Retraction

Retracted: Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

Advances in Materials Science and Engineering

Received 7 August 2016; Accepted 7 August 2016

Copyright © 2016 Advances in Materials Science and Engineering. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advances in Materials Science and Engineering has retracted the article titled “Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying” [1]. The corresponding author apologizes and the authors agree with retraction. The article was found to contain a substantial amount of material, without citation, from the following published articles:

Figures and Text
(i) Wording in the section “3.1. Microstructure Analysis” and Figure 5 were from Hiroyuki Fukuda, Katsuyoshi Kondoh, Junko Umeda, Bunshi Fugetsu: Interfacial analysis between Mg matrix and carbon nanotubes in Mg–6 wt.% Al alloy matrix composites reinforced with carbon nanotubes. Composites Science and Technology 2011, Vol. 71(5): 705–709. DOI: 10.1016/j.compscitech.2011.01.015

Text
(iii) C S Goh, J Wei, L C Lee and M Gupta: Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology, Volume 17, Number 1. Published 25 November 2005 (cited in the background, but not in the section “3.2. Mechanical Properties”)

Figure
(v) Figure 8(a) was simultaneously published as Figure 1 in J. Jayakumar, B. K. Raghunath, T. H. Rao: Investigation on Fracture Mechanisms in Mg alloy AZ31 Nano Composites Reinforced with Multi Wall Carbon Nano Tubes. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 9, September 2013

References