Research Article

Optimization and Hydration Mechanism of Composite Cementing Material for Paste Filling in Coal Mines

Jinxiao Liu,1,2,3,4 Wenxin Li,1,3 Feng Zhang,3 Xinguo Zhang,1,3,4 Lianjun Chen,1,3 and Yongle Liu3

1Mine Disaster Prevention and Control-Ministry of State Key Laboratory Breeding Base, Shandong University of Science and Technology, 579 Qianwangang Rd, Huangdao District, Qingdao 266590, China
2Key Laboratory of Deep Coal Mine Excavation Response & Disaster Prevention and Control, Anhui University of Science and Technology, Huainan 232001, China
3College of Mining and Safety Engineering, Shandong University of Science and Technology, 579 Qianwangang Rd, Huangdao District, Qingdao 266590, China
4State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, National Engineering Laboratory for Backfill Coal Mining, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Jinxiao Liu; liujinxiao1999@126.com and Wenxin Li; li17753299337@163.com

Received 23 June 2019; Revised 23 July 2019; Accepted 26 October 2019; Published 7 December 2019

Academic Editor: Frederic Dumur

Copyright © 2019 Jinxiao Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The low early strength of materials for paste filling in mines caused by low early strength of composite cementing material has been a severe issue. In this study, the effects of sulphoaluminate cement and gypsum on strengths of composite cementing material were investigated experimentally by employing the constrained formulation uniform design. With the content of the sulphoaluminate cement below 14% and the content of the gypsum below 16%, the compressive strengths of composite cementing materials increased, especially early strength. However, the initial and final setting time does not meet the engineering requirements in this case. Optimization tests of composite additives demonstrated that H2BO3(0.3%) + Na2SO4(0.1%) and H2BO3(0.3%) + NaNO2(0.1%) were ideal setting retarding and early strengthening composite additives as they can both reduce the initial and final setting time and enhance compressive strengths of composite cementing material. Investigations by XRD and SEM revealed that the hydration products of composite cementing material were dominated by AFt (ettringite) at the early stage and by C-S-H (hydrated calcium silicate) gel + CH (calcium hydroxide) gel at the middle and late stages. The hydration products of ratio-optimized composite cementing material do not restrain each other due to the generation sequence. Instead, they grew interactively and were coupled, thus facilitating the growth of the hardened body. This study can provide references for optimization of composite cementing material for paste filling in coal mines.

1. Introduction

In cementing filling, cementing agents (e.g., cement, red mud, and gypsum) were added into the filling materials, which were pumped to the underground to generate fillers with moderate strengths. The cement filler does not collapse even after partial or full relievitation of its limiting conditions, thus supporting surrounding rocks and pillars. Hence, cementing filling technologies in mining can effectively extract limited resources and relieve its environment damages [1–3].

Cementing filling technologies have been widely employed since 1960s. For instance, pillars were extracted in the Mount Isa Mine in Australia using tailing cementing filling techniques, and the cement content was 12%. In 1980s and 1990s, new processes such as high-concentration filling, paste filling, waste stone cementing filling, and full tailing cementing filling have been developed and applied in various mines, including the Kidd Creek Mine, the Golden Giant Mine and the Louvicourt Mine in Canada, the Köln Mine in Germany, and the Cannington Mine in Australia [4–6].
In China, the development of cementing filling technologies can be divided into three stages. At the first stage (1960s), graded tailings were used as aggregates in cementing filling technologies. In 1968, cementing filling (in the Fankou lead-zinc mine) by graded tailings and cement was reported for the first time. At the second stage (1980s), full tailing and lead-zinc mine) by graded tailings and cement was reported filling technologies. In 1968, cementing filling (in the Fankou (1960s), graded tailings were used as aggregates in cementing materials. However, unlike paste filling in metal mining, the mining and filling processes of longwall workplace in coal mines are strictly alternative (each for 8–10 h). Hence, paste filling in coal mining requires relatively high early strength. Owing to its long setting time and slow growth of early strength, the early performance of Portland cement must be enhanced before being used as dominant cementing fillers in paste filling.

Based on the practical requirements on performances (e.g., compressive strength and setting time) of filling paste cementing material for coal mining, Portland cement was used as the main ingredient, with sulphoaluminate cement and gypsum as additives to enhance its early strength. The initial and final setting time of composite cementing material was controlled in 2.5–4 h and 3–4 h, respectively. First, ratios of Portland cement, sulphoaluminate cement, and gypsum in composite cementing material were optimized experimentally; then, additives were used to modify the composites. Finally, the hydration process was identified by investigating the hydration mechanism of composite cementing material to obtain that it meets the requirements of paste filling in coal mines.

2. Materials, Equipment, and Methods

2.1. Composition and Optimization Scheme of Composite Cementing Material. In this study, Portland cement was used as the main ingredient for paste cementing material, with sulphoaluminate and gypsum as supplemental ingredients to enhance the early strength of composite cementing material. The formulation of composite cementing material was determined by constrained formulation uniform design, and then the mechanical performances of the proposed composites were tested. Specifically, compressive strengths and the setting time of composite cementing materials with different ratios (D01–D15) at different ages were measured.

2.1.1. Raw Materials. The No. 42.5 Portland cement (chemical and mineral compositions are shown in Table 1) was purchased from Shandong Sinny Cement Group, the No. 42.5 rapid hardening sulphoaluminate cement (mineral composition is shown in Table 2) was from Shandong Jinyu Cement Co., Ltd., and the hardened gypsum (chemical composition is shown in Table 3) from Shandong Taihe Dongxin Group was calcined.

2.1.2. Instruments. Table 4 summarizes the testing instruments.

2.1.3. Testing of Performances. In this study, the composite cementing materials consist of Portland cement, sulphoaluminate cement, and gypsum in different ratios. With guaranteed early strength of composite cementing material, the content of sulphoaluminate cement shall be minimized to reduce the cost. With reference of the results from other researchers, the optimized contents of sulphoaluminate cement, gypsum, and Portland cement were determined to be 0–20%, 0–20%, and 60%~100%, respectively. The constraints of corresponding formulation tests are as follows:

\[
\begin{align*}
X_1 + X_2 + X_3 &= 1, \\
0.6 &\leq X_1 \leq 1, \\
0 &\leq X_2 \leq 0.2, \\
0 &\leq X_3 \leq 0.2.
\end{align*}
\]

Then, the corresponding testing scheme (15 sample groups, see Table 5) was developed using the constrained formulation design in the Uniform Design Version 3.0. The uniform design table used was $U_{11}^* (3110)$ with $D = 0.0908$ (see Appendix).

The raw materials were mixed and stirred to generate 70.7×70.7×70.7 mm³ stock samples (Figure 1), which were cured at a relative humidity of 90% and a temperature of 20±2°C to designated ages to obtain testing samples. According to the GB177-85 cement mortar strength testing method, the compressive strengths of samples at different ages were measured using the MTS-815 mechanical tester. In addition, the GB1346-89 cement standard consistency water consumption, setting time, and stability testing method were adopted to measure the setting time. The initial setting time is defined as the period from the start to the moment when slurry loses flow ability, during which the plasticity of cementing material paste remained constant. After initial setting, the cementing material paste was further hardened until its complete loss of plasticity, which corresponds to the final setting.

2.2. Modification Scheme of Optimized Composite Cementing Material. According to the results of mechanical performance tests, optimized formulations of composite cementing material with adequate early compressive strength were identified. The setting time was selected as the performance indicator of composite cementing material. The hydration of sulphoaluminate cement was initiated after 10 min and considerable quantity of gel was generated, resulting in too short setting time of composite cementing material. Therefore, the setting time shall be adjusted using composite additives such as setting retarding agents (e.g.,
(e.g., Li₂CO₃, Na₂SO₄, and NaNO₂).

In accordance with Section 2.1, the paste samples were 70.7 \times 70.7 \times 70.7 \text{mm}³ cubes and were cured under standard conditions. The setting time and compressive strengths of the samples were measured according to GB1346-89 and GB177-85, respectively.

2.3. Hydration Mechanism of Modified Composite Cementing Material

After being mixed with water, the materials are exposed to a series of physical and chemical reactions and then a hardened body with certain strengths was obtained as cementing pastes which gradually lose fluidity. This process is defined as hydration hardening of cementing material [55–64]. The mechanical performances of the hardened body are closely related to hydration products and microstructures of the samples, which vary during the hydration process. Therefore, studies of hydration hardening of cementing material can be conducted in terms of hydration

| Table 1: Chemical and mineral compositions of portland cement. |
|------------------------|------------------------|
| Material | Chemical constituents (%) | Mineral compositions (%) |
| | SiO₂ | Al₂O₃ | Fe₂O₃ | CaO | SO₃ | C₃S | C₂S | C₃A | C₄AF |
| Portland cement | 21.38 | 4.23 | 3.58 | 66.49 | 0.1 | 59.95 | 12.02 | 5.94 | 13.53 |

| Table 2: Chemical and mineral compositions of sulphoaluminate cement. |
|------------------------|------------------------|
| Material | Chemical constituents (%) | Mineral compositions (%) |
| | SiO₂ | Al₂O₃ | Fe₂O₃ | CaO | SO₃ | C₄A₃S | β-C₃S | C₂F | f-SO₃ |
| Sulphoaluminate cement | 11.85 | 29.64 | 2.68 | 43.22 | 6.94 | 57.37 | 25.55 | 6.56 | 1.92 |

| Table 3: Chemical composition of hardened gypsum. |
|------------------------|------------------------|------------------------|
| Material | Chemical constituents (%) | |
| | CaO | Al₂O₃ | Fe₂O₃ | SO₃ | SiO₂ | MgO | Na₂O | Ignition loss |
| Gypsum | 38.15 | 3.18 | 0.32 | 44.86 | 1.73 | 2.57 | 0.08 | 8.38 |

| Table 4: Testing instruments for composite cementing material. |
|------------------------|------------------------|
| Instrument | Supplier |
| NJ-160A cement paste mixer | Cangzhou Luda Building Instrument Factory |
| Cement Vicat apparatus | Cangzhou Jilu Testing Instrument Co., Ltd. |
| SC-145 cement consistometer | Cangzhou Jilu Testing Instrument Co., Ltd. |
| GZ-85 cement mortar shaking table | Wuxi Jianyi Laboratory Equipment Co., Ltd. |
| JI-5 cement mortar mixer | Wuxi Jianyi Laboratory Equipment Co., Ltd. |
| 70.7 × 70.7 × 70.7 mm³ triplex testing mold | Cangzhou Jilu Testing Instrument Co., Ltd. |
| YH-40B thermostatic and constant humidity box | Hebei Kexi Instruments and Equipment Co., Ltd. |
| YAW-400 pressure tester | Jinan Haiweier Instrument Co., Ltd. |
| CP2202S electronic balance | Shenzhen Mingke Chemicals Co., Ltd. |
| Beakers and measuring cylinders | Shenzhen Ruixinda Scientific and Educational Instruments Co., Ltd. |

| Table 5: Formulations of composite cementing material. |
|------------------------|------------------------|------------------------|
| Test number | Portland cement | Sulphoaluminate cement | Gypsum |
| D01 | 94.9 | 3.7 | 1.4 |
| D02 | 91.2 | 3.8 | 5.0 |
| D03 | 88.6 | 1.7 | 9.7 |
| D04 | 86.6 | 11.9 | 1.5 |
| D05 | 84.8 | 9.0 | 6.2 |
| D06 | 83.2 | 5.2 | 11.6 |
| D07 | 81.7 | 0.4 | 17.9 |
| D08 | 80.3 | 14.9 | 4.8 |
| D09 | 79.1 | 9.8 | 11.1 |
| D10 | 77.9 | 4.0 | 18.1 |
| D11 | 75.6 | 15.3 | 9.1 |
| D12 | 74.6 | 8.6 | 16.8 |
| D13 | 71.7 | 14.1 | 14.2 |
| D14 | 68.3 | 11.8 | 19.9 |
| D15 | 65.9 | 18.1 | 16.0 |

Figure 1: Some of the samples.
products and microstructures. Herein, the D09 composite cementing material was selected and made into paste samples according to standard consistency. The samples were cured in a standard curing box for 8 h, 16 h, 1 d, 3 d, and 7 d, respectively. Subsequently, the hydration products and microstructures of prepared paste samples at designated ages were analyzed.

2.3.1. Characterizations by X-Ray Diffraction (XRD). The X’Pert Pro MPD diffractometer (by Malvern Panalytical, see Figure 2) was employed for quantitative and qualitative analysis of hydration products of the modified composite cementing material. The conditions are as follows: Cu target, Kα diffraction, and scanning angle of 5°~75°. For investigations by XRD, the surface carbonized layers of samples at designated ages were removed and the samples were rinsed twice by acetone and alcohol in CO₂ free environment to achieve complete dehydration. Then, the samples were grinded by using an agate mortar, dried, and sieved by using a 4900 mesh/cm² sieve. After each cycle, the mortar was rinsed with HCl.

2.3.2. Characterization by SEM. The microstructures of hydration products were investigated using Apreo high-resolution SEM (see Figure 3). Sample blocks at different ages were dried at 70°C for 2 h, sprayed with gold in vacuum, and then characterized to investigate hydration products and micromorphologies.

3. Results and Discussion

3.1. Compressive Strength and Setting Time of Composite Cementing Materials

3.1.1. Compressive Strength. Table 6 summarizes the setting time and compressive strengths of Portland cement and composite cementing samples measured experimentally at different ages.

As the hydration rate and duration of composites are directly related to chemical compositions of the raw materials, the couplings of the hardened body produced by hydrations inevitably affect the compressive strength of the composite samples. According to the results, the compressive strengths of samples are dependent on the contents of sulphaaluminate cement and gypsum. Figure 4 shows the trends of compressive strengths as a function of composition of composite samples.

As shown in Table 6 and Figure 4, both the early and late compressive strengths of composite cementing material decreased significantly once the content of sulphaaluminate cement exceeded 14% or the content of gypsum exceeded 16%. Indeed, the compressive strengths of composite cementing material may shrink after 3 d in this case. With the content of sulphaaluminate cement below 14% and content of gypsum below 16%, the compressive strengths of composites increased, especially the early strength. The descending sequence of compressive strength is D09 > D06 > D05 > D04 > D02 > D01 > D03. Specifically, compared with Portland cement, compressive strengths of sample D09 at 8 h, 16 h, 1 d, 3 d, 7 d, and 28 d increased by 75%, 42%, 36%, 34%, 24%, and 23%, respectively, meanwhile, compressive

Table 6: Setting time and compressive strengths of samples at different ages.

<table>
<thead>
<tr>
<th>Test number</th>
<th>Setting time (min)</th>
<th>Compressive strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial 8h 16h 1d 3d 7d 28d</td>
<td></td>
</tr>
<tr>
<td>Portland cement</td>
<td>145 265 2.4 12.8 21.5 29.7 35.8 42.5</td>
<td></td>
</tr>
<tr>
<td>D01</td>
<td>22 29 16.4 25.4 32.7 37.4 44.8</td>
<td></td>
</tr>
<tr>
<td>D02</td>
<td>18 25 18.0 24.6 34.5 39.6 46.3</td>
<td></td>
</tr>
<tr>
<td>D03</td>
<td>87 135 2.6 14.8 23.8 30.2 37.6 43.6</td>
<td></td>
</tr>
<tr>
<td>D04</td>
<td>8 13 3.2 15.4 28.3 36.4 40.8 47.3</td>
<td></td>
</tr>
<tr>
<td>D05</td>
<td>12 20 3.8 17.8 26.4 40.1 43.7 48.9</td>
<td></td>
</tr>
<tr>
<td>D06</td>
<td>70 124 3.6 17.4 28.4 38.9 43.8 50.1</td>
<td></td>
</tr>
<tr>
<td>D07</td>
<td>187 304 0.6 3.2 5.4 23.2 20.7 18.2</td>
<td></td>
</tr>
<tr>
<td>D08</td>
<td>4 8 3.6 13.4 19.3 24.7 18.3 17.2</td>
<td></td>
</tr>
<tr>
<td>D09</td>
<td>42 64 4.2 18.2 29.3 39.7 44.5 52.7</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>85 102 1.4 7.0 12.4 24.1 23.1 21.3</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>10 13 5.4 10.3 13.2 24.3 20.2 18.9</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>57 68 2.1 7.9 10.5 14.2 12.1 11.7</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>12 15 2.7 9.2 14.1 21.3 20.7 19.2</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>38 52 3.7 6.8 8.7 19.3 18.7 17.1</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>17 22 3.1 7.2 7.9 18.4 17.2 16.9</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: X’Pert Pro MPD diffractometer.

Figure 3: Apreo high-resolution SEM.
strengths of sample D06 at 8 h, 16 h, 1 d, 3 d, 7 d, and 28 d increased by 50%, 36%, 32%, 31%, 22%, and 17%, respectively.

In summary, the early strength of composite cementing samples can be significantly enhanced by ratio optimization of Portland cement, sulphoaluminate cement, and gypsum, as well as the late strength. In terms of structures, hardened bodies by early and late hydration were coupled with each other so that composites exhibited performances superior to the Portland cement single clinker. With compressive strength as the indicator, sample D09 is regarded as the optimized sample in this study.

3.1.2. Setting Time. Figures 5 and 6, respectively, show the initial and final setting time of samples measured experimentally. As observed, the trends of initial and final setting time were consistent: increased as the content of gypsum increased and decreased as the content of sulphoaluminate cement increased. This can be attributed to sulphoaluminate, which accelerates early hydration of the composite samples. As a result, the hydration rate of samples at the early stage increased and the large quantity of hydration products led to reduced setting time. On the other hand, the too high content of gypsum hinders hydration of the Portland cement, resulting in extended setting time of samples.

In summary, despite its significantly enhanced compressive strength, sample D09 exhibited severely reduced initial and final setting time. Indeed, its initial and final setting time was 42 min and 64 min, respectively. The paste filling materials used for mining shall not solidify in channels for 3–4 h. Therefore, the setting time of composite sample D09 optimized by uniform design still does not meet the requirement; thus, modifications by additives are required.
3.2. Modification Results of Optimized Composite Cementing Material. Table 7 summarizes the experimentally obtained effects of the setting retarding agent (H$_2$BO$_3$) and early strengthening agents (e.g., Li$_2$CO$_3$, Na$_2$SO$_4$, and NaNO$_2$) on performances of composite cementing material D09.

As observed, Li$_2$CO$_3$ and H$_2$BO$_3$ had significant effects on the setting time of composite cementing material. As the content of Li$_2$CO$_3$ increased, the initial and final setting time decreased and the early strength was enhanced, while the late strength decreased. As the content of H$_2$BO$_3$ increased, the initial and final setting time increased, while the early strength decreased. The results indicated that at the expense of reduced late strengths, additive J6 had desired effects on the setting time and early strength, while additives J7 and J8 can enhance both setting time and compressive strengths. Therefore, H$_2$BO$_3$ (0.3%) + Na$_2$SO$_4$ (0.1%) and H$_2$BO$_3$ (0.3%) + NaNO$_2$ (0.1%) are ideal setting retarding and early strengthening additives for composite cementing material.

In summary, appropriate additives can enhance the performances (e.g., setting time and compressive strengths) of composite cementing material. In this study, samples J7 and J8 are ideal additives for cementing material in coal mining filling.

3.3. Hydration Mechanism of Modified Composite Cementing Material

3.3.1. Hydration Process. The composite cementing material consists of 2CaO·SiO$_2$, 3CaO·SiO$_2$, 3CaO·Al$_2$O$_3$, 4CaO·Al$_2$O$_3$·Fe$_2$O$_3$ (Portland cement), 3CaO·3Al$_2$O$_3$·CaSO$_4$, 2CaO·SiO$_2$ (sulphoaluminate cement), and CaSO$_4$·2H$_2$O (gypsum). Owing to the presence of gypsum, the reaction rate of 3CaO·Al$_2$O$_3$ and 3CaO·SiO$_2$ was higher than that of 2CaO·SiO$_2$ and 4CaO·Al$_2$O$_3$·Fe$_2$O$_3$. Meanwhile, 3CaO·3Al$_2$O$_3$·CaSO$_4$ in sulphoaluminate is an early hydration
Table 7: Effects of additives on performances of composite cementing material.

<table>
<thead>
<tr>
<th>Test number</th>
<th>Contents of additives (%)</th>
<th>Setting time (min)</th>
<th>Compressive strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>J1</td>
<td>D09</td>
<td>42</td>
<td>64</td>
</tr>
<tr>
<td>J2</td>
<td>Li₂CO₃ (0.15)</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>J3</td>
<td>Li₂CO₃ (0.30)</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>J4</td>
<td>H₂BO₃ (0.15)</td>
<td>125</td>
<td>184</td>
</tr>
<tr>
<td>J5</td>
<td>H₂BO₃ (0.3)</td>
<td>324</td>
<td>348</td>
</tr>
<tr>
<td>J6</td>
<td>H₂BO₃ (0.3) + Li₂CO₃ (0.1)</td>
<td>152</td>
<td>182</td>
</tr>
<tr>
<td>J7</td>
<td>H₂BO₃ (0.3) + Na₂SO₄ (0.1)</td>
<td>182</td>
<td>185</td>
</tr>
<tr>
<td>J8</td>
<td>H₂BO₃ (0.3) + NaNO₂ (0.1)</td>
<td>214</td>
<td>232</td>
</tr>
</tbody>
</table>

Figure 7: Continued.
Figure 7: XRD spectra of samples at different hydration ages. ★-AFt; ●-C-S-H; ◆-CH; ■-CaCO₃; □-SiO₂; △-3CaO·3Al₂O₃·CaSO₄. (a) 8 h. (b) 16 h. (c) 1 d. (d) 3 d. (e) 7 d.
Therefore, 3CaO·3Al₂O₃·CaSO₄, 3CaO·Al₂O₃, and 3CaO·SiO₂ react with each other upon addition of water:

\[
3\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot \text{CaSO}_4 + 38\text{H}_2\text{O} = 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{CaSO}_4 \cdot 32\text{H}_2\text{O} + 2(\text{Al}_2\text{O}_3 \cdot \text{H}_2\text{O})
\]

\[
3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 3\text{CaSO}_4 \cdot 2\text{H}_2\text{O} + 26\text{H}_2\text{O} = 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O}
\]

\[
2(3\text{CaO} \cdot \text{SiO}_2) + 11\text{H}_2\text{O} = 3\text{CaO} \cdot 2\text{SiO}_2 \cdot 8\text{H}_2\text{O} + 3\text{Ca(OH)}_2
\]

As the hydration proceeds, the concentration of Ca(OH)₂ increases and hydration products react with gypsum:

\[
\text{Al}_2\text{O}_3 \cdot \text{H}_2\text{O} + 3\text{Ca(OH)}_2 + 3\text{CaSO}_4 \cdot 2\text{H}_2\text{O} + 22\text{H}_2\text{O} = 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O}
\]

In the middle and late hydration stages, 2CaO·SiO₂ and 4CaO·Al₂O₃·Fe₂O₃ are activated:

Figure 8: SEM images of samples at different ages. (a) 8 h. (b) 16 h. (c) 1 d. (d) 3 d. (e) 7 d.
3.3.2. Hydration Products. Figure 7 shows the XRD spectra of samples at different hydration ages. Several conclusions can be drawn:

1. The main hydration products include Aft, CH gel, and C-S-H gel, while their relative contents vary with the hydration age, according to their diffraction peak intensities.
2. After 8 h hydration, a considerable quantity of Aft was generated, resulting in high early strength of samples.
3. CaCO3 was observed in hydration products. This can be attributed to the exposure of Aft to CO2.
4. The diffraction peaks of clinker minerals (e.g., SiO2 and 3CaO·3Al2O3·CaSO4 in samples decreased, indicating that the contents of clinker minerals decreased as the hydration age increased.
5. After 8 h of hydration, no diffraction peak corresponding to CaSO4 was observed, demonstrating complete hydration of CaSO4, whose product is Aft.

3.3.3. Microstructures. Figure 8 shows the microstructures of samples at different hydration ages. Several conclusions can be drawn:

1. After 8 h of hydration, fine, scattered, needle-shaped Aft was observed. The Aft grew interactively and radially, with high density.
2. After 16 h, the density of Aft increased, and its growth followed the intersecting pattern.
3. After 1 d of hydration, sizes of Aft increased drastically and were distributed in clusters, while C-S-H gel flakes appeared.
4. After 3 d, the density of C-S-H gel increased and the flakes were turned into prisms, demonstrating that the contents of C-S-H gel and CH gel increased and the hydration of Portland cement was accelerated.
5. After 7 d, the matrix Aft followed a cloud distribution while the density of needle-shaped Aft decreased. In some areas, large C-S-H gel prisms were observed.
6. According to the microstructures of hydration products, the early and late strength of sample was dominated by Aft and C-S-H gel, respectively, as Aft grew rapidly while C-S-H gel grew slowly. The hydration products grew interactively and were coupled, thus facilitating the growth of the hardened bodies of cementing material, instead of restraining each other due to the generation sequence.

4. Conclusions

Formulation tests of composite cementing materials were conducted based on constrained formulation design. The effects of compositions (e.g., Portland cement, sulphoaluminate cement, and gypsum) of composite cementing materials on their performances were investigated using mechanical performance tests of samples, and the optimized samples were tested and modified. The following conclusions can be drawn:

1. The setting time of samples was negatively related to the content of sulphoaluminate cement and positively related to the content of gypsum, and the trends of initial and final setting time were consistent.
2. Both the early and late compressive strengths of composite cementing materials decreased significantly if the content of sulphoaluminate cement exceeded 14% or the content of gypsum exceeded 16%. Indeed, the compressive strengths of composite cementing material may shrink after 3 d in this case. With the content of sulphoaluminate cement below 14% and the content of gypsum below 16%, the compressive strengths of composites increased. The composition corresponding to optimized compressive strength was Portland cement (79.1%) + sulphoaluminate cement (9.8%) + hardened gypsum (11.1%).
3. Additives H2BO3 (0.3%) + Na2SO4 (0.1%) and H2BO3 (0.3%) + NaNO2 (0.1%) are regarded as setting retarding and early strengthening composite additives because they can enhance both the setting time and the strength of composite cementing material.
4. Investigations by XRD and SEM revealed that the hydration products were dominated by Aft at the early stage and C-S-H gel and CH gel at the middle and late stages. Meanwhile, hydration products of composite cementing material with optimized ratios grew interactively and were coupled, thus facilitating the growth of the hardened body of cementing material, instead of restraining each other due to the generation sequence.

In this study, the optimized ratios of Portland cement, sulphoaluminate cement, and gypsum in composite cementing material were determined, the hydration mechanism of composite cementing material was identified, and the composite cementing material was modified using appropriate additives to meet the requirements by paste filling in coal mines.

Appendix

Over the past two decades, uniform design has been widely applied, especially in formulation design for materials. Known as mixing tests, formulation tests aim to investigate
the effects of material ratio on performance indicators. The formulation design can be categorized as unconstrained and constrained ones according to component constraints in the formulation.

In composite cementing material, the contents of sulfoaluminate cement and gypsum were relatively low as they are employed to modify the properties of Portland cement. Hence, samples in this study shall be tested by constrained formulation tests with s kinds of raw materials M_1, M_2, \ldots, M_s and with percentage contents of X_1, X_2, \ldots, X_s respectively; optimized formulation was researched under constraints:

(1) Define the constraints of X_1, X_2, \ldots, X_s in the formulation as
\[
\begin{align*}
X_1 + X_2 + \cdots + X_s &= 1, \\
0 &\leq X_i \leq 1, \quad i = 1, \ldots, s.
\end{align*}
\] (A.1)

(2) With given s and n, appropriate uniform design table was selected accordingly and the set of elements in $U_n^s(n^{-1})$ or $U_n^s(r^{-1})$ was labelled as $[q_{ki}]$.

(3) The selected uniform design table $U_n^s(n^{-1})$ or $U_n^s(r^{-1})$ was linearly transformed to a unit cube vector c_{ki}:
\[
c_{ki} = \frac{2q_{ki} - 1}{2n}, \quad i = 1, \ldots, s, \quad k = 1, \ldots, n.
\] (A.2)

(4) Define $\{(c_{k1}, c_{k2}, \ldots, c_{kn}), k = 1, \ldots, n\}$ as a group of uniformly distributed points in C^n and calculate $\{x_{ki}\}$ using equation (A.3) and obtain equation (A.4) based on constraints of x_{ki}:
\[
\begin{align*}
x_{ki} &= \left(1 - c_{ki}^{-1}\right)^{\frac{1}{1-s_i-j}} \prod_{j=1}^{1-s_i-j} c_{k_j}^{1/(1-s_i-j)}, \quad i = 1, \ldots, s, \quad k = 1, \ldots, n, \\
x_{ks} &= \prod_{j=1}^{1-s_i-j} c_{k_j}^{1/(1-s_i-j)}, \quad k = 1, \ldots, n,
\end{align*}
\] (A.3)

\[
\begin{align*}
a_i &< x_{ki} < b_i, \quad i = 1, \ldots, s - 1, \\
a_s &< x_{ks} < b_s, \quad k = 1, \ldots, n.
\end{align*}
\] (A.4)

Solve that to obtain c_{ki}^{min} and c_{ki}^{max}, which are minimum and maximum of c_{ki}, respectively. In this way, simplex T_i was obtained and the area determined by I_s is defined as R:
\[
R = \left[\left[c_{k1}^{\min}, c_{k1}^{\max}\right] \times \left[c_{k2}^{\min}, c_{k2}^{\max}\right] \times \cdots \times \left[c_{kn}^{\min}, c_{kn}^{\max}\right]\right].
\] (A.5)

Set a uniform design in R and define the area confined by $[c_{ki}]$ as area D. Then, points in D are the uniform design scheme needed for this study.

(5) Points in $\{c_{ki}\}$ are linearly transformed to R to generate $\{c'_{ki}\}$:
\[
c_{ki}' = c_{ki}^{\min} + \left(c_{ki}^{\max} - c_{ki}^{\min}\right) \times c_{ki}, \quad i = 1, \ldots, s, \quad k = 1, \ldots, n.
\] (A.6)

(6) Points in $\{c_{ki}'\}$ that follow equations (A.3) and (A.4) are included in area A.

(7) Substitute points in area D into equation (A.3) to obtain $\{x_{ki}\}$.

Data Availability

All data used to support the findings of this study are available from the corresponding author upon request.

Additional Points

Highlights. (1) Providing references for further enhancing the performances of composite cementing material for paste filling in coal mines. (2) Effects of the contents of sulfoaluminate cement and gypsum on composite cementing material setting time and compressive strength are investigated. (3) Two kinds of optimized additives, which are (HBO_3 (0.3%) + NaSO_4 (0.1%) and HBO_3 (0.3%) + NaNO2 (0.1%)), have been identified to enhance setting time and strength of composite cementing material for paste filling in coal mines.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Key Laboratory of Deep Coal Mine Excavation Response and Disaster Prevention and Control, Anhui Province (Anhui University of Science and Technology), Huainan, China, (2018GSF116002), Xinguo Zhang (Zhangxg@sdust.edu.cn) and the Key Development Plan Financial Aid Project of Shandong, China, (2018GSF116002), Xinguo Zhang (Zhangxg@sdust.edu.cn), and the National Science Fund Financial Aid Project, (51574159), Xinguo Zhang (Zhangxg@sdust.edu.cn).

References

