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This article investigated the potential of fly ash (FA)/blast furnace slag- (BFS-) based geopolymer as a novel backfilling material.
The effects of NaOH concentration and FA/BFS mass ratio were explored through XRD, FTIR, and TG-DTG analyses. The results
indicated that the reaction products and strengths of geopolymer depended on the NaOH concentration and types of source
materials. Slump, final setting time, and setting ratio increased as a function of FA content. However, the increase in FA content
reduced the compressive strength and microstructure of the backfilling material (BM) due to the lower reactivity than BFS.

Microstructure analysis reveals that the matrix tends to be denser with the BFS content and NaOH concentration increase.

1. Introduction

Portland cement is a par excellent construction material and
is critical to the world economy. The manufacture of it,
however, is energy intensive and has other environmental
penalties of great significance [1-5]. It has been reported that
the production of Portland cement constitutes at least 8% of
global CO, emissions because its production requires high
kiln temperature (1450°C-1550°C) [6-9]. On the contrary,
Portland cement industry consumes a large amount of raw
materials, such as limestone, and results in significant
overexploitation of natural reserves [2, 10]. In consequence,
there is an urgent need to develop new alternative binders
with lower environmental and energy costs.

The concept of geopolymer, which was coined to de-
scribe a class of solid materials, was introduced in 1970s by
Professor Joseph Davidovits. Generally, the synthesis of
geopolymer involves mixing an alkali solution with an
aluminosilicate powder, which results in a discorded alkali
aluminosilicate gel. Compared with Portland cement, geo-
polymer enjoys quick compressive strength development
[7, 11], lower permeability [12, 13], lower shrinkage [14, 15],
and good resistance to acid and fire attack [16, 17].

Moreover, geopolymer can be synthesized at a lower tem-
perature than Portland cement since the geopolymerization
reaction can be conducted at room temperature [18]. Fur-
thermore, almost no SO,, NO,, or CO are generated in the
process of geopolymer preparation [10]. All these merits
contribute to a great interest in the study and development
of geopolymer worldwide. At present, geopolymer has been
used in various applications, i.e., new-type building mate-
rials [19, 20], soil stabilization [21-23], immobilization of
heavy metals [24-26], novel catalyst [27, 28], and adsorbent
[29, 30].

FA and BFS are commonly used materials for the
preparation of geopolymer. Chi and Huang [31] investigated
the binding mechanism and properties of alkali-activated
FA/BFS with various ratios of FA to BFS through the
compressive strength test, flexural strength test, and SEM
and XRD analysis. They found that the fly ash/slag ratio is a
significant factor influencing the binding mechanism and
properties of AAFS mortars. Abdalqader et al. [32] used
sodium carbonate (Na,CO3) as the alkali activator for the fly
FA/BFS blends. The influences of activator dosage and FA/
BES on the strength of alkali-activated mortar were exam-
ined. They found that the inclusion of 25% FA gave
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comparable or even higher strength than mixes containing
only BFS, after 90 days of curing. However, increasing the
content of FA to 50% led to the decrease of the strength
significantly. Phoo-ngernkham et al. [33] investigated the
effects of NaOH and Na,SiO; on the properties of FA/BES
geopolymer. The results indicated that the properties of
geopolymer depended on the types of source materials and
alkali activators. The increase in BFS content improved the
compressive strength of geopolymer due to the formation of
additional CSH. Sankar et al. [34] studied five Na,SiOs-
activated slag-fly ash binders and explored their compressive
and flexural strengths. It was found that increasing the slag/
fly ash ratio accelerated the strength development due to the
formation of CSH, CASH, and Ca- and Na-based geo-
polymer. However, to the authors’ knowledge, there are few
and very limited researches on the utilization of geopolymer
to mine backfilling. In the present study, blast furnace slag
(BES) and fly ash (FA) were used as raw materials activated
by sodium hydroxide (NaOH) solution with different
concentrations to prepare geopolymer. The effects of FA/
BFS mass ratio and the concentration of NaOH solution on
the properties of the prepared geopolymer were explored
using XRD, FTIR, TG-DTG, and SEM.

2. Materials and Methods

2.1. Source Materials. Materials used in this research are
blast furnace slag (BFS) and fly ash (FA), obtained from
Jinfeng Materials Co., Ltd in Henan, China, with a specific
gravity of 2.84 and 2.37, respectively. The chemical com-
positions of BFS and FA are presented in Table 1. Fine
aggregate used was mine tailings (MTs), which were col-
lected from a gold mine located in the Shandong, China.
MTs are dried at 105°C for 24 hours before being used. The
particle-size distribution of MT, BES, and FA is presented in
Figure 1.

2.2. Alkali Activator. Sodium hydroxide (NaOH) solution is
used as an alkaline activator because it is widely available and
less expensive. NaOH pellets of 98% purity are dissolved in
distilled water to obtain NaOH solution of required molarity
and stored at room temperature for 24 h before its use.

2.3. Geopolymer Paste. FA and BFS, with different pro-
portions by weight, are mixed in dry condition in a mixer.
The mixture is activated by adding NaOH solution at the
activator/binder mass ratio of 0.4 and mixed for 3 min. The
fresh pastes are then quickly casted into molds
(40 x 40 x 40 mm) and vibrated for 2min on an electrical
vibrating table. After that, the molds are sealed in plastic
bags and cured at room temperature until the testing age. A
series of geopolymer pastes (Table 2) are prepared by varying
the proportions of FA and BES and different concentrations
of NaOH solution.

2.4. BM Mortar. The mass ratio of FA/BFS to MT is fixed as
1:6, and the NaOH solution to binder mass ratio is fixed as
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0.4. MT, FA, and BFS are dry-mixed for 5min in a mixer.
NaOH solution is then added and mixed for another 5 min
to ensure homogeneity. After that, the mortars are poured
into molds (40 x 40 x 40 mm) and vibrated for 2 min. The
molds are then sealed in plastic bags and cured at room
temperature until the testing age. The summary of the ex-
perimental conditions is shown in Table 2.

2.5. Characterization. Samples were broken into small
pieces and immersed into acetone for 24 hours to stop the
geopolymerization process. The samples were then dried
under vacuum at 40°C before being grinded to a fine, ho-
mogeneous powder, using XRD, TD-DTG, and FTIR tests.
X-ray diffraction (XRD) analysis is carried out using an
X’Pert Pro XRD (Philips, Holland) at a scanning rate of
0.1deg-s™ " in the 20 range of 10 to 80°. TD-DTG analyses are
performed using Diamond TG-DSC (Netzsch STA 409 PC/
PG, German). The temperature is raised up from 25°C to
1000°C at a heating rate of 10°C/min in an alumina crucible
under N, atmosphere. Fourier-transform infrared (FTIR)
spectroscopy tests are performed by NEXUS 470 (America)
with a wavenumber of 4000-400cm™' to identify the
functional group of the materials.

The setting time of BM fresh mortars is tested using
Vicat apparatus. Setting ratio (AH) of BM mortars is in-
vestigated using the following equation:

Hl _H2
AH = T X 100%, (1)

1
where H, and H, are the height of BM samples before and
after hardening.

Slump of BM fresh mortars are tested using the slump
meter, conducting in accordance with the Chinese standard
specification (GB/T 2419-2005) [35].

Determining the compressive strength of BM mortars,
UCS tests are performed by using a computer-controlled
mechanical press with a loading capacity of 50kN and a
displacement loading speed of 1 mm per minute, according
to the ASTM D2166/D2166M-16 standard [36]. For each
mix formulation, triplicate tests are conducted and the
average values are recorded.

Microtopography is determined by scanning electron
microscopy (SEM) using a Philips XL30 SEM (Philips,
Holland) with an accelerating voltage of 20kV electrical
pulses for the characterization of the surface morphology.
Samples were impregnated using acetone for 24 hours and
then dried under vacuum at 40°C. The samples were con-
sequently gold coated prior to electron microscopy
observations.

3. Results and Discussion

3.1. X-Ray Diffraction (XRD) Analysis. The XRD patterns of
the raw materials and FA/BFS-based geopolymer pastes are
presented in Figure 2. It is obvious that there are distinct
differences in the mineral composition of FA and BFS. The
phase of FA is mainly composed of quartz, albite, and mullite
(Figure 2(a)), which are highly crystalline. Also, a hump
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TaBLE 1: Chemical composition (wt.%) and physical property of MT, BFS, and FA.

SiO, AlL,O3 MgO CaO Fe, 05 Na,O K,O BET surface area (mz/kg)

MT 69.55 12.63 0.33 0.69 0.87 1.98 3.13 356.1

BFS 34.60 12.11 9.23 39.52 0.11 0.35 0.19 935.5

FA 54.79 23.57 1.12 3.17 0.03 0.31 1.12 757.5

TaBLE 2: The summary of the experimental conditions.
5
. NaOH
0y 0,
f::'\\ Series No. FA (wt.%) BFS (wt.%) concentration (M)
4 R N F100BONS 100 0 8
Vf '\-\ [\ F75B25N8 75 25 8
: b oA N8  F50B50N8 50 50 8
5 1\ A \ F25B75N8 25 75 8
o )\ FOB100ONS8 0 100 8
A
Lt \ & F100BON16 100 0 16
aats \ \ F75B25N16 75 25 16
)\ A N16 F50B50N16 50 50 16
| \ F25B75N16 25 75 16
5 A FOBIOON16 0 100 16
1 1 = 1
10 100 1000 10000

Particle size (ym)

—a— Fly ash

—e— Blast furnace slag
—»— Tailings

FIGURE 1: Particle-size distribution of tailings BFS and FA.

between 20=18-25" is observed, indicating that there are
some amorphous phases in FA. However, the BES is mainly
composed of the amorphous phase due to the abrupt
cooling, except from traces of quartz, calcite, and aker-
manite, which are reported to be contained in most slags.
After activating by NaOH solution, some obvious changes
are noticed from Figures 2(b) and 2(c). For the series of N8
(F100BONS8, F50B50N8, and FOB10ONS8), the F100BONS8
paste consisted of crystalline phases of quartz, mullite, and
albite with their intensity decreased due to the activation by
NaOH solution. On the contrary, the presence of sodium
aluminum silicate hydration (N-A-S-H) suggested some
geopolymers [37-39]. However, FA is reported [40-42] to be
less reactive at room temperature with low alkali concen-
tration because crystalline materials remaining in fly ash
could not be dissolved in alkali solution.

For the mix with increased BFS dosage (F50B50N8 and
FOB100NS), the XRD pattern shows both amorphous and
crystalline phases. The peak of the crystalline phase,
i.e,, quartz, albite, and mullite, is also present due to the
nonreacted elements from FA and BFS. Additional phases of
calcium silicate hydrate (C-S-H) and N-A-S-H are noticed,
which was reported to form in fly ash- and slag blends-based
geopolymer [33]. Most likely these hybrid gels are generated
during the process of alkali activation of both slag and fly ash
and coexist in the blended samples. In the XRD pattern of
the FOB100NS8 paste, the quartz phase remains after alkali
activation, as it is difficult to dissolve in alkali solution. The
strong peak located at around 26 =30 is the C-S-H phase,
which is one of the main products of alkali-activated slag

[40, 43, 44]. A relatively lower intensity peak at 20=11.5"is
also observed assigned to the hydrotalcite phase. Hydro-
talcite phase is usually detected in the alkali-activated slag
when there is enough MgO content [45]. Traces of calcium
carbonate are also identified, resulting from the absorption
of carbon dioxide from air when the samples were analyzed
[46]. It is obvious that the amount of geopolymerization
product enhances with the increase of BFS. BES has been
reported to contain a larger amount of soluble CaO and
MgO, which could enhance the geopolymerization process
and generate more gel [47, 48].

For the series of N16 (F100BON16, F50B50N16, and
FOB100ON16), less crystalline phases such as quartz, albite, and
mullite are observed due to the higher concentrations of
NaOH solution. At the same time, the amount of N-A-S-H
and C-S-H increases, which could be noticed from their in-
tensity from the XRD patterns. The dissolution of the FA and
BES accelerates because the concentration of OH™ is sufficient
in high molar concentrations [49], resulting in a better geo-
polymerization. Similar results have been reported by other
literatures [33, 50]. Generally speaking, a strong alkaline
medium is necessary to increase the leaching of Si**, AI’",
Ca®", and other minor ions to some extent, which is reported
to be important for the formation of geopolymerization gel
and the enhancement of mechanical properties of the geo-
polymer [51]. On the contrary, the surface hydrolysis of the
aluminosilicate particles is very much dependent on the
concentration of alkali solution concentration [52].

3.2. Fourier-Transform Infrared (FTIR) Spectroscopy Tests.
The FTIR spectra of unreacted BFS and FA used in this
study and geopolymer samples after 28d of curing are
presented in Figures 3(a) and 3(b), respectively. For the raw
materials, the band between 900 and 1200 cm™" is attrib-
uted to the asymmetric stretching vibration of Si-O-T
bonds (T=Si or Al) [32]. The band at 875cm™" identified
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FIGURE 2: XRD patterns of (a) FA and BFS and geopolymer pastes with (b) 8 M NaOH solution and (c) 16 M NaOH solution.

in the BES is related to the asymmetric stretching of AlO,
groups in the glass phases [32], while the shoulder at
800 cm ™" identified in FA is associated with the symmetric
stretching vibrations of Si-O-T (T=Si or Al). The strong
band between 1400 and 1500 cm™" is related to stretching
vibration of the O-C-O group [53], suggesting the presence
of carbonate minerals (such as calcite) in BFS. Bands at
1650 cm™' and 3420 cm ™' correspond to the O-H stretching
vibration, which are attributed to water present in the raw
material [54].

After alkali activation by NaOH solution, asymmetric
stretching vibration of Si-O-T bonds (T=Si or Al) shift to
lower frequencies (997 cm™") in the FTIR spectra of FAGA,

indicating the formation of a new product (N-A-S-H) [55].
The appearance of new bands between 780 and 580 cm™'
relates to the symmetric stretching vibrations of T-O-Si
(T=Al or Si), which are referred to the formation of N-A-
S-H [56, 57]. All these changes are similar in all the pastes,
both series N8 and series N18. However, the series of N16
represents a sharper vibration, suggesting more products are
generated. This phenomenon is in agreement with the XRD
analysis, and similar results have been reported in previous
studies [7, 51]. Furthermore, it is obvious that the in-
corporation of OH™ from NaOH solution leads to the in-
crease of the intensity of the bands, resulting from O-H
stretching vibration (1650 cm ™! and 3420 cm ™).
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FiGURE 3: FTIR of (a) FA and BFS and geopolymer pastes with (b) 8 M NaOH solution and (c) 16 M NaOH solution.

3.3. TG-DTG Analysis. The differential thermogravimetric
(DTG) curves with TG data are shown in Figure 4. The
weight loss accumulated before 200°C is an indicator of the
interlayer water weight of CSH and NASH for FA/BES
geopolymer systems. Figure 4(b) illustrates that the quan-
tity of geopolymerization products (CSH and NASH) in-
creases with the increase of BFS content, and the higher
NaOH concentration also leads to more CSH and NASH,
possibly resulting in higher compressive strength. In addi-
tion, very small peaks of the hydrotalcite phase, which were
only seen in the XRD patterns of BFS-based geopolymer, are
noticed. Similar to the quantity of CSH and NASH, the
amount of hydrotalcite increases with the BFS content and

NaOH concentration. However, calcite is not detected in the
TG, resulting from its small amounts.

3.4. Slump, Final Setting Time, and Setting Ratio. The slump,
setting time, and setting ratio of BM are presented in Table 3.
When the concentration of NaOH solution is 8 M, the slump
for F100BON8 was 286 mm, whereas that of FOB100NS is
only 142 mm, which is lower than the standard requirement
of backfilling. This result contributes to the spherical shape
of the FA, which reduces flow resistance. An increase in BFS
content reduces the slump of BM mortar due to the higher
water demand of BFS resulted from the higher specific
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TaBLE 3: Setting time, flow ability, and setting ratio of geopolymer
mortar.

No. S(lrlrllig) Flg?rllze(t}t:;] & Setting ratio (%)
F100BONS8 286 9.33 7.53
F75B25N8 245 6.17 4.33
F50B50N8 203 4.26 0.87
F25B75N8 169 1.14 0.80
FOB100ONS8 142 1.07 0.40
F100BON16 272 8.05 3.07
F75B25N16 225 4.42 1.40
F50B50N16 186 2.71 0.73
F25B75N16 150 0.86 0.27
FOB100ON16 126 0.69 0.13

surface area (Table 1). Furthermore, BES is an irregular
particle and more abrasive during its flow. Similar results
were also reported by previous studies [58, 59]. Therefore, a
proper content of BFS should be selected and considered
when using FA/BFS in backing filling to meet the re-
quirement of pipelines. On the contrary, the slump of BM
fresh mortar decreases by 8.37%, from 203 mm (F50B50N8)
to 186 mm (F50B50N16) when increasing the concentration
of NaOH solution to 16 M. This can be explained by the fact
that increasing the concentration of NaOH solution leads to
the increase of the viscosity of fresh BM mortar and then
reduces the flow ability.

The final setting time of different mixes considered in
this study varied from 0.69 to 9.33 h. It is found that increase
in the concentration of NaOH solution and decrease in the
FA content resulted in decreased final setting time. When FA
content in the mix is 100%, the final setting time decreases
from 9.33h (with NaOH solution of 8 M) to 8.05h (with
NaOH solution of 16 M). An increase in the concentration of
NaOH solution accelerates the geopolymerization process,

which contributes to the faster setting. Partial replacement of
FA by BFS by 25% reduced the final setting time from 9.33 h
to 6.17h when the molarity of the NaOH is 8 M. This phe-
nomenon clearly indicates that the BFS readily reacts with the
NaOH solution compared with FA, which is in accordance
with the isothermal calorimetry test. The final setting time has
drastically reduced from 8.05 h to 0.69 h when the FA is totally
replaced by BES for 16 M of NaOH solution. Such fast setting
behavior is not convenient for BM mortar to be transported to
the worked-out section through pipeline self-flowing trans-
portation or pipe transfer process.

Setting ratio of F100BONS is the largest, exceeding 7%.
When BES is added, the setting ratio dropped sharply with the
increase of BFS content but do slow when the BFS content
exceeded 50%. On increasing the concentration of NaOH
solution, the setting ratio is also found to reduce. For example,
the setting ratio of F100BON16 was only 3.07% compared with
7.53% for F100BONS. Both adding BFS and enhancing the
concentration of NaOH solution could lead to more geo-
polymerization products (CSH and NASH), which would
make denser microstructure and reduce the setting ratio.

3.5. Compressive Strength. Figure 5 compares compressive
strength of BM samples with different binder types and
NaOH solution concentration at ages of 3, 7, 28, and 60 d. It
could be seen from Figure 5 that the compressive BM samples
decreases with the increase of FA content. On enhancing the
content of FA from 0% to 100%, the 28d compressive
strength of BM samples decreases from 5.25 MPa to 1.98 MPa
at a NaOH concentration of 8 M. Similarly, at NaOH con-
centration of 16 M, addition of FA from 0% to 100% asso-
ciates with the reduction of 28 d compressive strength of BM
samples by 69.62%.

Fly ash is a commonly used material for geopolymer
synthesis due to its easy availability, aluminosilicate
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FIGURE 5: Compressive strength of BM samples: (a) 8 N; (b) 16 N.

composition, low water demand, and high workability. The
limiting factor, which has hindered the use of fly ash in
geopolymers, is low strength development with ambient
temperature curing [60, 61]. Several researchers [62, 63]
found that the incorporation of calcium could enhance the
strength development of fly ash geopolymer, which could
result from the oxide constituents and mineralogy of the BFS.
BES contains higher amount of basic oxides, such as CaO and
MgO, which are more soluble during the process of geo-
polymerization [47, 48]. On the contrary, the hydration
products obtained by CaO and MgO could magnify the
dissolution of BFS and FA and then render a driving force for
the geopolymerization process [48]. Therefore, the in-
corporation of BFS to FA geopolymer resulted in the im-
provement of the mechanical properties and microstructure
of geopolymer [33, 60, 64].

However, some researchers [31, 65] also found positive
effect on the compressive strength by inclusion of FA. The
difference in these studies could be explained by the dif-
ferences in the activator type and concentration and the
physical and chemical properties of raw materials. On the
contrary, microfiller effect could influence the behavior of
the alkali-activated materials, considering the more fine-
grained BFS, which refers to the theory of granularity. On
the contrary, the coexistence of NASH gel and C(A)SH gel
has reported to be helpful to bridge the gaps between the
different hydrated phases and unreacted particles, thereby
resulting in a matrix to be denser and homogeneous [66].

Increasing the NaOH concentration from 8 M to 16 M
results in the strength increase of all samples. For example,
the 28 d compressive strength of the BM sample with 50 FA
content increases by 31.49%, from 2.98 MPa to 4.35 MPa. In
the process of the alkali-activated process, NaOH was found
to have a significant effect on both the compressive and
structure of alkali-activated materials [67]. Leaching of Sit,
AP’", Ca**, and other minor ions begins when the raw

materials come into contact with NaOH, and the amount of
leaching is dependent on NaOH concentration [49, 51]. The
compressive strength of alkali-activated materials is related
to the degree of the hydration reaction, which is strongly
affected by the soluble ions of the alkali-activated system
[55].

However, some studies [68] also reported that a higher
concentration of NaOH had resulted in a decrease in
compressive strength of geopolymer. One of the possible
reasons could be attributed to the high viscosity of NaOH
solution, disrupting the leaching of Si, Al, and other ions. On
the contrary, excess OH™ may lead to the precipitation of
geopolymerization gel at early ages, thus resulting in lower
mechanical properties [69]. However, this phenomenon is
not found in the present study, which could be the result of
varjous raw materials, and the concentration of the NaOH
solution is not high enough.

Table 4 summarizes the percentage increase in com-
pressive strength at different time intervals. As seen from
Table 4, the BM samples tend to gain compressive strength in
the later curing days with the increase of FA content. For the
group of 8 M of NaOH solution, the BM samples acquired
94.94% of the final compressive strength at 7d of curing
using 100% BFS. However, the number decreases to 50.98%
when BFS is replaced by 50% of FA. This may indicate that
the geopolymerization reaction of FA starts at later ages due
to its low reactivity compared to BFS. The long-term en-
hancement in compressive strength by the addition of FA
was also reported in other studies [32].

3.6. SEM Analysis. The results of SEM analyses of the BM
samples are shown in Figure 6. As seen from Figure 6, in
general, the microstructure is the heterogeneous matrix,
consisting of geopolymerization gel and unreacted or par-
tially reacted FA and BFS particles. The unreacted particles
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TABLE 4: Percentage increase in compressive strength at different time intervals.

FA content (%) sM 16 M

3d (%) 7d (%) 28d (%) 60d (%) 3d (%) 7d (%) 28d (%) 60d (%)
0 58.77 81.74 94.94 100.00 59.86 84.96 97.59 100.00
25 42.34 61.49 93.10 100.00 46.04 74.15 94.99 100.00
50 27.77 50.98 79.18 100.00 33.99 51.44 82.37 100.00
75 16.08 31.61 66.76 100.00 19.02 37.61 67.52 100.00
100 9.56 28.68 61.76 100.00 14.47 31.51 64.95 100.00

FiGgure 6: Continued.
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FIGURE 6: Microstructure of BM samples with the NaOH concentration of 16 M: (a, b) FI00BONS; (¢, d) F50B50NS8; (e, f) FOBIOONS; (g, h)

F50B50N16.

are found to increase with the increase of FA content, due to
the lower reactivity of FA. This finding is further supported
by the above study results, which show that the higher
amount of geopolymerization products generate in the BFS
rich samples. Pores with the size from micron to submicron
are observed in the matrix. In general, increasing the FA
content leads to a rather loose matrix. The FI00BON8 sample
shows low density and many nonreacted FA particles which
embed in the matrix. Similar results were also reported in
[70, 71].

With the increase of BFS content, like F50B50N8 and
FOB100ONS, the matrix seems to be slightly denser than
F100BON8 with more geopolymer products (CSH and
NASH) generated and less unreacted FA particles. This is in
line with the analyses of XRD, FTIR, and TG-DTG. No-
ticeable difference is found with the F50B50N16 compared
to that of F50B50N8. The matrix appears denser and more
homogeneous. As mentioned above, more CSH and NASH
from the reaction of FA/BFS and NaOH solution formed,
which modified the microstructure of the matrix.

4. Conclusion

The purpose of this paper was to study the properties of
NaOH-activated FA/BFS-based backfill material in terms of
slump, final setting time, setting ratio, reaction products, and
microstructure. The conclusions from this paper set a
foundation for the utilization of FA/BFS-based geopolymer in
mine backfilling in view of the present situation of the large
number of tailings and worked-out section, as well as the
potential safety hazards. The critical influencing factors on the
properties of FA/BFS-based geopolymer were scrutinized:
NaOH concentration and FA/BEFS ratio. The main conclu-
sions and perspectives this paper are summarized as follows:

(1) From the results of microstructure analyses, more
geopolymerization products (CSH/NASH) are pro-
duced with the increase of BFS content and NaOH
concentration, leading to a higher compressive
strength.

(2) The slump of BM mortar increases as a function of
FA content due to the special sphere particles of FA.

While, at the same time, the increase of FA content
increases the final setting time and setting ratio,
resulting from the low reactivity of FA compared to
BES. Increasing the NaOH concentration reduces the
slump, final setting time, and setting ratio.

(3) The influence of NaOH concentration and FA/BFS
ratio on the properties of FA/BFS-based geopolymer
was scrutinized; however, the characteristics of FA
and BFS are various in different plants. Therefore, the
relationship between the content of FA/BFS and the
properties of FA/BFS geopolymer should be explored
in the future, and such studies are being carrying out
by our team.
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