Study of Photocatalytic Activity and Properties of Transition Metal Ions Doped Nanocrystalline TiO$_2$ Prepared by Sol-Gel Method

K. S. Siddhapara and D. V. Shah
S.V. National Institute of Technology, Surat 395007, India

Correspondence should be addressed to K. S. Siddhapara; kirit.sidd@gmail.com

Received 25 May 2013; Revised 12 October 2013; Accepted 14 October 2013; Published 6 January 2014

1. Introduction

Titanium dioxide is one of the most efficient photocatalysts for degradation of azo dyes. Anatase has higher photocatalytic activity and has been studied more than the other two forms of TiO$_2$ [1], but its wide band gap and high electron-hole recombination rate limit the use of TiO$_2$ [2]. The photocatalytic activity of the TiO$_2$ can be controlled by the following factors: (i) light absorption wavelength; (ii) rate of the electron or hole-induced redox reaction; (iii) recombination of the electron-hole. Much of the effort has been focused on the two latter factors. The competition between the influ-surface charge-transfer processes and recombination of electron-hole is strongly related to the size, surface area, crystallinity, and surface structure of the photocatalyst. In order to enhance the photocatalytic activity of TiO$_2$, interfacial charge-transfer reaction should be increased and electron-hole recombination decreased by modifying the properties of TiO$_2$ colloids [3, 4]. Several methods have been developed such as increasing its surface to volume ratio, optimization of particle size, coupling of TiO$_2$ particles with other semiconductor particles, and doping of metals and nonmetals [5, 6].

The presence of metal ion dopants in the TiO$_2$ crystalline significantly influences photoreactivity by changing charge carrier recombination rates and interfacial electron-transfer rates by shifting the band gap of the catalysts into the visible region [7]. A dopant ion may act as an electron trap or hole trap. This would prolong the life-time of the generated charge carriers, resulting in an enhancement in photocatalytic activity [8]. Many works have recently been made to prepare solar-driven photocatalysts by doping TiO$_2$ with transition metals. The photoactivity of the doped TiO$_2$ photocatalysts depends substantially on the preparation method, nature of the dopant ion, and its concentration [9]. We have recently synthesized TiO$_2$ nanoparticles via sol-gel method.

To utilize solar energy and increase the photoreactivity of TiO$_2$ semiconductor, use of TM (Fe, Co, Mn) ion doping is increasing. However, its complex effects by different ions and their lower atomic % concentration levels are still not clearly elucidated. As part of such continued efforts, this research has studied the doping behaviors of three metal ions with their atomic concentration levels of 1%–4% at % on crystal phase, particle sizes, XRD patterns, and photoreactivity of TiO$_2$ nanoparticles.
Table 1: XRD data for 1% TM doped TiO$_2$ for different temperatures.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>2θ (deg)</th>
<th>Highest intensity peak (cps deg)</th>
<th>Interplanar distance dÅ</th>
<th>Cell values a,b,c</th>
<th>Corresponding plane (h,k,l)</th>
<th>Average crystalline size (nm)</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>200°C</td>
<td>25.22°</td>
<td>189</td>
<td>$d = 3.540$ Å</td>
<td>3.700, 2.5134, 9.4200</td>
<td>(1, 0, 1)</td>
<td>4.4 nm</td>
<td>Anatase, (JSPDS 21-1272)</td>
</tr>
<tr>
<td>400°C</td>
<td>25.49°</td>
<td>545</td>
<td>$d = 3.520$ Å</td>
<td>3.7960, 2.5134, 9.4440</td>
<td>(1, 0, 1)</td>
<td>5.8 nm</td>
<td>Anatase, (JSPDS 21-1272)</td>
</tr>
<tr>
<td>600°C</td>
<td>25.06°</td>
<td>952</td>
<td>$d = 3.531$ Å</td>
<td>3.7800, 2.5134, 9.5410</td>
<td>(1, 0, 1)</td>
<td>9.2 nm</td>
<td>Anatase, (JSPDS 21-1272)</td>
</tr>
<tr>
<td>800°C</td>
<td>27.47°</td>
<td>2320</td>
<td>$d = 3.271$ Å</td>
<td>4.5922, 2.9574, 0.6440</td>
<td>(1, 1, 0)</td>
<td>40.4 nm</td>
<td>Rutile phase exist (JSPDS 86-0146)</td>
</tr>
</tbody>
</table>

In this paper, powder samples of TiO$_2$: A, where A is Fe, Mn, or Co with dopant concentration of 1%, 2%, or 4%, were prepared by sol-gel technique and then calcined at different temperatures ranging from 200°C to 800°C. The effect of dopant concentration on degradation of formaldehyde was investigated in order to contribute to understanding of enhancing their environmental application.

2. Experimental

2.1. Preparation of TM (Fe, Co, Mn) Doped TiO$_2$ Nanopowder. Transition metals doped TiO$_2$ was produced by sol-gel technique. For formation of TiO$_2$ butyl tetratitanate was added dropwise into ethanol in 1:4 ratio with stirring. To dissolve formed TiO$_2$ glacial acetic acid (AR) was poured to solution with constant stirring at room temperature. Separate solution of cobalt nitrate or ferric nitrate or manganese nitrate (60 mL) in DI water with desired concentration (1%, 2%, and 4%) was mixed slowly by drop to solution with continuous stirring. After one hour PEG-4000 (0.07 g) was introduced to the solution as stabilizer. As hydrolysis catalysis concentrated nitric acid was used to maintain pH around one; supersonic wave was pass throughout the solution at 40°C until transparent solution became more viscous and gradually gel. Gel was frozen at −30°C for 12 h and then calcinated at different temperatures.

2.2. Characterization. XRD studies of the TM doped TiO$_2$ materials were performed in the Rigaku Miniflex-II Desktop XRD diffractometer coupled to a Cu X-ray tube, the Cu-Kα wavelength of which was selected by means of the nickel filter. EDAX spectra was taken by JEOL SEM analyzer of Japan, which gives resolution from microns to nanometer. The photocatalytic degradation of formaldehyde has been successfully demonstrated using a 250 V UV lamp with quartz reactor (Figure 6).

3. Result and Discussion

3.1. XRD Spectra. Figure 1 shows the XRD patterns acquired from different samples heated at different temperatures. The diffraction peak at 25.22°, 25.49°, and 25.6° observed from the XRD pattern of the TM (Fe, Mn, Co) doped TiO$_2$ shows that the main crystal phase is anatase, and the peak at 27.47° indicates the presence of the rutile phase. The peaks in the XRD patterns of the sample calcined at 200°C, 400°C, and 600°C of TM doped TiO$_2$ can be designated to the anatase phase (most active phase) without any indication of other crystalline phases such as rutile or brookite. As a variant valence metal cation, Fe, Co, and Mn ions can react with Ti$^{4+}$ on the surface of TiO$_2$, and Ti$^{4+}$ is reduced to Ti$^{3+}$ which inhibits the transformation of anatase to rutile [10]. It leads to the reduction in the oxygen vacancies on the TiO$_2$ surface and suppresses the crystallization of other phases by adsorbing onto the surface of the TiO$_2$ particles [11]. For pure TiO$_2$ the transformation from anatase to rutile phase takes place at 500°C, whereas for TM (Fe, Mn, Co) doped TiO$_2$ the phase transition takes place at a little larger temperature that is above 600°C. It is evident that delay phase transition is caused by structural TM doping, that is, the substitution of Ti ions by TM ions in the structural framework [12]. Scherrer’s equation was utilized to calculate average crystalline size. XRD pattern for all three dopants (Fe, Co, Mn) remains nearly the same (Table 1).

Transition metal oxide phases were not detected in the XRD pattern, suggesting that metal oxide could exist as the amorphous phase without incorporating into the TiO$_2$ lattice or go to the substitutional sites in the TiO$_2$ lattice or octahedral interstitial sites [13]. The results revealed that the incorporation of dopant ions decreased the crystalline size.
due to the prevention of coagulation of particles during heat treatment process. Chemical composition analysis using EDX spectroscopy illustrates the percentage of metal on the surface of nanoparticles.

3.2. Energy-Dispersive X-Ray Spectroscopy and SEM. EDAX of Fe, Co, Mn doped TiO$_2$ powder was done by JEOL make Model JSM 5810 LU scanning electron microscope equipped with an X-ray energy dispersive spectroscopy (EDS). Energy-dispersive X-ray spectroscopy (EDAX) in Figure 2 shows the elemental signature of presence of Ti, O, Mn. According to atomic weight stoichiometry corresponding amount of Ti, O, Mn were observed to be 31.62%, 62.12%, and 4.97%, respectively. Figure 3 shows the elemental signature of presence of O, Ti, and Co according to atomic weight stoichiometric of 53.27%, 43.37%, and 3.36%, respectively, for 4% cobalt doped TiO$_2$. And Figure 4 shows the elemental signature of presence of Ti, O, Fe and according to atomic weight stoichiometry corresponding amounts of Ti, O, Fe were observed to be 74.63%, 24.47%, and 0.90%, while Figure 5 shows a TEM image of one of the petals of TM doped TiO$_2$ nanoflowers that has length of about 320 nm and diameter of 79 nm.

3.3. Photocatalytic Experiment. In titania, the species are relatively long-lived, thus allowing the electron or hole to travel to the crystallite surface to perform possible redox reactions. The effect of the doping concentration of TM ions in TiO$_2$ on the photodegradation rate was investigated. The photocatalytic degradation of formaldehyde by TM doped TiO$_2$ was carried out in a 100 mL quartz glass reactor. Illumination with $\lambda > 300$ nm was provided by a 250 W high pressure UV lamp. A series of tests were performed to evaluate the conversion of formaldehyde by adsorption, photolysis, and photocatalysis.

An initial concentration of formaldehyde was 0.25 ppm in 300 mL DI water. At a fixed pH, experiments were performed with varying concentrations of dopant in TiO$_2$. First sample was taken at interval of ten minutes. Then TM (Fe, Mn, Co) doped TiO$_2$ (0.01 mg) was introduced to reaction and sample was taken at interval of ten minutes at room temperature for different concentrations of dopant ions such as 1%, 2%, and 4%. The rate of the photodegradation obtained from such experiments is depicted in Table 2. It is clear from Table 2 that for all the formaldehyde, the rate of the photodegradation increases with an increase in dopant concentration in TiO$_2$. It can be explained that the radius of Fe$^{3+}$, Mn$^{4+}$, and Co$^{2+}$ are similar to that of Ti$^{4+}$; the substitution of metal ion in the matrix is an easy process.

The substitution increases defect sites and acts as permanent space charge region, whose electric force improves
the separating efficiency of electron-holes and leads to charge transfer appearance. Because of defect sites, electron and hole trapping can reduce the recombination rate and increase their lifetime and density of surface hydroxide by radicals, thus enhancing the photocatalytic efficiency.

The most active photocatalyst was Fe-TiO$_2$. It has maximum efficiency, rate constant for formaldehyde degradation, and COD removal. The reason for the highest activity of Fe-TiO$_2$ could be the lowest crystalline size, the highest surface area, and the minimum bandgap energy. A decrease in crystalline size can give rise to larger surface area, which can increase the available surface active site and consequently leads to a higher adsorption, electron-hole generation, and interfacial charge carrier transfer rate for degradation [14].

4. Conclusion

The crystalline size of 4 to 40 nm is achieved. X-ray diffraction pattern of samples shows anatase phases of TiO$_2$, up to 600°C. At 800°C, the phase is rutile. The photocatalytic degradation of formaldehyde has been successfully demonstrated using a 250 V UV lamp with TM doped TiO$_2$ nanoparticles in a specific experimental setup. The degradation rate increases linearly with dopant content increases. This indicates that the photocatalytic reaction in this experiment was effected by dopant concentration. The TM doped TiO$_2$ nanoparticles exhibited higher photocatalytic activity than pure TiO$_2$. The results obtained in this research contribute to the understanding of how transition metal ions doped TiO$_2$ nanoparticles can lead the efforts of enhancing their environmental application.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References
