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-e low early strength of materials for paste filling in mines caused by low early strength of composite cementing material has been a
severe issue. In this study, the effects of sulphoaluminate cement and gypsum on strengths of composite cementing material were
investigated experimentally by employing the constrained formulation uniform design. With the content of the sulphoaluminate
cement below 14% and the content of the gypsum below 16%, the compressive strengths of composite cementingmaterials increased,
especially early strength. However, the initial and final setting time does not meet the engineering requirements in this case.
Optimization tests of composite additives demonstrated that H2BO3(0.3%) +Na2SO4(0.1%) and H2BO3(0.3%) +NaNO2(0.1%) were
ideal setting retarding and early strengthening composite additives as they can both reduce the initial and final setting time and
enhance compressive strengths of composite cementing material. Investigations by XRD and SEM revealed that the hydration
products of composite cementing material were dominated by AFt (ettringite) at the early stage and by C-S-H (hydrated calcium
silicate) gel +CH (calcium hydroxide) gel at the middle and late stages. -e hydration products of ratio-optimized composite
cementingmaterial do not restrain each other due to the generation sequence. Instead, they grew interactively and were coupled, thus
facilitating the growth of the hardened body.-is study can provide references for optimization of composite cementing material for
paste filling in coal mines.

1. Introduction

In cementing filling, cementing agents (e.g., cement, red mud,
and gypsum) were added into the fillingmaterials, which were
pumped to the underground to generate fillers with moderate
strengths.-e cement filler does not collapse even after partial
or full relievation of its limiting conditions, thus supporting
surrounding rocks and pillars. Hence, cementing filling
technologies in mining can effectively extract limited re-
sources and relieve its environment damages [1–3].

Cementing filling technologies have been widely
employed since 1960s. For instance, pillars were extracted in
the Mount Isa Mine in Australia using tailing cementing
filling techniques, and the cement content was 12%. In 1980s
and 1990s, new processes such as high-concentration filling,
paste filling, waste stone cementing filling, and full tailing
cementing filling have been developed and applied in various
mines, including the Kidd Creek Mine, the Golden Giant
Mine and the Louvicourt Mine in Canada, the Köln Mine in
Germany, and the Cannington Mine in Australia [4–6].
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In China, the development of cementing filling tech-
nologies can be divided into three stages. At the first stage
(1960s), graded tailings were used as aggregates in cementing
filling technologies. In 1968, cementing filling (in the Fankou
lead-zinc mine) by graded tailings and cement was reported
for the first time. At the second stage (1980s), full tailing and
high-concentration cementing filling [7–12], high water rapid
setting and full tailing cementing filling [13–15], and block
stone cementing filling [16–21] dominated. At the third stage
(1990s), paste and paste-like pumping cementing filling
technology was developed [22–28].

Previous studies demonstrated that the properties of
cementing material are key factors affecting its parameters
such as filler strength and setting time [29–67]. As the re-
quirement on early strength of fillers by paste filling in metal
mining is not high, the cost-effective and readily accessible
Portland cement can be used as the paste of cementing
material. However, unlike paste filling in metal mining, the
mining and filling processes of longwall workface in coal
mines are strictly alternative (each for 8–10 h). Hence, paste
filling in coal mining requires relatively high early strength.
Owing to its long setting time and slow growth of early
strength, the early performance of Portland cement must be
enhanced before being used as dominant cementing fillers in
paste filling.

Based on the practical requirements on performances
(e.g., compressive strength and setting time) of filling paste
cementing material for coal mining, Portland cement was
used as the dominant material, with sulphoaluminate ce-
ment and gypsum as additives to enhance its early strength.
-e initial and final setting time of composite cementing
material was controlled in 2.5∼4 h and 3∼4 h, respectively.
First, ratios of Portland cement, sulphoaluminate cement,
and gypsum in composite cementing material were opti-
mized experimentally; then, additives were used to modify
the composites. Finally, the hydration process was identified
by investigating the hydration mechanism of composite
cementing material to obtain that it meets the requirements
of paste filling in coal mines.

2. Materials, Equipment, and Methods

2.1. Composition and Optimization Scheme of Composite
CementingMaterial. In this study, Portland cement was used
as the main ingredient for paste cementing material, with
sulphoaluminate and gypsum as supplemental ingredients to
enhance the early strength of composite cementing material.
-e formulation of composite cementing material was de-
termined by constrained formulation uniform design, and
then the mechanical performances of the proposed com-
posites were tested. Specifically, compressive strengths and
the setting time of composite cementing materials with dif-
ferent ratios (D01∼D15) at different ages were measured.

2.1.1. Raw Materials. -e No. 42.5 Portland cement
(chemical and mineral compositions are shown in Table 1)
was purchased from Shandong Sunnsy Cement Group, the
No. 42.5 rapid hardening sulphoaluminate cement (mineral

composition is shown in Table 2) was from Shandong Jinyu
Cement Co., Ltd., and the hardened gypsum (chemical
composition is shown in Table 3) from Shandong Taihe
Dongxin Group was calcinated.

2.1.2. Instruments. Table 4 summarizes the testing
instruments.

2.1.3. Testing of Performances. In this study, the composite
cementing materials consist of Portland cement, sulphoa-
luminate cement, and gypsum in different ratios. With
guaranteed early strength of composite cementing material,
the content of sulphoaluminate cement shall be minimized
to reduce the cost. With reference of the results from other
researchers, the optimized contents of sulphoaluminate
cement, gypsum, and Portland cement were determined to
be 0∼20%, 0∼20%, and 60%∼100%, respectively. -e con-
straints of corresponding formulation tests are as follows:

X1 + X2 + X3 � 1,

0.6≤X1 ≤ 1,

0≤X2 ≤ 0.2,

0≤X3 ≤ 0.2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

-en, the corresponding testing scheme (15 sample
groups, see Table 5) was developed using the constrained
formulation design in the Uniform Design Version 3.0. -e
uniform design table used was U∗31(31

10) with D� 0.0908
(see Appendix).

-e raw materials were mixed and stirred to generate
70.7× 70.7× 70.7mm3 stock samples (Figure 1), which were
cured at a relative humidity of 90% and a temperature of
20± 2°C to designated ages to obtain testing samples.
According to the GB177-85 cement mortar strength testing
method, the compressive strengths of samples at different
ages were measured using theMTS-815mechanical tester. In
addition, the GB1346-89 cement standard consistency water
consumption, setting time, and stability testing method were
adopted to measure the setting time. -e initial setting time
is defined as the period from the start to the moment when
slurry loses flow ability, during which the plasticity of
cementing material paste remained constant. After initial
setting, the cementing material paste was further hardened
until its complete loss of plasticity, which corresponds to the
final setting.

2.2. Modification Scheme of Optimized Composite Cementing
Material. According to the results of mechanical perfor-
mance tests, optimized formulations of composite
cementing material with adequate early compressive
strength were identified. -e setting time was selected as the
performance indicator of composite cementing material.
-e hydration of sulphoaluminate cement was initiated after
10min and considerable quantity of gel was generated,
resulting in too short setting time of composite cementing
material. -erefore, the setting time shall be adjusted using
composite additives such as setting retarding agents (e.g.,
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H2BO3) and setting retarding and early strengthening agents
(e.g., Li2CO3, Na2SO4, and NaNO2).

In accordance with Section 2.1, the paste samples were
70.7× 70.7× 70.7mm3 cubes and were cured under standard
conditions. -e setting time and compressive strengths of
the samples were measured according to GB1346-89 and
GB177-85, respectively.

2.3. HydrationMechanism of Modified Composite Cementing
Material. After being mixed with water, the materials are
exposed to a series of physical and chemical reactions and
then a hardened body with certain strengths was obtained as
cementing pastes which gradually lose fluidity. -is process
is defined as hydration hardening of cementing material

[55–64].-emechanical performances of the hardened body
are closely related to hydration products and microstruc-
tures of the samples, which vary during the hydration
process. -erefore, studies of hydration hardening of
cementing material can be conducted in terms of hydration

Table 1: Chemical and mineral compositions of portland cement.

Material
Chemical constituents (%) Mineral compositions (%)

SiO2 Al2O3 Fe2O3 CaO SO3 C3S C2S C3A C4AF
Portland cement 21.38 4.23 3.58 66.49 0.1 59.95 12.02 5.94 13.53

Table 2: Chemical and mineral compositions of sulphoaluminate cement.

Material
Chemical constituents (%) Mineral compositions (%)

SiO2 Al2O3 Fe2O3 CaO SO3 C4A3S β-C2S C2F f-SO3

Sulphoaluminate cement 11.85 29.64 2.68 43.22 6.94 57.37 25.55 6.56 1.92

Table 3: Chemical composition of hardened gypsum.

Material
Chemical constituents (%)

CaO Al2O3 Fe2O3 SO3 SiO2 MgO Na2O Ignition loss
Gypsum 38.15 3.18 0.32 44.86 1.73 2.57 0.08 8.38

Table 4: Testing instruments for composite cementing material.

Instrument Supplier

NJ-160A cement paste mixer Cangzhou Luda Building
Instrument Factory

Cement Vicat apparatus Cangzhou Jilu Testing
Instrument Co., Ltd.

SC-145 cement consistometer Cangzhou Jilu Testing
Instrument Co., Ltd.

GZ-85 cement mortar shaking
table

Wuxi Jianyi Laboratory
Equipment Co., Ltd.

JJ-5 cement mortar mixer Wuxi Jianyi Laboratory
Equipment Co., Ltd.

70.7× 70.7× 70.7mm3 triplex
testing mold

Cangzhou Jilu Testing
Instrument Co., Ltd.

YH-40B thermostatic and
constant humidity box

Hebei Kexi Instruments and
Equipment Co., Ltd.

YAW-400 pressure tester Jinan Haiweier Instrument Co.,
Ltd.

CP2202S electronic balance Shenzhen Mingke Chemicals
Co., Ltd.

Beakers and measuring
cylinders

Shenzhen Ruixinda Scientific
and Educational Instruments

Co., Ltd.

Table 5: Formulations of composite cementing material.

Test
number

Proportioning (%)
Portland
cement

Sulphoaluminate
cement Gypsum

D01 94.9 3.7 1.4
D02 91.2 3.8 5.0
D03 88.6 1.7 9.7
D04 86.6 11.9 1.5
D05 84.8 9.0 6.2
D06 83.2 5.2 11.6
D07 81.7 0.4 17.9
D08 80.3 14.9 4.8
D09 79.1 9.8 11.1
D10 77.9 4.0 18.1
D11 75.6 15.3 9.1
D12 74.6 8.6 16.8
D13 71.7 14.1 14.2
D14 68.3 11.8 19.9
D15 65.9 18.1 16.0

Figure 1: Some of the samples.
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products and microstructures. Herein, the D09 composite
cementing material was selected and made into paste
samples according to standard consistency. -e samples
were cured in a standard curing box for 8 h, 16 h, 1 d, 3 d, and
7 d, respectively. Subsequently, the hydration products and
microstructures of prepared paste samples at designated ages
were analyzed.

2.3.1. Characterizations by X-Ray Diffraction (XRD). -e X′
Pert Pro MPD diffractometer (by Malvern Panalytical, see
Figure 2) was employed for quantitative and qualitative
analysis of hydration products of the modified composite
cementing material. -e conditions are as follows: Cu target,
Kα diffraction, and scanning angle of 5°∼75°. For in-
vestigations by XRD, the surface carbonized layers of
samples at designated ages were removed and the samples
were rinsed twice by acetone and alcohol in CO2 free en-
vironment to achieve complete dehydration. -en, the
samples were grinded by using an agate mortar, dried, and
sieved by using a 4900 mesh/cm2 sieve. After each cycle, the
mortar was rinsed with HCl.

2.3.2. Characterization by SEM. -e microstructures of
hydration products were investigated using Apreo high-
resolution SEM (see Figure 3). Sample blocks at different
ages were dried at 70°C for 2 h, sprayed with gold in vacuum,
and then characterized to investigate hydration products
and micromorphologies.

3. Results and Discussion

3.1. Compressive Strength and Setting Time of Composite
Cementing Materials

3.1.1. Compressive Strength. Table 6 summarizes the setting
time and compressive strengths of Portland cement and
composite cementing samples measured experimentally at
different ages.

As the hydration rate and duration of composites are
directly related to chemical compositions of the raw ma-
terials, the couplings of the hardened body produced by
hydrations inevitably affect the compressive strength of the
composite samples. According to the results, the com-
pressive strengths of samples are dependent on the contents
of sulphoaluminate cement and gypsum. Figure 4 shows the
trends of compressive strengths as a function of composition
of composite samples.

As shown in Table 6 and Figure 4, both the early and late
compressive strengths of composite cementing material de-
creased significantly once the content of sulphoaluminate
cement exceeded 14% or the content of gypsum exceeded
16%. Indeed, the compressive strengths of composite
cementing material may shrink after 3 d in this case. With the
content of sulphoaluminate cement below 14% and content of
gypsum below 16%, the compressive strengths of composites
increased, especially the early strength. -e descending se-
quence of compressive strength is D09>D06>D05
>D04>D02>D01>D03. Specifically, compared with

Portland cement, compressive strengths of sample D09 at 8 h,
16 h, 1 d, 3 d, 7 d, and 28 d increased by 75%, 42%, 36%, 34%,
24%, and 23%, respectively; meanwhile, compressive

Table 6: Setting time and compressive strengths of samples at
different ages.

Test number
Setting time

(min) Compressive strength (MPa)

Initial Final 8 h 16 h 1 d 3 d 7 d 28 d
Portland cement 145 265 2.4 12.8 21.5 29.7 35.8 42.5
D01 22 29 2.9 16.4 25.4 32.7 37.4 44.8
D02 18 25 2.8 18.0 24.6 34.5 39.6 46.3
D03 87 135 2.6 14.8 23.8 30.2 37.6 43.6
D04 8 13 3.2 15.4 28.3 36.4 40.8 47.3
D05 12 20 3.8 17.8 26.4 40.1 43.7 48.9
D06 70 124 3.6 17.4 28.4 38.9 43.8 50.1
D07 187 304 0.6 3.2 5.4 23.2 20.7 18.2
D08 4 8 3.6 13.4 19.3 24.7 18.3 17.2
D09 42 64 4.2 18.2 29.3 39.7 44.5 52.7
D10 85 102 1.4 7.0 12.4 24.1 23.1 21.3
D11 10 13 5.4 10.3 13.2 24.3 20.2 18.9
D12 57 68 2.1 7.9 10.5 14.2 12.1 11.7
D13 12 15 2.7 9.2 14.1 21.3 20.7 19.2
D14 38 52 3.7 6.8 8.7 19.3 18.7 17.1
D15 17 22 3.1 7.2 7.9 18.4 17.2 16.9

Figure 2: X′ Pert Pro MPD diffractometer.

Figure 3: Apreo high-resolution SEM.
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strengths of sample D06 at 8 h, 16 h, 1 d, 3 d, 7 d, and 28 d
increased by 50%, 36%, 32%, 31%, 22%, and 17%, respectively.

In summary, the early strength of composite cementing
samples can be significantly enhanced by ratio optimization
of Portland cement, sulphoaluminate cement, and gypsum,
as well as the late strength. In terms of structures, hardened
bodies by early and late hydration were coupled with each
other so that composites exhibited performances superior to
the Portland cement single clinker. With compressive
strength as the indicator, sample D09 is regarded as the
optimized sample in this study.

3.1.2. Setting Time. Figures 5 and 6, respectively, show the
initial and final setting time of samples measured experi-
mentally. As observed, the trends of initial and final setting
time were consistent: increased as the content of gypsum

increased and decreased as the content of sulphoaluminate
cement increased.-is can be attributed to sulphoaluminate,
which accelerates early hydration of the composite samples.
As a result, the hydration rate of samples at the early stage
increased and the large quantity of hydration products led to
reduced setting time. On the other hand, the too high
content of gypsum hinders hydration of the Portland ce-
ment, resulting in extended setting time of samples.

In summary, despite its significantly enhanced com-
pressive strength, sample D09 exhibited severely reduced
initial and final setting time. Indeed, its initial and final
setting time was 42min and 64min, respectively. -e paste
filling materials used for mining shall not solidify in
channels for 3-4 h. -erefore, the setting time of composite
sample D09 optimized by uniform design still does not meet
the requirement; thus, modifications by additives are
required.

8h 16h 1d 3d 7d 28d
0

10

20

30

40

50

Hydration time

CSA 3.7%; P 1.4%
CSA 3.8%; P 5.0%

CSA 11.9%; P 1.5%
CSA 14.9%; P 4.8%

Co
m

pr
es

siv
e s

tr
en

gt
h 

(M
Pa

)

(a)

8h 16h 1d 3d 7d 28d
0

10

20

30

40

50

Hydration time

CSA 1.7%; P 9.7%
CSA 9.0%; P 6.2%
CSA 15.3%; P 9.1%

Co
m

pr
es

siv
e s

tr
en

gt
h 

(M
Pa

)

(b)

8h 16h 1d 3d 7d 28d

CSA 5.2%; P 16.6%
CSA 9.8%; P 11.1%
CSA 14.1%; P 14.2%

0

10

20

30

40

50

60

Co
m

pr
es

siv
e s

tr
en

gt
h 

(M
Pa

)

Hydration time

(c)

8h 16h 1d 3d 7d 28d

CSA 0.4%; P 17.9%
CSA 4.0%; P 18.1%
CSA 8.6%; P 16.8%

Co
m

pr
es

siv
e s

tr
en

gt
h 

(M
Pa

)

0

5

10

15

20

25

30

Hydration time

CSA 11.8%; P 19.9%
CSA 18.1%; P 16.0%

(d)

Figure 4: Trends of compressive strengths as a function of sample composition when the gypsum content is (a) 0–5%, (b) 5–10%, (c)
10–15%, and (d) 15–20%. CSA-sulphoaluminate cement; P-gypsum.
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3.2. Modification Results of Optimized Composite Cementing
Material. Table 7 summarizes the experimentally obtained
effects of the setting retarding agent (H2BO3) and early
strengthening agents (e.g., Li2CO3, Na2SO4, and NaNO2) on
performances of composite cementing material D09.

As observed, Li2CO3 and H2BO3 had significant effects
on the setting time of composite cementing material. As the
content of Li2CO3 increased, the initial and final setting time
decreased and the early strength was enhanced, while the late
strength decreased. As the content of H2BO3 increased, the
initial and final setting time increased, while the early
strength decreased. -e results indicated that at the expense
of reduced late strengths, additive J6 had desired effects on
the setting time and early strength, while additives J7 and J8
can enhance both setting time and compressive strengths.
-erefore, H2BO3 (0.3%) +Na2SO4 (0.1%) and H2BO3
(0.3%) +NaNO2 (0.1%) are ideal setting retarding and early
strengthening additives for composite cementing material.

In summary, appropriate additives can enhance the
performances (e.g., setting time and compressive strengths)
of composite cementing material. In this study, samples J7
and J8 are ideal additives for cementing material in coal
mining filling.

3.3. HydrationMechanism of Modified Composite Cementing
Material

3.3.1. Hydration Process. -e composite cementing material
consists of 2CaO·SiO2, 3CaO·SiO2, 3CaO·Al2O3, 4CaO·

Al2O3·Fe2O3 (Portland cement), 3CaO·3Al2O3·CaSO4,
2CaO·SiO2 (sulphoaluminate cement), and CaSO4·2H2O
(gypsum). Owing to the presence of gypsum, the reaction
rate of 3CaO·Al2O3 and 3CaO·SiO2 was higher than that of
2CaO·SiO2 and 4CaO·Al2O3·Fe2O3. Meanwhile, 3CaO·

3Al2O3·CaSO4 in sulphoaluminate is an early hydration
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Table 7: Effects of additives on performances of composite cementing material.

Test number Contents of additives (%)
Setting time

(min) Compressive strength (MPa)

Initial Final 8 h 16 h 1 d 3 d 7 d 28 d
J1 D09 42 64 4.2 18.2 29.3 39.7 44.5 52.7
J2 Li2CO3 (0.15) 21 32 6.1 23.5 26.7 30.2 34.4 40.5
J3 Li2CO3 (0.30) 18 27 8.4 25.4 24.1 27.6 32.7 38.4
J4 H2BO3 (0.15) 125 184 2.0 12.7 20.7 34.2 39.5 51.2
J5 H2BO3 (0.3) 324 348 1.2 10.4 18.6 32.1 38.8 50.7
J6 H2BO3 (0.3) + Li2CO3 (0.1) 152 182 5.8 24.6 28.7 32.2 36.4 39.3
J7 H2BO3 (0.3) +Na2SO4 (0.1) 182 185 5.8 22.8 34.2 46.5 49.7 58.4
J8 H2BO3 (0.3) +NaNO2 (0.1) 214 232 5.2 19.5 32.9 43.2 47.3 54.1
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Figure 7: Continued.
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Figure 7: XRD spectra of samples at different hydration ages. ★-AFt; ⧏-C-S-H;◆-CH; ■-CaCO3; □-SiO2;△-3CaO·3Al2O3·CaSO4. (a) 8 h.
(b) 16 h. (c) 1 d. (d) 3 d. (e) 7 d.
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product. �erefore, 3CaO·3Al2O3·CaSO4, 3CaO·Al2O3, and
3CaO·SiO2 react with each other upon addition of water:

3CaO·3Al2O3·CaSO4 + 38H2O� 3CaO·Al2O3·CaSO4·
32H2O+ 2(Al2O3·H2O)
3CaO·Al2O3 + 3CaSO4·2H2O + 26H2O � 3CaO·Al2O3·
3CaSO4·32H2O
2(3CaO·SiO2)+ 11H2O� 3CaO·2SiO2·8H2O+3Ca(OH)2

As the hydration proceeds, the concentration of
Ca(OH)2 increases and hydration products react with
gypsum:

Al2O3·H2O + 3Ca(OH)2 + 3CaSO4·2H2O + 22H2O �
3CaO·Al2O3·3CaSO4·32H2O

In the middle and late hydration stages, 2CaO·SiO2 and
4CaO·Al2O3·Fe2O3 are activated:

Scattered AFt

(a)

Needle-shaped AFt

(b)

AFt clusters

C-S-H gel flakes

(c)

C-S-H gel prisms

C-S-H gel flakes

(d)

C-S-H gel prisms

Needle-shaped
AFt

(e)

Figure 8: SEM images of samples at di�erent ages. (a) 8 h. (b) 16 h. (c) 1 d. (d) 3 d. (e) 7 d.
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2(2CaO·SiO2) + 9H2O� 3CaO·2SiO2·8H2O+Ca(OH)2
C4AF+2CH+6CaSO4·2H2O+50H� 2C3(A, F)·3CaSO4·

32H2O

In summary, main hydration products of the samples
include ettringite (AFt), calcium hydroxide (CH) gel, and
hydrated calcium silicate (C-S-H) gel. -e generation of AFt
at an early stage is the main cause of high early strength of
samples.

3.3.2. Hydration Products. Figure 7 shows the XRD spectra
of samples at different hydration ages. Several conclusions
can be drawn:

(1) -e main hydration products include AFt, CH gel,
and C-S-H gel, while their relative contents vary with
the hydration age, according to their diffraction peak
intensities

(2) After 8 h hydration, a considerable quantity of AFt
was generated, resulting in high early strength of
samples

(3) CaCO3 was observed in hydration products. -is can
be attributed to the exposure of AFt to CO2

(4) -e diffraction peaks of clinker minerals (e.g., SiO2
and 3CaO·3Al2O3·CaSO4) in samples decreased,
indicating that the contents of clinker minerals de-
creased as the hydration age increased

(5) After 8 h of hydration, no diffraction peak corre-
sponding to CaSO4 was observed, demonstrating
complete hydration of CaSO4, whose product is AFt

3.3.3. Microstructures. Figure 8 shows the microstructures
of samples at different hydration ages. Several conclusions
can be drawn:

(1) After 8 h of hydration, fine, scattered, needle-shaped
AFt was observed. -e AFt grew interactively and
radially, with high density.

(2) After 16 h, the density of AFt increased, and its
growth followed the intersecting pattern.

(3) After 1 d of hydration, sizes of AFt increased dras-
tically and were distributed in clusters, while C-S-H
gel flakes appeared.

(4) After 3 d, the density of C-S-H gel increased and the
flakes were turned into prisms, demonstrating that
the contents of C-S-H gel and CH gel increased and
the hydration of Portland cement was accelerated.

(5) After 7 d, the matrix AFt followed a cloud distri-
bution while the density of needle-shaped AFt de-
creased. In some areas, large C-S-H gel prisms were
observed.

(6) According to the microstructures of hydration
products, the early and late strength of sample was
dominated by AFt and C-S-H gel, respectively, as
AFt grew rapidly while C-S-H gel grew slowly. -e
hydration products grew interactively and were
coupled, thus facilitating the growth of the hardened

bodies of cementing material, instead of restraining
each other due to the generation sequence.

4. Conclusions

Formulation tests of composite cementing materials were
conducted based on constrained formulation design. -e
effects of compositions (e.g., Portland cement, sulphoalu-
minate cement, and gypsum) of composite cementing
materials on their performances were investigated using
mechanical performance tests of samples, and the optimized
samples were tested and modified. -e following conclu-
sions can be drawn:

(1) -e setting time of samples was negatively related to
the content of sulphoaluminate cement and positively
related to the content of gypsum, and the trends of
initial and final setting time were consistent.

(2) Both the early and late compressive strengths of
composite cementing materials decreased signifi-
cantly if the content of sulphoaluminate cement
exceeded 14% or the content of gypsum exceeded
16%. Indeed, the compressive strengths of composite
cementing material may shrink after 3 d in this case.
With the content of sulphoaluminate cement below
14% and the content of gypsum below 16%, the
compressive strengths of composites increased. -e
composition corresponding to optimized compres-
sive strength was Portland cement (79.1%) + sul-
phoaluminate cement (9.8%) + hardened gypsum
(11.1%).

(3) Additives H2BO3(0.3%) +Na2SO4(0.1%) and
H2BO3(0.3%) +NaNO2(0.1%) are regarded as setting
retarding and early strengthening composite addi-
tives because they can enhance both the setting time
and the strength of composite cementing material.

(4) Investigations by XRD and SEM revealed that the
hydration products were dominated by AFt at the
early stage and C-S-H gel and CH gel at the middle
and late stages. Meanwhile, hydration products of
composite cementing material with optimized ratios
grew interactively and were coupled, thus facilitating
the growth of the hardened body of cementing
material, instead of restraining each other due to the
generation sequence.

In this study, the optimized ratios of Portland cement,
sulphoaluminate cement, and gypsum in composite cementing
material were determined, the hydration mechanism of
composite cementing material was identified, and the com-
posite cementing material was modified using appropriate
additives to meet the requirements by paste filling in coal
mines.

Appendix

Over the past two decades, uniform design has been widely
applied, especially in formulation design for materials.
Known as mixing tests, formulation tests aim to investigate
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the effects of material ratio on performance indicators. -e
formulation design can be categorized as unconstrained and
constrained ones according to component constraints in the
formulation.

In composite cementing material, the contents of sul-
phoaluminate cement and gypsum were relatively low as
they are employed to modify the properties of Portland
cement. Hence, samples in this study shall be tested by
constrained formulation tests with s kinds of raw materials
M1,M2, . . . ,Ms and with percentage contents of X1, X2, . . . ,
Xs, respectively; optimized formulation was researched
under constraints:

(1) Define the constraints of X1, X2, . . . , Xs in the for-
mulation as

X1 + X2 + ∧ + Xs � 1,

ai ≤Xi ≤ bi, i � 1,∧, s.
􏼨 (A.1)

(2) With given s and n, appropriate uniform design table
was selected accordingly and the set of elements in
U∗n (ns− 1) or Un(ns− 1) was labelled as qki􏼈 􏼉.

(3) -e selected uniform design table U∗n (ns− 1) or
Un(ns− 1) was linearly transformed to a unit cube
vector cki:

cki �
2qki − 1

2n
, i � 1,∧, s − 1, k � 1,∧, n. (A.2)

(4) Define (ck1, ck2,∧, cks), k � 1,∧, n􏼈 􏼉 as a group of
uniformly distributed points in Cs and calculate xki􏼈 􏼉

using equation (A.3) and obtain equation (A.4)
based on constraints of xki:

xki � 1 − c1/s− i
ki􏼐 􏼑 􏽑

i− 1

j�1
c
1/s− j

kj , i � 1,∧, s − 1,

xks � 􏽑
s− 1

j�1
c
1/s− j

kj , k � 1,∧, n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A.3)

ai <xki < bi, i � 1,∧, s − 1
as < xks < bs, k � 1,∧, n.

􏼨 (A.4)

Solve that to obtain cmin
ki and cmax

ki , which are minimum
and maximum of cki, respectively. In this way, simplex Ts
was obtained and the area determined by Is is defined asR:

R � c
min
k1 , c

max
k1􏼔 􏼕 × c

min
k2 , c

max
k2􏽨 􏽩 × ∧ × c

min
ks , c

max
ks􏽨 􏽩􏼨 􏼩.

(A.5)

Set a uniform design in R and define the area
confined by cki􏼈 􏼉 as area D. -en, points in D are the
uniform design scheme needed for this study.

(5) Points in cki􏼈 􏼉 are linearly transformed to R to
generate c∗ki􏼈 􏼉:

c
∗
ki � c

min
ki + c

max
ki − c

min
ki􏼐 􏼑 × cki, i � 1,∧, s, k � 1,∧, n.

(A.6)

(6) Points in c∗ki􏼈 􏼉 that follow equations (A.3) and (A.4)
are included in area D.

(7) Substitute points in area D into equation (A.3) to
obtain xki􏼈 􏼉.

Data Availability

All data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Highlights. (1) Providing references for further enhancing
the performances of composite cementing material for paste
filling in coal mines. (2) Effects of the contents of sul-
phoaluminate cement and gypsum on composite cementing
material’ setting time and compressive strength are in-
vestigated. (3) Two kinds of optimized additives, which are
(H2BO3 (0.3%) +Na2SO4 (0.1%) and H2BO3 (0.3%) +
NaNO2 (0.1%)), have been identified to enhance setting time
and strength of composite cementing material for paste
filling in coal mines.
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