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,e dispersion medium of nano-SiO2 (nS) particles can have a significant effect on the properties of nanoparticles themselves and
consequently on the cement binders it will be added to. In this paper, nS particles dispersed in (a) polycarboxylate or (b) water
were added to a low-carbon footprint reference binder containing 43% Portland cement (PC), 20% limestone powder (LS), and
37% fly ash (FA) by mass of binder. Eight quaternary binders containing nS, PC, LS, and FA and eight quinary binders comprising
nS, PC, LS, FA, and silica fume (μS) were investigated. nS was added at 0.1%, 0.2%, 0.5%, or 1.0% by mass of binder as a
replacement of LS for the quaternary binders and at 0.5% or 1.0% for the quinary binders. ,e nanoparticles were examined via
transmission and X-ray scanning electron microscopy (TEM/SEM/EDX). For the pastes, compressive strength tests and thermal
gravimetric analyses (TGAs) were performed at days 1, 7, 28, and 56, all testified to additional pozzolanic activity and additional
C–S–H production. X-ray diffraction analyses and backscattered scanning electron imaging carried out on specific formulations
also confirmed this finding at days 1, 28, and 56. Notwithstanding the additional pozzolanic reactivity, nS particles could not
mitigate the delayed hydration of the reference paste in the early ages. In such complex formulations, the hydration products seem
to create a wrapping around the FA particles delaying their activation at early ages. At later ages, the 0.5% nS addition provided
strength, microstructural, and hydration improvements. ,e polycarboxylate/nS particles provided more pronounced strength
improvements at 0.5% addition, possibly due to their superplasticizing effect. Lastly, a tabulated literature review on the thermal
decomposition ranges of the hydration products of cementitious nanocomposites is also presented.

1. Introduction

For the production of cement, carbon dioxide is emitted in two
ways; as a product of the burning process of fossil fuels and as a
product of the chemical conversion of limestone to lime. ,is
process is responsible for about 8% of the total manmade CO2
emissions worldwide. For this reason, the cement industry in
particular has invested significant effort in reducing the CO2
impact of cement production over the past decades. ,e
European Cement Association has distinguished four key
areas for producing low-carbon footprint cement;

(i) Lowering the clinker content and increasing the
supplementary cementitiousmaterials (SCM) content

(ii) Producing novel cements
(iii) Modernizing existing cement plants with energy

efficient technologies, products, and processes and
making use of alternative fuels such as biomass or
waste materials for the clinkering process

(iv) Capturing CO2 and reusing it in the production
process

At the same time, the Eurocodes are currently providing
the upper and lower limits of cement substitution and SCM
addition [1]. In fact, for CEMII/A-L (binary) cements, the
permissible clinker content lies within 80–95% by mass of
binder and the allowable limestone content is restricted to
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6–20%. As for the Portland-composite cements, i.e. cements
that contain both fly ash and limestone at a total maximum
of 35%, the allowable amount of clinkermust not be less than
65% according to the Eurocodes. Any other combination
beyond these restrictions can potentially incur a series of
issues, such as prolonged setting times, reduced compressive
strengths, and nonhomogeneous microstructure.

Nanotechnology through a number of applications has
entered in our lives. Construction materials were amongst
the first sectors that benefited through the use of nanosized
particles (at least one dimension below 100 nm) and their
observation at the nanometric scale, close to the molecular
level. In the past five years, extensive research has yielded
results on the development of nanocomposites suitable for
building materials. In recent research, results on the in-
vestigations of the limits of the clinker reduction and the
SCM are studied. ,e need to produce low-carbon foot-
print cements has driven scientists to reduce the greatest
contributor in CO2 emissions, clinker, to unprecedented
levels, beyond permissible limits described by codes. In
recent research, results on the investigations of the limits of
the clinker reduction and the SCM addition have suggested
that the optimal replacement level in binary and composite
limestone cement is 15%. In fact, binary systems containing
Portland cement (PC) at 85% and LS at 15% were freeze-
thaw durable, whereas the PC, fly ash (FA), and LS systems
prolonged the initial setting time of all concretes tested
and reduced early age strength but required less super-
plasticizer compared with the PC mix [2]. Ternary and
quaternary cements can be optimized for additional du-
rability, since the compositions tested improved the re-
sistance to chloride ingress, although carbonation is yet to
be encountered with, and it was overall postulated that
these composite formulations can significantly decrease the
CO2 footprint.

Apart from the effort to increase the LS content in the
formulations, many research teams have been focused on
the exploration of the upper bounds of FA addition,
particularly because FA is a by-product from combustion
of coal, primarily from coal-fired power plants. Although
FA in the UK and other countries might be in shortage [3],
there is an urgent need to increase the use of fly ash (FA) in
the US and worldwide. For this, researchers have attempted
to reduce Portland cement (PC) proportions and increase
FA proportions up to 50%. However, as summed up in a
recent review paper, the typical optimal amount of FA
substitution for general purpose concretes is limited to
30%, whereas FA substitution up to 50% has been used for
mass concreting in foundations and dams [4], as it reduces
setting and shrinkage cracking. ,e beneficial effects of the
additional C–S–H produced and the consistence and mi-
crostructural enhancement observed are counteracted by
the early-age strength reduction at high FA substitutions
and the many unreacted FA particles even after 90 days. It is
postulated, though, that the adverse effects can be coun-
teracted with the addition of nanoparticles [4]. In a recent
project report, the reference paste contained 70% PC and
30% FA to which 0.5% of nanolimestone or nanosilica (nS)
or nanoclay was added at a water-to-cement ratio equal to

0.5 [5]. In this research, pozzolanic studies of 20 g Ca(OH)2
plus 5 g silica fume was compared to 20 g Ca(OH)2 plus 5 g
nanosilica concluding that after 7 days of hydration the
pozzolanic reaction of nS was almost complete, due to the
unsaturated Si–O bonds on the surface of the particles.
With time, however the effect of nS is similar to that of
silica fume.

Furthermore, a recent review on the effects of nS and FA
in cement paste, mortar, and concrete formulations shows
that, by 2014, only 6 papers have been published in ternary
blends investigating consistency, ammonium chloride re-
sistance, and compressive and flexural strength [6].

Others studies led by the authors of the present paper
suggest that cementitious composite pastes and mortars
comprising of 60% PC and 40% LS can be further enhanced
by the addition of just 0.5% nS by total mass of solids in
terms of mechanical strength and additional hydration re-
actions [7–9]. Moreover, it was found that cementitious
composite pastes and mortars containing 60% PC, 20% FA,
and 20% LS can be further enhanced by the addition of just
0.5% nS by total mass of solids [10]. In this publication,
strength gain was linked to Ca(OH)2 consumption towards
the production of additional C–S–H in a single graph, which
can assist in future formulation design.

With the present paper, the first two key areas identified
by the European Cement Association are simultaneously
addressed. In an effort to further optimize cementitious
nanocomposites towards the development of a low-carbon
footprint cement formulation, in this paper, a very low PC
content (43% by total mass of solids) and a high supple-
mentary cementitious material content (LS, FA, and silica
fume summing up to 57% by total mass of solids) formu-
lation was investigated. ,ese proportions are far from the
permissible, according to the European Standards, which
state that in Portland-composite cements (i.e., cements that
contain both FA and LS), the allowable amount of clinker
should be at least 65% [1], as graphically shown in Figure 1.
,e PC content was reduced in favour of the FA content,
lowering the PC/FA ratio to 1.16. In such composite ce-
ments, antagonism amongst the pozzolanic particles (FA,
silica fume, and nS) is expected, and the extent of the
phenomenon was assessed. Agglomeration of the nano-
particles was one of the possible limitations [11], and for this,
two different nS dispersions were compared: an aqueous and
a polycarboxylate-based one. Given recent results on the
combined effect of polycarboxylate superplasticizers and
nanosilica in binary (PC-nS) pastes, claiming the reduction
in nS reactivity with immediate mixing [12], in this research,
the combined effect of polycarboxylate nS in quaternary
and quinary formulations has been investigated and further
clarified. To the best knowledge of the authors, this is the
first study presented on quaternary and quinary low-carbon
cementitious nanocomposites against a number of param-
eters; hydration and pozzolanic reactions, strength devel-
opment, microstructural enhancement, and comparison
of all the above with two different types of nanosilica
particles.

Apart from compressive strength tests and scanning
electron imaging, extensive thermal gravimetric analysis
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(TGA) was required in order to attest the consumption
of the Ca(OH)2 towards the production of additional
C–S–H.

TGA is the technique by which the mass change of a
sample is monitored as a function of temperature change.
A typical analysis comprises of heating up a sample from
room temperature to 1000°C at a rate of 10°C/min.  ree
phases are distinguished: (i) the dehydration of C–S–H,
ettringite, and monosulfate occurring approximately be-
tween 100°C and 180°C; (ii) the dehydration of Ca(OH)2
taking place approximately between 400°C and 500°C; and
(iii) the decomposition of CaCO3 between 600°C and
800°C.  e technique is o�ering an approximation of the
C–S–H produced, the Ca(OH)2 consumed, the extent of
pozzolanic reaction, and evidence of carbonation of the
samples [7, 10, 13–15].  e temperature ranges were se-
lected after a further search in the literature, from which a
tabulated literature review on TGA was also developed.
Although there is a signi�cant amount of papers in which
TGA results are presented, thermal gravimetric tests in
binders containing nanoparticles are limited. In essence,
due to the addition of nanoparticles, the bond strength
is diversi�ed and hence temperature decomposition
shifts are expected. It was, therefore, essential to conduct a
literature review on the thermal decomposition stages,
given by other researchers in order to ascertain the
abovementioned temperature ranges and distinguish the
hydrates decomposing at the increasing temperature in-
tervals (Table 1).

2. Materials and Methods

2.1. Materials.  e materials used were as follows:

(i) Portland limestone cement CEMII/A-L42.5, with a
limestone content of 14%, conforming to EN 197-1.
 e supplier gave the following clinker composi-
tion: 70% C3S, 4% C2S, 9% C3A, and 12% C4AF. In
mix proportioning, the Portland cement (PC)

content (86% by mass) was considered separately
from the limestone (LS) content (14% by mass).

(ii) Limestone (additional LS), conforming to EN 197-1.
 e total LS content of each paste was the sum of
that contained in the Portland limestone cement
and this additional LS.

(iii) Fly ash (FA), conforming to EN 450.  e oxide
composition provided by the material data sheet
was 53.5% SiO2, 34.3% Al2O3, 3.6% Fe2O3, and 4.4%
CaO.

(iv) Silica fume (μS), in undensi�ed dry form, con-
forming to BS EN 13263. According to the material
data sheet: speci�c surface area� 15–30m2/g; mean
particle size� 0.15 μm.

(v) Commercially available amorphous nS 15% by mass
of nanoparticles in a polycarboxylate suspension
(GnS) (Figure 2).

(vi) Commercially available colloidal amorphous nS
15% by mass of nanoparticles in an aqueous sus-
pension (LnS) (Figure 2).

2.2. Methods

2.2.1. Formulation of Quaternary Cementitious Nano-
composite Binders. A series of composite cement binders was
designed having PC43LS20FA37 (43% Portland cement, 20%
limestone, and 37% ¡y ash by total mass of binder) as a ref-
erence paste.  e water to binder (w/b) ratio was kept constant
at 0.3 (Table 2).  ese pastes were designed with a high content
of FA, which permitted an investigation into possible e�ects of
pozzolanic interference between the two di�erent types of nS
and other pozzolanic materials.  e PC content was kept
constant, and the content of nS solids was deducted from the LS
content.  is was done in order to keep the Ca(OH)2 pro-
duction during PC hydration comparable in all pastes, so as to
detect possible pozzolanic reactivity of the nanoparticles in
composite cement formulations.  e general formula of the

(1) CEM II/A-L

(i) 80 < PC < 94

(ii) 6 < LS < 20

(2) CEM II/A-M

(i) 80 < PC < 94

(ii) 6 < SF + FA + LS < 20

(3) CEM II/B-M

(i) 65 < PC < 79

(ii) 21 < SF + FA + LS < 35

Permissible 
according to 

EN 197-1 

PC < 80% 
LS > 20%

PC < 80% 
FA + LS++ > 20%

PC < 65% 
FA + LS++ > 35%

Nonpermissible 
according to EN 197-1 

Current
research 

Quaternary formulations
PC = 43% 

(ii)
(i)

(ii)
(i)

FA + LS + nS = 57%

Quinary formulations
PC = 43% 
FA + LS + µS + nS = 57%

Figure 1: Permissible and nonpermissible limits of clinker substitution/SCM addition according to EN 197-1 and the challenge of the
current research.
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matrix of the quaternary cement pastes was given by the fol-
lowing equation:

PC(43) + LS(20−x) + FA(37) + nS(x), (1)

where x�% of nS solids by mass, ranging from 0 to 1.0%.
 ese pastes were also mentioned to as PC/FA� 1.16

pastes.

2.2.2. Formulation of Quinary Cementitious Nanocomposite
Binders. Continuing the enhancement of reference paste
PC43LS20FA37, four additional paste formulations were
designed for each of the two nS types containing silica fume
(μS) in addition. Again, the PC content was kept constant
and the content of nS solids was deducted from the LS
content for the reason mentioned above.  e water-to-
binder (w/b) ratio was kept at 0.3.  e quinary pastes
were prepared in the following proportions:

PC(43) + LS(20−y−x) + FA(37) + μS (y) + nS(x),
(2)

where y�% of μS solids by mass, ranging from 2.0% to 5.5%,
and x�% of nS solids by mass, ranging from 0 to 1.0%.

 e mixing procedure, casting, demoulding, and curing
are described elsewhere [7, 10]. In general, dry mixing of the
powders took place �rst, with a spatula by hand. en, water
was stirred together with the nanoparticles, consecutively
poured to the powders and mixed with an automatic dual
shaft mixer at 1150 rpm for 3minutes for pastes up to 300 g,
time increasing with amounts of paste.  e various for-
mulations were air cured for 24 hours and then demoulded
and water cured until the day of testing.

2.2.3. Material Preparation and Analytical Techniques

(1) Characterization of Nanosilica. Both nanosilica disper-
sions were characterized in terms of shape and size via
transmission electron microscopy (TEM) and elemental
composition via scanning electron microscopy/X-ray energy
dispersive spectroscopy (SEM/EDX).

Transmission Electron Microscopy (TEM). Suspensions
of 10 ng/ml were prepared from the LnS with distilled
water. Small drops of the diluted solutions were then
deposited on copper mesh grids coated with a thin
carbon �lm. Grids were dried at 25°C prior to the

LnSGnS

Figure 2: GnS carboxylic solution and LnS aqueous solution.

Table 2: Mix proportions (%) by total mass of solids.

PC (%) LS (%) FA (%) μS (%) nS (% solids) w/b
Mix
PC43LS20FA43 (0% nS) 43 20 37 0.0 0.0 0.3

Quaternary mixes
PC43LS19.9FA37 + 0.1% nS 43 19.9 37 0.0 0.1 0.3
PC43LS19.8FA37 + 0.2% nS 43 19.8 37 0.0 0.2 0.3
PC43LS19.5FA37 + 0.5% nS 43 19.5 37 0.0 0.5 0.3
PC43LS19FA37 + 1.0% nS 43 19 37 0.0 1.0 0.3

Quinary mixes
PC43LS17FA37 + 2.5% μS + 0.5% nS 43 17 37 2.5 0.5 0.3
PC43LS17FA37 + 2.0% μS + 1.0% nS 43 14 37 2.0 1.0 0.3
PC43LS14FA37 + 5.5% μS + 0.5% nS 43 14 37 5.5 0.5 0.3
PC43LS14FA37 + 5.0% μS + 1.0% nS 43 17 37 5.0 1.0 0.3
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insertion in the instrument. Samples were examined at
a voltage of 120 kV with a GATAN Jeol JEM 1200 mkII.
Images were recorded on a Gatan Dual View camera.
Scanning Electron Microscopy/X-Ray Energy Dispersive
Spectroscopy (SEM/EDX). For SEM/EDX elemental
composition analyses, the LnS dispersion was first
vacuum-dried for three days at a pressure of 10–2mbar
(100 Pa). ,e dried dispersion samples were placed
uncoated on a sheet of molybdenum, an element absent
from the LnS dispersions for unbiased elemental an-
alyses. A matrix of 5× 5 spectra was acquired, and the
median of the elemental composition was presented.
Samples were imaged using a Jeol 6480 LV SEM.

,e exact same experimental procedure (TEM and SEM/
EDX) was followed for the characterization of GnS. Images
and analyses can be traced in the literature [10].

(2) Characterization of Pastes. For the characterization of
the pastes, arrest of hydration was performed following two
different methodologies: solvent exchange and oven drying
as described by Calabria-Holley et al. [36]. For SEM
backscattered (BSC) image generation and microstructural
investigation, solvent exchange was preferred for the arrest
of hydration. Isopropanol was selected as the most ap-
propriate solvent according to the literature [37, 38]. ,e
thermal properties were investigated via thermal gravi-
metric analysis and differential thermogravimetry (TGA/
dTG). For TGA/dTG, the oven drying technique was
adopted.

Compressive Strength. All mixes were tested at a loading
speed of 0.5MPa/s.,emean compressive strength was
obtained by testing three to six cylindrical specimens
per mix. ,erefore, the compressive strength results
presented herein refer to the mean measured.
:ermal Gravimetric Analyses (TGAs). ,ermal
gravimetric analyses were carried out using a Setaram
TGA92 instrument. Twenty milligrams of each mix was
placed in an alumina crucible and heated at a rate of
10°C/min from 20°C to 1000°C under 100mL/min flow
of inert nitrogen gas. ,e differential thermal gravi-
metric (DTG) curve was derived from the TG curve.
Buoyancy effects were taken into account, by correcting
the curves via automatic blank curve subtraction.

,ree different areas are compared, depending on the
hydration products thermally decomposing between specific
temperature ranges, as measured by the thermogravimetric
(TG) analyses [9, 10]:

,e first one is related to the dehydration of C–S–H,
ettringite, gehlenite, and monosulfate, between 100°C and
200°C. It can be postulated that the greater the loss mea-
sured, the greater the amount of C–S–H and ettringite
produced by the hydration of the paste.

,e second area of interest is associated with the de-
hydration of Ca(OH)2 between 440°C and 510°C.

,e third area of interest is the decomposition of CaCO3
occurring between 700°C and 810°C.

Microstructural Characterization by Scanning Electron
Microscopy (SEM). A set of SEM images was collected
for each formulation at different ages (1 day, 28 days,
and 56 days). A backscattered electron (BSE) detector
was used to capture images of the as received, uncoated
samples.

(3) Mathematical Elaboration. Correlating hydration char-
acteristics with mechanical strength performance in ce-
mentitious nanocomposite binders.

,e high correlation between the consumption of
calcium hydroxide towards the formation of hydration
products (microscale characteristics) and the delivered
compressive strengths (macroscale performance) of the
nS-modified pastes with respect to time has been expressed
through a newly introduced ratio. ,is ratio comprises of
the compressive strength of the pastes versus the Ca(OH)2
content, as detected by the TGA/dTG analyses, plotted
against time. It was found to give an interesting repre-
sentation of the performance of cement nanocomposites
[9, 10].

3. Results and Discussion

3.1. Characterization of Nanosilica. TEM analysis showed
that the diameter of the LnS particles ranged from 8nm to
50 nm (Figure 3(a)) and that they were homogenously
dispersed and highly concentrated layers of nS on top of
other layers of nS (Figure 3(b)). ,e diameter of the GnS
particles was about 5–8 nm, and images can be found in the
literature [10].

A 5 × 5 matrix of spectra was collected for GnS and LnS
in each elemental analysis (SEM/EDX). In Figure 4, the
comparison of the elemental compositions of the two
different nS dispersions shows that GnS exhibits traces of
SiO2 and over 70% (normalized atomic) carbon content,
confirming the presence of polycarboxylates. It should be
noted that, in GnS, the hydrocarbon present is more prone
than the nS itself to have significant effects in the cement
pastes. LnS, however, comprises of almost pure SiO2 and
therefore expected to perform as a pure, aqueous nS
dispersion, exploiting the benefits of nanoparticles dis-
cussed before such as the high surface area or due to the
high SiO2 increase in the C–S–H, when added to cement
paste formulations.

3.2. Compressive Strength

3.2.1. Quaternary Cementitious Nanocomposite Pastes.
Research on ternary nanocomposite binders comprising of
Portland cement, limestone, and nano-SiO2 has shown
immediate reactivity of the nanoparticles with a simulta-
neous effect in strength gain, at day 1 [8, 9]. ,e strength
development of the LnS quaternary cementitious nano-
composite binders is presented in Figure 5(a).

It can be seen that LnS did not offer early strength gain
(day 1). Adding to that, the reference paste reached a
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compressive strength of approximately 40MPa at day 28,
which was stagnant thereafter.  is could be attributed to
delayed PC and FA hydration, a hypothesis revisited and
elaborated upon after the thermal analyses. Furthermore,
neither did the two lower LnS contents (0.1 and 0.2% by
mass) o�er improvements in the compressive strength.  e
highest LnS (1%) leads to strength reduction at later ages,
possibly attributed to the agglomeration of particles and/or
some other mechanism discussed in detail below. To assess
this hypothesis, SEM imaging was carried out at the 0.5%
and the 1% nS binders, as well, as shown in Section 3.6.

In terms of determining the optimum amount of LnS
particles for cementitious nanocomposite binders with PC/
FA ratio of 1.16, the 0.5% by mass addition seemed to have
the most favourable e�ect. Moreover, there is a pattern

observed for the LnS additions; all four formulations
compared to the reference binder exhibit:

(i) Lower 1-day strength
(ii) Marginal strength gain between day 1 and 28, still

lower than that of the reference binder
(iii) Gradual increase between day 28 and 56, but lower

than that of the reference binder
(iv) Drastic increase between day 56 and 90, with 0.5%

LnS surpassing the strength of the reference
binder

As discussed by Calabria-Holley et al. [39], Papatzani
et al. [7], and Kawashima et al. [16], it is possible that, at
higher nS concentrations, the hydration products formed by
the immediate reactivity of the nS have higher C/S ratio in
the C–S–H, creating dense wrapping around the FA par-
ticles, which are found in abundance in the paste.  e
C–S–H formed in presence of FA has a lower C/S ratio [40];
therefore, these “pockets” of dense C–S–H and ettringite
may perform as ion penetration barriers, delaying even
further the reaction of a part of the FA. It is the authors’
opinion that, in low PC/FA ratio composite cement pastes,
the presence of high contents of nS managed to “deactivate”
part of the FA. In support to this argument, a number of
unreacted FA particles surrounded be the “pockets” were
identi�ed by the SEM analyses and are presented in Section
3.6.  is could be the reason why the speci�c binders de-
livered reduced compressive strength. For the lower LnS
content pastes, their compressive strength is expected to
increase further with age, mainly because with the ad-
vancement of time the contribution of FA to strength gain,
and densi�cation of the LnS-modi�ed pastes will be more
prominent.

With respect to the GnS addition, the long-term
performance seems to be enhanced by the 0.5% by
mass GnS addition.  e presence of signi�cant quantities

(a) (b)

Figure 3: TEM micrograph of LnS at (a) 500,000x and (b) 15,0000x magni�cation.
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of carbon seemed to have played a role in the performance
of the GnS-modi�ed pastes, as analyzed in the following
sections. It should be mentioned that, during the pro-
duction of the specimens, the ones with the higher w/b
ratio exhibited prolonged setting, possibly because the
polycarboxylates traced in the solution act as water re-
ducing agents and therefore lower water quantities could
have been added [10].  is, however, would have rendered
the formulations incomparable amongst them and was,
therefore, avoided.

 e highest GnS addition (1% by mass) was proven the
least favourable and the lowest (0.1% by mass) was bene�cial
for the early age compressive strength (Figure 5(b)). Overall,
however, the 0.5% addition although at the early ages
performed similar to the reference binder, at later ages it
outperformed it.

After testing, the samples were examined for bad
compaction and visual porosity. It can be observed that all
LnS and GnS enhanced binders were well compacted for the
lower nS addition and presented limited visual pores
compared to those of the reference paste (Figure 6).

Further Comparisons.  e following two graphs serve as a
summary and comparison of the mechanical performance
of the 0.1% and 0.5% nS modi�cations of PC43FA20LS37 at
di�erent ages (Figure 7).  e stagnant compressive
strength of the reference paste after day 28 was surpassed by
both GnS additions, the 0.5% addition being the most
advantageous.  e 0.1% LnS addition delayed the strength
gain, which was eventually enhanced only at the 0.5% LnS
addition.

3.2.2. Quinary Cementitious Nanocomposite Pastes.  e
compressive strength of two sets of quinary binders are
presented, both based on PC43LS20FA37.  e �rst was

modi�ed by the addition of μS and LnS and the second of μS
and GnS.  e addition of micro- and nanosized silica has
been reported to reduce porosity and improve mechanical
properties of cementitious nanocomposites, although the
possibility of use of superplasticizers has also been ac-
knowledged [41]. In this series, GnS is acknowledged to
perform as a superplasticizer on its own [10].  e results are
presented in Figure 7.

Once again, the specimens containing 0.5% nS by mass
performed better than those containing 1% nS by mass. As
shown in Figure 8, LnS exhibited greater potentials with the
higher content of μS (5% by mass). However, the strength
gain was delayed until day 90.

For the GnS-modi�ed pastes, the specimens con-
taining 0.5% GnS by mass performed better than those
containing 1% GnS by mass. As shown in Figure 8(b), GnS
performed better in combination with the lower μS
content (2.5% by mass). However, even in the case of GnS,
strength gain was only achieved after day 56.  e FA, μS,
and nS particles in these quinary formulations compete
for the consumption of the Ca(OH)2 produced by cement
hydration. Hence, the pozzolanic reactions must have
been delayed.

After testing, the samples were examined for bad
compaction and visual porosity. It can be observed that
all LnS- and GnS-enhanced binders were well compacted
for the lower μS + nS addition and presented limited
visual pores compared to those of the reference paste
(Figure 9).

3.3. ermal Gravimetric Analyses

3.3.1. Quaternary Cementitious Nanocomposite Pastes.
 e results of the TG analyses on the four di�erent
combinations of LnS on PC43LS20FA37 are shown in
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Figure 5: Cylinder compressive strength of (a) LnS and (b) GnS nanocomposite binders based on PC43LS20FA37.
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Figure 10.  e drastic reduction in the Ca(OH)2 content
observed at day 56 in Figure 10 could be related to the
marginal increase in CaCO3 observed at the same age,
implying the occurrence of carbonation rather than
chemical reactivity of the LS present in the paste. On the
contrary, the TGA curves, covering 0–1000°C, presented in

Figure 11 showed a signi�cant increase in the C–S–H and
ettringite directly linked with the consumption of Ca(OH)2
content from day 28 to day 56 and, consequently, the
strength gain observed at these ages for speci�c pastes.
Additionally, the following can be observed in the graphs
that follow:
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Figure 7: Comparison of the (a) 0.1% GnS or 0.1% LnS and (b) 0.5% GnS or 0.5% LnS modi�cation of cementitious nanocomposite binders
based on PC43LS20FA37.
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Figure 6: Crushed cylinders of LnS or GnS nanocomposite binders based on PC43LS20FA37.
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(i) Signi�cant increase in the Ca(OH)2 content from
day 1 until day 7 in agreement with the results on
PC65LS05FA30 presented by De Weerdt et al. [42]

(ii) From day 7 to 28, there were subtle changes in the
Ca(OH)2 content

It is approximated that, when PC hydrates produces
about 20–25% by mass Ca(OH)2 at day 28 [43]. Also, in the
same research, the degree of FA reaction has been identi�ed

as approximately 13% of the total FA content at day 28,
reaching about 25% at day 90; therefore, of the 37% FA,
4.81% is expected to have reacted at day 28.

Moreover, at day 28, 43% by mass PC alone should have
produced approximately 10.75% (43× 25%) Ca(OH)2.  e TG
analyses, at day 28, detected 6% Ca(OH)2; therefore, a very
small amount of the reactive by day 28 FA (summing up to 1/4
of the total FA content) was left to react after day 28.  eo-
retically, at day 56, the Ca(OH)2 content detected in the
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Figure 9: Crushed cylinders of μS and LnS or μS and GnS nanocomposite binders based on PC43LS20FA37.
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Figure 8: Cylinder compressive strength of μS and (a) LnS or (b) GnS nanocomposite binders based on PC43LS20FA37.
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reference paste was expected to be lower than that of day 28. If
it is assumed that another 5.5% of FA has reacted by day 56,
then the Ca(OH)2 content detected in the reference paste
PC43LS20FA37 should have been equal to 6–5.5� 0.5%. ,e
TG analyses showed that there was 1.5% of Ca(OH)2, in-
dicating further hydration of PC and possible delayed reactivity
of the FA, certainly, though, there was no indication of de-
pletion of Ca(OH)2 by the FA. Lastly, it should be acknowl-
edged that some carbonation of the reference paste may have
taken place, since a mass loss was detected after 860°C in
Figure 11. However, the same evidence was present for almost
all pastes at day 28 as displayed in Figure 11; therefore, relative
comparisons are valid.

It is the author’s opinion that the evolution of strength
gain for these series of pastes could be described in the
following chronological scenario.

By day 1, the hydration of PC had started and the LnS
particles, being highly reactive, as shown in the less
complex pastes in literature [7, 8], were immediately
engaged in reactions consuming Ca(OH)2 formed by the
hydration of cement. ,e C–S–H produced by LnS re-
activity has a lower C/S ratio and a denser nature than the
reference paste [39].

Between day 1 and day 7, PC had further hydrated; the
remaining LnS particles were completing their participa-
tion expanding the C–S–H network around particles of PC,
LS, and FA. Moreover, a part of the FA particles had started
feeding from the Ca(OH)2 formed by PC hydration. An-
other part was yet to react, but remained covered by the
dense C–S–H formed by LnS. Additionally, the abrupt
lowering of the pH by the catalytic reactions of LnS may not
have allowed the vitreous phase of a part of the FA particles
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Figure 10: Ca(OH)2 and CaCO3 content of (a) LnS and (b) GnS nanocomposite binders based on PC43LS20FA37.
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to decompose and subsequently engage in additional
pozzolanic reactions [10].

At day 7, the TG analyses inferred that, in such pastes
with high FA content, the pozzolanic reactions were the
primary consumers of Ca(OH)2, particularly since most of
the LnS had already reacted in the lower LnS content
nanocomposite binders.

By day 28, the lower LnS content nanocomposite binders
did not consume any more Ca(OH)2, but neither did the FA
particles due to the ion barriers set by the LnS hydration
products.

However, as age advanced, possibly lowering the pH of the
hydrating paste, the FA attraction of Ca(OH)2, exceeded the
strength of the bonds surrounding the FA particles another part
of which started to react, consuming the available Ca(OH)2.

By day 56, further strength gain was achieved by the LnS
contents up to 0.5% by mass and signi�cant amounts of

Ca(OH)2 were still noticeable.  erefore, the theory pre-
sented by other researches on the depletion of Ca(OH)2 in
such pastes was not con�rmed in this research. For example,
Kawashima et al. [16] who studied ternary nanomodi�ed
Portland cement binders of high PC/FA ratio equal to 1.5
found that water cured at 60°C samples showed signs of
Ca(OH)2 depletion at day 7.

In contrast to this, the chronological scenario is shedding
more light in the complex processes taking place in ce-
mentitious nanocomposite binders and is by no means
dogmatic. Evidences rendered the theory of competition
between FA and nS particles in such binders more adequate
to explain the complex phenomena [10, 31, 39, 44].

 e suggestions should be investigated by the
nanoindentation method, which can provide information
on the C/S ratio and sti�ness moduli [45]. Furthermore,
a series of X-ray tomography (CT) scans could also
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Figure 11: Di�erential mass loss of LnS nanocomposite binders based on PC43LS20FA37 (a) at day 28 and (b) at day 56.
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bridge the relationship between densi�cation of C–S–H
in the presence of lower LnS contents and probable in-
crease in porosity due to the presence of excessive LnS
particles.

A short reference to the ettringite formation should also
be made. Knowing that the speci�c FA used contained
impurities and sulfates, it was no surprise that greater
quantities of ettringite were formed [46], as can be observed
in Figure 11.

As shown in Figure 12, the addition of GnS a�ected the
consumption of the Ca(OH)2 content at day 1 and 7, for the
two higher GnS concentrations, whereas its e�ect was more
evident after day 28.  e 1% GnS dosage seemed to be
creating more carbonate formations with the mass loss in the
decarboxylation temperature range between 650 and 800°C,
showing an increase with respect to the other specimens.

However, as discussed earlier, the presence of high contents
of polycarboxylates in the dispersion could be responsible
for this response.

3.3.2. Quinary Cementitious Nanocomposite Pastes. It is
interesting to note the similarities between the graph
depicting the Ca(OH)2 consumption in the LnS-modi�ed
pastes (Figure 10) and the one for the μS- and LnS-modi�ed
pastes (Figure 13).  e only di�erence between the two is
the slightly greater consumption of the latter, attributed to
μS. Once again, the 0.5% LnS combination showed better
performance by consuming more Ca(OH)2 at later ages.
 e samples did not show signs of carbonation (Figure 13).
In fact, for the �rst two samples at the lower μS content, the
LS content was reduced to 17% by mass, and the CaCO3
detected was of this order.  e same was valid for the other
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Figure 12: Di�erential mass loss of GnS nanocomposite binders based on PC43LS20FA37 at (a) day 28 and (b) day 56.
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two samples at the higher μS content, in which LS was
reduced to 14% by mass. Furthermore, the di�erences in
the TG analyses of the 28-day old and 56-day old μS/nS
binders can be observed in Figure 14.  e consumption of
Ca(OH)2 is evident with simultaneous production of ad-
ditional C–S–H.

 e trend in Ca(OH)2 consumption in the μS- and GnS-
modi�ed pastes is almost identical to the one delivered by the
GnS-modi�ed quaternary binders (Figure 15).  e overall
consumption is slightly lower, though, due to the reactivity of
μS. Two things should be noted: (i) the 0.5% GnS with 2.5% μS
binder consumed greater quantities of Ca(OH)2 and (ii) it was
this paste that exhibited the best compressive strength per-
formance. Furthermore, there were no indications of car-
bonation having taken place.

3.4. Crystallographic Analyses of Quaternary Cementitious
Nanocomposite Binders.  e X-ray di�raction analyses
shown in Figure 16 con�rmed all the above �ndings:

(i) Production of additional ettringite from day 1
(ii) Production of additional C–S–H from day 1
(iii) Increase of Ca(OH)2 content at day 1 with sub-

sequent reduction at later ages, leading to elimi-
nation of the detectable (non-encapsulated by C-S-
H) Ca(OH)2 by day 56

(iv) Absence of carboaluminate hydrates (expected to
give di�ractions at 10.8° 2θ, for hemicarbonate, and
11.7° 2θ for calcium monocarbonate hydrate [42],
even by day 56, a �nding which was not totally clear
by the TG analyses).
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Figure 13: Ca(OH)2 and CaCO3 content of μS and (a) LnS or (b) GnS nanocomposite binders based on PC43LS20FA37.
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3.5. Correlation of Microscopic with Macroscale Results

3.5.1. Quaternary Cementitious Nanocomposite Binders.
Lastly, the theory presented elsewhere [10] on the corre-
lation of microscopic results of Ca(OH)2 content with
macroscale results of compressive strength tests was ver-
i�ed in the LnS-modi�ed series, as well as shown in
Figure 17(a), con�rming at one glance that the 0.5% LnS
modi�cation was the most e�ective of all, overall, exhib-
iting the greatest Ca(OH)2 consumption. Moreover, this
relationship was veri�ed in the GnS-modi�ed series on
PC43LS20FA37, as shown in Figure 17(b), con�rming at
one glance that the 0.5% GnS modi�cation was the most
e�ective of all, overall.

3.5.2. Quinary Cementitious Nanocomposite Binders.
Lastly, the abovementioned relationship was further tested
in the μS- and GnS-modi�ed quinary series, as well as shown

in Figure 18, con�rming at one glance that it is the GnS
content the primary factor in¡uencing the performance
rather than the μS contents. Moreover, the 0.5% GnS
modi�cation o�ered more e�ective pastes.

3.6. Microstructural Investigation of PC/FA� 1.16 LnS-
Modi�ed Quaternary Cementitious Nanocomposite Binders.
Backscattered (BSC) SEM micrographs of day 1, day 28,
and day 56 are presented. With respect to the reference
paste, PC43LS20FA37, the following can be observed in
Figure 19:

(i) Densi�cation of the paste has taken place by day 28
accompanied by reduction in microcracks. In other
words, capillary porosity and microcracks reduce
with nS content and age advancement.

(ii) A number of unreacted FA (denoted by uFA)
particles, surrounded by “pockets” as discussed in
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Figure 14: Di�erential mass loss of LnS and μS nanocomposite binders based on PC43LS20FA37 between 0 and 1000°C at (a) day 28 and (b)
day 56.
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Figure 15: Di�erential mass loss of GnS and μS nanocomposite binders based on PC43LS20FA37 between 0 and 1000°C at (a) day 28 and (b)
day 56.
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Figure 16: Continued.
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the previous sections, identi�ed by their light colour
and spherical shape are still visible by day 56,
enforcing previous arguments.

(iii) Reacted FA (denoted by rFA) particles created
seeding e�ect, by attracting needle-like hydration
products reinforcing the hypothesis of greater FA
activation by day 56.

(iv) Dense areas of what seems to be C–S–H (denoted
by CSH on the micrographs) were distinguished.
 e dark rim around the formation was clearly
visible.

(v) Ca(OH)2 crystals (denoted by P) participating in the
seeding e�ects in agreement with other studies [46].

Furthermore, the optimal LnS-modi�ed paste,
PC43LS19.5FA37 + 0.5% LnS, and the less favourable one,
PC43LS19FA37 + 1% LnS, were also examined at the three
di�erent ages. With respect to PC43LS19.5FA37 + 0.5% LnS,
the following can be noted:

(i) A highly-densi�ed morphology by day 56 can be
observed, possibly denser than that of the reference
paste. e presence ofmicrocracks seemed eliminated.
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Figure 16: XRD pattern of LnS nanocomposite binders based on PC43LS20FA37 at (a) day 1, (b) day 7, (c) day 28, and (d) day 56.
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Figure 17: Relating microscale characteristics to macroscale performance of (a) LnS- and (b) GnS-modi�ed nanocomposite binders based
on PC43LS20FA37.
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(ii) Prevalent reacted and unreacted FA particles and
Ca(OH)2 crystals exist.

(iii) Extended patches of dense areas of C–S–H can be
distinguished.

Lastly, PC43LS19FA37 + 1% LnS bore resemblance to
the optimal binder in terms of hydration products, mor-
phology, and pozzolanic activity of the constituents. Qual-
itative di�erences were di¬cult to be identi�ed by SEM,
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Figure 18: Relating microscale characteristics to macroscale performance of μS and (a) LnS- or (b) GnS-modi�ed nanocomposite binders
based on PC43LS20FA37.
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however, more unreacted FA particles with dense rims
surrounding them were spotted.

4. Conclusions

In this paper, a literature review was presented on recent
research on the temperature ranges in which hydrates of
nanocomposites decompose. Sixteen different novel ce-
mentitious nanocomposite binders were compared with two
different reference binders, forming quaternary (PC, LS, FA,
and nS) and quinary (PC, LS, FA, μS, and nS) combinations.
,e mechanical performance was determined in terms of
cylinder compressive strength. ,e evolution of strength
gain was described in a chronological scenario, and the
thermal performance was assessed by thermal gravimetric
analyses. Crystallographic and microstructural characteris-
tics were also compared with the help of XRD and SEM,
respectively. ,e following main outcomes can be drawn
from the experimental results presented:

(i) TGA can be used to assess the pozzolanic activity
of nanocomposite binders comprising of PC, LS,
FA, nS, and/or μS, offering an approximation of
the C–S–H produced

(ii) ,e clinker in cementitious binders can be lowered
beyond the currently permissible limits set by the
EU standards, with the use of nanoparticles of silica,
which can deliver superior compressive strength
and thermal and microstructural enhancement

(iii) ,e dispersion medium of nanoparticles in aqueous
suspensions plays a significant role in the perfor-
mance of the binders, and aqueous suspensions
seem to exhibit a more predictable behaviour

(iv) Nanosilica competes with fly ash and silica fume,
delaying pozzolanic reactions

(v) XRD confirmed the production of additional C-S-
H from day 1 and the absence of carboaluminate
hydrates

(vi) ,e direct correlation of microscopic results of
Ca(OH)2 content with macroscale results of
compressive strength tests was verified in all
quaternary and quinary formulations

(vii) Densification and microcracks reduction with nS
content and age advancement were observed via
SEM imaging.

(viii) Unreacted FA particles were found to be surrounded
by “pockets” of hydrates not allowing them to
participate in the pozzolanic reactions until the pH
was elevated at later ages, and dense areas of what
seems to be C–S–H (denoted by CSH on the mi-
crographs) were also distinguished

(ix) As a conclusion, the optimal dosage was de-
termined to be 0.5% nS by mass of the binder.
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