<td>480</td>
<td>6 → 17</td>
<td>1.4 10^{-3}</td>
<td>3.9</td>
<td>30 → 90</td>
<td>0.54</td>
<td>0.3</td>
</tr>
<tr>
<td>500</td>
<td>3 → 7</td>
<td>1.2 10^{-3}</td>
<td>3.4</td>
<td>30 → 90</td>
<td>1.10</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Activation energies $E_1 (k_1) = 7.6$ (eV) and $E_2 (k_2) = 2.8$ (eV).

Figure 1: Weight gain associated with carbonatation of La$_2$O$_3$ (first step): exothermic peak at 520°C linked with weight gain due to formation of the monoclinic La$_2$O$_2$CO$_3$ phase; endothermic peak due to decarbonatation of La$_2$O$_2$CO$_3$ phase and formation of final La$_2$O$_3$ (second step).

Figure 2: Evolution of La$_2$O$_3$ weight during cooling process, under CO$_2$ flow: formation of La$_2$O$_2$CO$_3$ phase (exothermic peak) then relative stabilization of this phase as temperature decreases.

3.2. Kinetics Study of Carbonatation of La$_2$O$_3$ at Fixed Temperatures. We have performed a weight analysis of the La$_2$O$_3$ powder, obtained from the thermal decomposition of the initial LaOHCO$_3$ phase, under CO$_2$ gas flow at three constant temperatures. The CO$_2$ gas flow rate was 33 cm3.s$^{-1}$. In the SETARAM equipment, a fast temperature increase is first applied to the sample, and then, the temperatures are successively fixed to 450, 480, and 500°C. The three initial masses of La$_2$O$_3$ are successively (at $T = 450$, 480, and 500°C) $m_0 = 74.36$ mg, 70.73 mg, and 39.26 mg. The data evolutions have been interpreted in terms of an elemental Avrami’s model [24] (using a single mechanism approach):

$$\Delta m = \Delta m_0 \left[1 - \exp(-k \cdot t^p) \right], \quad (4)$$

(i) t is the reaction time;
(ii) Δm_0 is the limit mass of CO$_2$ involved in the carbonate formation La$_2$O$_2$CO$_3$ from a mass m_0 of La$_2$O$_3$;
(iii) Δm is the CO$_2$ mass having reacted with La$_2$O$_3$ at the time t;
(iv) k is a kinetics parameter depending of temperature;
(v) p is the exponent characteristic of the reaction mechanism ($p > 1$ for complex mechanisms, $p < 1$, for example, for mechanisms involving diffusion barriers).

To test the degree of validity of this Avrami’s model, we have reported the function Y versus $\ln(t)$ on Figure 4:

$$Y = \ln \left[\frac{-\ln(\Delta m_0 - \Delta m)}{\Delta m_0} \right] = \ln(k) + p \ln(t). \quad (5)$$

For a single crystal growth mechanism, the variation of Y versus $\ln(t)$ should have been linear. Presently, the representation of Figure 4 is not linear: this should be mainly due to the existence of at least two different crystal growth mechanisms, with two periods of mass gain corresponding to two behaviors.

In Table 1, we have reported the values of the kinetics parameters k_1 and k_2 and exponents p_1 and p_2, corresponding with the two different behaviors in which a linear correlation might be observed. The parameters k_1, p_1 are relative to the first period depending on temperature, and the parameters k_2, p_2 are relative to the second period. The k_1 and k_2 are thermally activated with activation energies of, respectively, 7.6 and 2.8 eV. The p_1 exponent is quasi-constant, while the p_2 exponent is close to 1 at 450°C and becomes very weak at higher temperatures.
obtained by heating La$_2$O$_3$ at 520°C under CO$_2$ flow. Trace of hexagonal phase (noted *).

![X-ray diffraction pattern of La$_2$O$_3$CO$_3$ (monoclinic) obtained by heating La$_2$O$_3$ at 520°C under CO$_2$ flow. Trace of hexagonal phase (noted *)](image)

Figure 3: X-ray diffraction pattern of La$_2$O$_3$CO$_3$ (monoclinic) obtained by heating La$_2$O$_3$ at 520°C under CO$_2$ flow. Trace of hexagonal phase (noted *).

The first growth regime should be associated with a fast carbonatation of grain surfaces associated with complex diffusion mechanisms. During this period, a carbonate shell enveloping oxide grains probably should be formed. The second growth regime should be associated with reaction and diffusion in grain cores, with a decrease of the reaction rate due to the carbonate shell: the resulting slow diffusion regime could govern the global reaction speed.

3.3. Electrical Analyses under CO$_2$ Gas Flows. To correlate the phase modifications to electrical behaviors, we have analyzed compacted powder samples in the electrical cell. In this experiment, a rectangular compacted sample resulting from the total decomposition of the initial LaOHCO$_3$ sample has been subjected to a progressive heating, under pure CO$_2$ gas flow. Between 600 and 700°C, carbonatation occurs, thus involving a strong increase in conductance mainly due to the ionic mobility of CO$_3^{2-}$ carbonate ions. Then, above 700°C decarbonatation occurs, involving a decrease of conductance due to CO$_2$ gas flow, with a decrease of the reaction rate due to the carbonate shell: the resulting slow diffusion regime could govern the global reaction speed.

The ionic conduction plays a major role with mobile species CO$_3^{2-}$.

Above 750°C, we observe a strong decrease in the ln(Σ) values: in this temperature range, decarbonatation occurs in a continuous way, with the elimination of CO$_3^{2-}$ ions. As La$_2$O$_3$ phase stabilizes, the resistance reaches a stabilized value.

On Figure 5, we have reported the ln(Σ) values versus temperature (total Σ values). We observe a strong decrease of ln(Σ) between 450°C and 750°C: the carbonatation of La$_2$O$_3$ should start from 450°C, with a first regime up to 600°C and a second regime up to 750°C. Two activation energies for the conduction behavior can be determined: 2.5 (first regime) and 1.4 eV (second regime). In this carbonatation domain, the carbonate ions elimination and formation of CO$_3^{2-}$

On Figure 5, we have reported the ln(Σ) values versus temperature (total Σ values). We observe a strong decrease of ln(Σ) between 450°C and 750°C: the carbonatation of La$_2$O$_3$ should start from 450°C, with a first regime up to 600°C and a second regime up to 750°C. Two activation energies for the conduction behavior can be determined: 2.5 (first regime) and 1.4 eV (second regime). In this carbonatation domain, the carbonate ions elimination and formation of CO$_3^{2-}$

Using the observed value $\Sigma = 1.7 \cdot 10^{-4} \Omega^{-1}$ at 750°C (on Figure 5: maximum value of Σ just before decomposition), and considering as negligible the conductance of La$_2$O$_3$ at the same temperature (close to 10^{-8} to $10^{-9} \Omega^{-1}$ at 750°C), we have evaluated an ionic conductance due to CO$_3^{2-}$ ions to $\Delta \Sigma = 1.7 \cdot 10^{-4} \Omega^{-1}$. From this evaluation of $\Delta \Sigma$, we have determined the order of magnitude of the carbonate ion mobility μ(CO$_3^{2-}$) at 750°C. Other values could be derived from the data obtained in the temperature range 450 to 700°C. The concentration of carbonate ions C_{ion} has been calculated from the effective density of the sample $\mu = 5.1$ g\cdotcm$^{-3}$ (for a theoretical crystal density of 6.51 g\cdotcm$^{-3}$) and using the sample volume $V = 0.1656$ cm3. A value of $C_{ion} = 0.0155$ mol\cdotcm$^{-3}$ has been obtained. To determine the mobility, we have used the classical relations:

$$\Delta \Sigma = \sigma \frac{S}{L}, \quad \sigma = Q \cdot C_{ion} \cdot \mu(\text{ion}),$$

where σ is the conductivity, S and L are the surface and separation distance of the two electrodes, and where
Q = 193 000 C·mol⁻¹. The relation giving the conductivity assumes an activity coefficient of 1: it only delivers an order of magnitude for the mobility.

We have obtained an order of magnitude of \(\mu(CO_2^{2-}) = (0.003 \pm 0.001) \times 10^{-4} \text{ cm}^2 \text{s}^{-1} \text{V}^{-1} \) for a carbonate ion moving at 750°C mainly along grain boundaries (or grain surfaces), and partly in the grain cores. This relatively high mobility can be associated with the activation energy of 1.4 eV (in the temperature range 600 to 750°C) as calculated above.

4. Discussion–Conclusions

The carbonatation kinetics of La₂O₃ has been determined at various temperatures. In the case of mass gain analyses, an elemental Avrami’s approach has allowed determining a complex two-step mechanism of growth: (i) a fast surface carbonatation with carbonate shell formation and (ii) a diffusion mechanism in grain cores with slower kinetics. The electrical analyses argue in favor of two different conduction mechanisms: during carbonatation at increasing temperature, the first activation energy (2.5 eV) should be associated with ionic conduction at grain surfaces, and the second activation energy (1.4 eV) should due to an increasing contribution of the conduction in the bulk. Correlatively, it should be remarked that, in thermal analyses, the stability range is observed from 500 to 850°C, while in electrical analyses, this stability range is observed from 500 to 750°C. This can be explained by the two different heating kinetics conditions used in the two experiments.

Finally, we observe a relatively high ionic mobility mainly due to the CO₃²⁻ ions in La₂O₃CO₃ at 750°C. In our evaluation, we have neglected the ionic conduction of oxygen ions.

It should be concluded that these phase modifications associated with high ionic conduction might be used as electrical sensitive material to detect CO₂, provide temperatures that could be fixed close to 400–550°C (carbonatation of La₂O₃ phase) and 750°C to restore the initial La₂O₃ phase.

Acknowledgments

The authors gratefully acknowledge the Provence-Alpes-Côte d’Azur Regional Council, the General Council of Var, and the agglomeration community of Toulon Provence Mediterranean for their helpful financial supports. This paper was developed in the general framework of ARCUS CERES project (2008–2010).

References

Submit your manuscripts at
http://www.hindawi.com