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In this paper artificial neural network (ANN) and regression analysis were used for the prediction of surface roughness. Fivemodels
of neural network were developed and the model that showed best fit with experimental results was with 6 neurons in the hidden
layer. Regression analysis was also used to build a mathematical model representing the surface roughness as a function of the
process parameters. The coefficient of determination was found to be 94.93% and 93.63%, for the best neural network model and
regression analysis, respectively, from the comparison of themodels with thirteen validation experimental tests. Opticalmicroscopy
was conducted on two machined surfaces with two different values of feed rates while maintaining the spindle speed and depth of
cut at the same values. Examining the surface topology and surface roughness profile for the two surfaces revealed that higher feed
rate results in relatively thick roughness markings that are distantly spaced, whereas low values of feed rate result in thin surface
roughness markings that are closely spaced giving better surface finish.

1. Introduction

Surface roughness is often taken as an important indicator
of the quality of machined parts. The roughness influences
the performance greatly in terms of mechanical parts as
well as production cost. It is worth mentioning that surface
roughness also influenced the mechanical properties such
as corrosion resistance, creep life, and fatigue behavior.
Extensive previous work [1–4] has been done on investigating
the effect of the following parameters: cutting depth, feed
rate, cutting speed, tool nose radius, lubrication condition,
and cutting toolmaterial, on the following response variables:
tool wear, surface roughness, cutting forces, production time,
and cost.These studies were conducted using different routes;
analysis of variance, neural networking coupled with genetic
algorithm, and neural networking coupled with electromag-
netism optimization [5–10].

Magnesium, with a density of 1.8 g/cm3, is considered to
be the lightest structural metal. It is also one of the easiest
metals to machine. Magnesium is often chosen because of
its light weight. Its excellent machinability is a valuable
advantage when a large amount of machining must be done.
Less power is required for removing a given volume of
magnesium by machining than for any other commonly
machined metal. Heavy cuts can be taken at high speeds
and feeds which can reduce machining time. Thus fewer
machines, less capital investment, and less floor space and
overhead costs are associated with machining magnesium
and its alloys [5].

Chen et al. [6] applied the Taguchi methodology to
investigate the effect of lubrication on turning TC11, feed
and cutting depth, and velocity. The process response vari-
ables studied are cutting forces, surface roughness (Ra), and
temperature on cutting zones. The results showed that for
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orthogonal cutting the cutting depth is major parameter
distressing cutting force and temperature, while the feed rate
has major influence on the roughness. It was also reported
that the cutting temperature, force, and surface roughness of
diamond layered inserted tools were higher than uncoated,
mainly with minimum quantity lubrication technology.

Azam et al. [7] investigated surface roughness (Ra) for
turning high strength low-alloy steel (AISI 4340) using mul-
tilayer coated carbide tools. Response surface methodology
(RSM) was utilized to improve the correlation between Ra
and machining constraints (i.e., depth, speed, and feed). It
was observed that the feed rate is the main constraint that
affects surface roughness.The efficacy of the proposed model
is confirmed through validation data with average estimate
error of 3.38%.

Manivel and Gandhinathan [8] employed the Taguchi
method to optimize the machining parameters (cutting
speed, feed rate, depth of cut, and nose radius) in turning
under dry condition using carbide inserts CVD coated with
AL2O3/MT TICN. The analysis of variance (ANOVA) along
with the signal to noise ratiowere used to optimize the cutting
parameters to minimize surface roughness and tool wear. It
was reported that cutting speed is the most dominant factor
affecting the response variables.

Raja et al. [9] implemented the Taguchi technique to
analyze the results of turning AISI 316 and AISI 410 stainless
steels. The process variables examined were feed rate, cutting
speed, and depth of cut. Linear feed rate followed by quadratic
feed rate were the most significant factors affecting sur-
face roughness. Optimum cutting conditions for minimum
surface roughness were identified for different cutting tool
materials.The TiAlN composition coated insets gave the best
performance.

Zhang et al. [10] investigated the finish turning of AISI
52100 bearing steel with low carbide born nitride (CBN)
tools through an optimization process that applies Mixed
Integer Evolutionary Algorithm (MIEA). Process parameters
including tool geometry, cutting forces, and temperaturewere
considered to minimize surface roughness and tool wear
under practical constraints. The optimal design outcomes
were validated against experimental and analytical work.The
work showed that the proposed optimization technique had
excellent search capability and computational efficiency for
thismixed integer, constrained, highly nonlinear, nonexplicit,
and not analytically differential optimization problem.

Jafarian et al. [11] predicted tool wear, cutting forces,
and surface roughness using three artificial neural networks
(ANN). An innovative process for training the ANNs using
evolutionary algorithms rather than conventional systems
that uses back-propagation was proposed. The optimization
was carried tominimize surface roughness and cutting forces
and maximize tool life in turning process. Genetic algorithm
(GA) and particle swarm optimization (PSO) were employed
to improve each output while keeping the rest of the outputs
in the appropriate range.The acquired outcomes revealed that
trained neural networks with genetic GA as an optimization
objective functions present a potent tool to scrutinize the

effect of each constraint on the output model with high
accuracy level.

Mokhtari Homami et al. [12] employed a full factorial
design complemented with artificial neural network (ANN)
and subsequently optimization by genetic algorithm (GA) to
study the main effects and interactions that minimize surface
roughness and flank wear. It was reported that feed rate, nose
radius, and approach angle had a significant effect on the
flank wear and the surface roughness, but the cutting velocity
had the most significant effect on the flank wear alone.

Jafarian et al. [13] applied neural networking and modi-
fied Nondominated Sorting Genetic Algorithm to optimize
tool life and surface roughness in turning of Inconel 718
Super alloy. The work provided a strategy to give an efficient
approach for tool life estimation in machining processes. It
was reported that increasing the cutting speed and decreasing
depth of cut and feed rate resulted in a better surface qual-
ity. Multiobjective optimization was implemented and the
optimal conditions for maximizing tool life and minimizing
surface roughness were identified.

Vaxevanidis et al. [14] investigated the machining of Ti-
6Al-4V alloy, where spindle speed, feed rate, and depth of
cut were taken as the process variables and the response
variables were the main cutting force (Fz) and the average
surface roughness (Ra). They reported that the application
of this alloy is limited by tool wear and chattering. The
results of 27 runs were analyzed using analysis of variance
and showed strong interactions between process parameters.
A feed forward back-propagation neural network was, also,
developed to simulate the data. It was indicated that this
approach can be utilized to predict and optimize Fz and Ra.

Senthil Babu and Vinayagam [15] have reviewed differ-
ent methodologies for calculating surface roughness from
machining constraints like depth, feed rate, and cutting
speed. It has been reported (REF) that the electromagnetism
(EM) algorithm coupled with back-propagation neural net-
work is competent and specific system in attaining the lower
surface roughness. However, a feed forward neural network
model using Adaptive Particle Swarm Optimization (APSO)
algorithm which has proven to be a very efficient process was
proposed.

The objective of this paper is to compare the predicting
capability of artificial neural network and regression analysis
for surface roughness generated by different cutting condi-
tions of spindle speed (rpm), feed rate (mm/min), and depth
of cut (mm). In this paper, analysis of experimental data
from Face Milling of AZ61 alloy will be conducted using five
different ANN models and the results will be compared to
the experimental results to select the model with the highest
accuracy. The results from the best ANN model will then
be compared to the results from a regression mathematical
model.

2. Material and Methods

Chemical composition of Magnesium Alloy AZ 61, used in
this study, is shown in Table 1.
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Table 1: Chemical composition of magnesium AZ 61 alloy.

Element % by mass
Aluminum 5.9
Zinc 0.9
Copper <0.03
Silicon <0.01
Iron <0.01
Nickel <0.005
Magnesium Balance

Figure 1: Test rig for machining workpieces.

The machining of specimens was carried out on Emco-
Mill Concept 45 CNC vertical milling machine.Themachine
was equipped with Sinumeric 840-D. The specimen surface
area and height are 40 × 100mm and 60mm. The diameter
of the cutter is 63mm with 5 edges. To remove the high
metal and quality surface finish, cutting tool with carbide
inserts model face mill holder and Sandvik carbide coated
inserts were used (i.e., Sandvik R245-063Q22-12M and Sand-
vik R245-12 T3M-PM4240). The cutter is of 5 edges with
63mm diameter. The milling cutter was developed for heavy
metal removal and mirror finishing. Furthermore, it is also
fabricated with improved corners to reduce burr formation
and dissipating of the component. The developed cutter is
appropriate for face milling applications in diverse materials
(i.e., stainless steel, steel, cast iron, aluminum, and titanium
alloys) Figure 1 displays the test rig formachiningworkpieces.
The test design was executed through 64 runs through a 43
full factorial design. The runs were divided into 16 classes
and each four classes were subjected to one common spindle
speed (500, 1000, 1500, and 2000 rpm). All the classes were
machined by four cutting depth levels (0.50, 1.0, 1.5, and
2.0mm) and each depth was treated by feed rate having four
levels (50, 100, 150, and 200mm/min). Figure 2 demonstrated
the model TESA Rugosurf 90-G, which is used to measure
the surface roughness and ultimately surface topography.The
list of samples and their surface roughness measurements are
detailed in Table 4.

2.1. Development of the ANN Model. Artificial Neural Net-
work (ANN) is a calculation method which is inspired from
the behavior of human brain and neural system. ANN can
recognize the complex relation between input and output
data and then estimate the new results on the basis of

Figure 2: Test rig for measuring surface roughness Ra (𝜇m).

experiences [16]. ANN is accepted for solution of the complex
engineering systems efficiently. In this study, the usability
of the ANN was examined to predict the surface Ra (𝜇m)
by the developed ANN models. The three parameters which
are spindle speed (rpm), depth of cut (mm), and table feed
(mm/min) were taken as input parameters to develop ANN
models. The structure of the ANN used in this study with
three inputs and one output is shown in the Figure 3. The
used data for the developed ANNmodel is obtained from the
performed experiments of this study. Different learning rules
and structures can be used for an ANN. The common used
ANNmodels are feed forward,multilayer perceptions trained
by back-propagation based on gradient descent method.This
algorithm can solve a continuous function approximately and
shortly. The various ANN structures are established with the
proper combinations of the input data to find the best model.
In this study, 80% (51 experimental runs) of the total data
was used to train the network while the rest of data, 20%
(13 experimental runs), was used to test and validate the
network. The validation test data was not used in the stage
of training of the network, and this is a good indicator to
test the accuracy of the developed ANNmodels. In addition,
the best ANN model was developed among all tried models
by changing the number of neurons on the hidden layer
and using different transfer functions to estimate surface
Ra (𝜇m) successfully. The different variations of the neural
structures have been employed to obtain convergence. Back-
propagation algorithms and the feed forwardneural networks
composed multilayer detection have been conducted in this
study.

2.2. Development of Regression Model. Multivariable regres-
sion analysis was used to build amathematical model relating
the process outcome (surface roughness Ra) with the three
studied input parameters (spindle speed, depth of cut, and
feed rate). The same 51 experiments used for training the
ANN were used for the regression analysis. The remaining
13 experimental runs were used in testing both the regression
and ANNmodels.

Regression was conducted usingMinitab 17 software with
stepwise technique to eliminate the insignificant terms from
the model. The model was fitted in the form given by [2]
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Figure 3: Neural network structures to predict of the surface Ra (𝜇m).

Table 2: Comparison of the developed different ANN structures for surface Ra (𝜇m).

ANN model Algorithm Function Neuron number 𝑅 𝑅2 MAE MSE
Model 1 Momentum TanhAxon 4 0.9319 0.8684 0.023 0.0008
Model 2 Momentum Sigmoid Axon 6 0.9074 0.8234 0.022 0.0006
Model 3 Levenberg Sigmoid Axon 10 0.8695 0.7560 0.034 0.0017
Model 4 Levenberg TanhAxon 6 0.9743 0.9493 0.015 0.0002
Model 5 Levenberg TanhAxon 12 0.9701 0.9411 0.015 0.0003

where 𝛽𝑜 is the constant term, 𝛽𝑖 represents the linear effects,
𝛽𝑖𝑖 represents the pure quadratic effects, 𝛽𝑖𝑗 represents the
second level interaction effects, 𝛽𝑖𝑗𝑘 represents the third level
interaction effects, 𝛽𝑖𝑖𝑗 represents the effect of interaction
between linear and quadratic terms, and 𝜖𝑖 represents the
error in predicting experimental surface roughness.

Material removal rate (MRR) was calculated using (2)
for each run. Desirability function approach was used to
maximizeMRRmaintaining Ra below 0.4 𝜇m as a maximum
limit for the surface roughness value.

MRR = DOC ∗ Fr ∗ 𝑤, (2)

where MRR is volume removed per unit time (mm3/min.),
DOC is depth of cut (mm), Fr is the feed rate (mm/min.),
and 𝑤 is the width of cut (mm).

3. Results and Discussions

The developed neural network models and structures to
estimate surface Ra (𝜇m) are given in Table 2. Determination
coefficient (𝑅2),mean square error (MSE), andmean absolute

error (MAE), from the comparison with the 13 validation
experimental tests are used for the statistical verification to
evaluate the results of the developed ANN models. From
Table 2, it can be seen that model 4 among the developed
models in this study is the best model in terms of higher
𝑅2 and lower MSE and MAE. The developed ANN models
were also trained with the different neuron numbers to find
ideal number in the hidden layer. The network optimization
was started with four neurons in the hidden layer. Then, the
number of neurons was increased from 4 to 12 to achieve
the highest (𝑅2). As a result, the optimal number of neurons
was decided as 6 with Levenberg algorithm and TanhAxon
function (Table 2).

The regression fitted mathematical model is given by (3).
Determination coefficient (𝑅2), mean square error (MSE),
and mean absolute error (MAE) were calculated to be 0.847,
0.0005, and 0.017, respectively, for the 51 experiment runs
used in the regression analysis.

Ra = 0.2733 − 0.000212SS − 0.0645DOC
+ 0.001059Fr + 0.00000006SS ∗ SS
+ 0.00004730SS ∗ DOC − 0.00000026SS ∗ Fr.

(3)
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Table 3: Comparison between regression model and ANN predictions.

Machining parameters Measured Ra Regression model ANN
SS DOC Fr Predicted Ra Residual Predicted Ra Residual
500 0.5 150 0.332 0.301 0.031 0.316 0.016
500 1 200 0.37 0.327 0.043 0.356 0.014
500 2 50 0.164 0.147 0.017 0.149 0.015
1000 0.5 100 0.184 0.193 −0.009 0.158 0.026
1000 1 150 0.207 0.224 −0.017 0.208 −0.001
1000 1.5 200 0.258 0.255 0.003 0.272 −0.014
1500 0.5 50 0.115 0.127 −0.012 0.142 −0.027
1500 1 100 0.181 0.164 0.017 0.162 0.019
1500 1.5 150 0.217 0.200 0.017 0.199 0.018
1500 2 200 0.235 0.237 −0.002 0.218 0.017
2000 1 50 0.153 0.146 0.007 0.144 0.009
2000 1.5 100 0.155 0.188 −0.033 0.169 −0.014
2000 2 150 0.255 0.230 0.025 0.266 −0.011

0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.270.11
Experimental surface Ra (𝜇m)

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

A
N

N
 p

re
di

ct
ed

 su
rfa

ce
 R

a (
𝜇

m
) R2 = 0.9493

Figure 4: Experimental and ANN predicted results in the test
period.

Predictability of both regression and ANN models was
compared using the 13 experimental validation cases that
were not included in the modeling phase. Table 3 illustrates
the results of this comparison. The ANN predictions are
achieved using model 4 which exhibited the highest 𝑅2
value. Experimental versus predicted results obtained from
both ANN and regression are shown in Figures 4 and 5,
respectively. It is clearly seen that there is a good agreement
between the experimental results and the predicted results by
both models.

Desirability function approach was used to estimate the
values of studied process parameters that maximize the
MRR keeping the Ra at levels not exceeding a practical
value of 0.4 𝜇m. The optimization plot, illustrated in Fig-
ure 6, shows that an optimum MRR of 13680mm3/min with
Ra = 0.283𝜇m is obtained at spindle speed 500 rpm, depth of
cut 2mm, and feed rate 200mm/min.

R2 = 0.9363
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Figure 5: Experimental and regression predicted results.

Surface roughness in AZ61 alloy was found to increase
with increasing feed rate and depth of cut which both result
in bigger cut areas that are consequently associated with
higher cutting forces and higher friction which lead to poor
surface finish. It was noticed from the surface roughness
profile that high feed rates were associated with larger rough-
ness markings horizontal spacing. Also, the vertical spacing
between peaks and troughs of the surface irregularities was
larger.Thus, higher feed rates led to higher surface roughness.
Figure 7 represents an optical microscopy while Figure 8
represents the profile of surface roughness graph by surface
roughness tester for the machined surface under spindle
speed of 500 rpm, depth of cut of 0.5mm, and table feed rate
of 150mm/min. Figure 9 represents an optical microscopy
while Figure 10 represents the surface roughness profile by
surface roughness tester for the following cutting conditions:
spindle speed of 500 rpm, depth of cut of 0.5mm, and table
feed rate of 50mm/min. The effect of feed rate is obvious,
in a sense that low feed rate produced relatively thin surface
roughness markings that are closely spaced, whereas high
feed rate produced relatively thick roughness markings that
are distantly spaced.
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Figure 6: Optimization plot for Ra and MRR.

200 𝜇m

Figure 7: Optical microscopy for machined surface with speed
500 rpm, depth of cut 0.5mm, and feed rate 150mm/min.

4. Conclusions

In this study, an ANN model and regression analysis were
developed to predict the surface Ra (𝜇m) for different spindle
speed (rpm), depth of cut (mm), and table feed (mm/min),
in face milling of AZ61 magnesium alloy. Both models were
compared with validation experimental tests. The following
results can be concluded:

(i) The developed ANNmodel and regressionmodel can
predict the surface Ra (𝜇m) with high accuracy. The
coefficients of determination were found to be about
95% and 94%, for the best neural network model and
regression analysis, respectively, from the comparison
of the models with thirteen new validation experi-
mental tests that were not used in themodeling phase.

(ii) Maximizing the MRR while keeping the Ra at levels
not exceeding a practical value of 0.4 𝜇m, through
multivariable optimization, shows that an optimum
MRR of 13680mm3/min with Ra = 0.283𝜇m is
obtained at spindle speed 500 rpm, depth of cut 2mm,
and feed rate 200mm/min.
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Figure 8: Profile of surface roughness graph by surface roughness
tester for machined surface with speed 500 rpm, depth of cut
0.5mm, and feed rate 150mm/min.

200 𝜇m

Figure 9: Optical microscopy for machined surface with speed
500 rpm, depth of cut 0.5mm, and feed rate 50mm/min.
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Figure 10: Profile of surface roughness graph by surface roughness
tester for machined surface with speed 500 rpm, depth of cut
0.5mm, and feed rate 50mm/min.

(iii) Optical microscopy was conducted on two machined
surfaces to reveal the effect of feed rate while retaining
the value of rpm and depth of cut constant. A
hypothetical analysis for relating the higher surface
roughness for the higher feed rate is reported.

Appendix

See Table 4.



Advances in Materials Science and Engineering 7

Table 4

Sample ID Group Spindle speed (rpm) Depth of cut (mm) Table feed (mm/min) Surface Ra (𝜇m) Material removal
rate (MRR) mm3/min

1

1

500 0.5 50 0.185 1000
2 500 0.5 100 0.226 2000
3 500 0.5 150 0.332 3000
4 500 0.5 200 0.403 4000
5

2

500 1 50 0.21 2000
6 500 1 100 0.225 4000
7 500 1 150 0.327 6000
8 500 1 200 0.37 8000
9

3

500 1.5 50 0.177 3000
10 500 1.5 100 0.217 6000
11 500 1.5 150 0.259 9000
12 500 1.5 200 0.313 12000
13

4

500 2 50 0.164 4000
14 500 2 100 0.174 8000
15 500 2 150 0.22 12000
16 500 2 200 0.248 16000
17

5

1000 0.5 50 0.133 1000
18 1000 0.5 100 0.184 2000
19 1000 0.5 150 0.197 3000
20 1000 0.5 200 0.245 4000
21

6

1000 1 50 0.14 2000
22 1000 1 100 0.189 4000
23 1000 1 150 0.207 6000
24 1000 1 200 0.228 8000
25

7

1000 1.5 50 0.154 3000
26 1000 1.5 100 0.19 6000
27 1000 1.5 150 0.202 9000
28 1000 1.5 200 0.258 12000
29

8

1000 2 50 0.135 4000
30 1000 2 100 0.2 8000
31 1000 2 150 0.238 12000
32 1000 2 200 0.274 16000
33

9

1500 0.5 50 0.115 1000
34 1500 0.5 100 0.185 2000
35 1500 0.5 150 0.215 3000
36 1500 0.5 200 0.242 4000
37

10

1500 1 50 0.156 2000
38 1500 1 100 0.181 4000
39 1500 1 150 0.185 6000
40 1500 1 200 0.224 8000
41

11

1500 1.5 50 0.137 3000
42 1500 1.5 100 0.149 6000
43 1500 1.5 150 0.217 9000
44 1500 1.5 200 0.24 12000
45

12

1500 2 50 0.12 4000
46 1500 2 100 0.149 8000
47 1500 2 150 0.191 12000
48 1500 2 200 0.235 16000
49

13

2000 0.5 50 0.136 1000
50 2000 0.5 100 0.153 2000
51 2000 0.5 150 0.187 3000
52 2000 0.5 200 0.228 4000
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Table 4: Continued.

Sample ID Group Spindle speed (rpm) Depth of cut (mm) Table feed (mm/min) Surface Ra (𝜇m) Material removal
rate (MRR) mm3/min

53

14

2000 1 50 0.153 2000
54 2000 1 100 0.163 4000
55 2000 1 150 0.213 6000
56 2000 1 200 0.22 8000
57

15

2000 1.5 50 0.14 3000
58 2000 1.5 100 0.155 6000
59 2000 1.5 150 0.217 9000
60 2000 1.5 200 0.228 12000
61

16

2000 2 50 0.18 4000
62 2000 2 100 0.225 8000
63 2000 2 150 0.255 12000
64 2000 2 200 0.268 16000
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