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In this paper, geometrically nonlinear analysis of functionally graded curved beams with variable curvatures based on Timoshenko
beam theory is presented. Considering the axial extension and the transversal shear deformation, geometrically nonlinear
governing equations for the FGM curved beams with variable curvatures subjected to thermal and mechanical loads are for-
mulated. Material properties of the curved beams are assumed to vary arbitrarily in the thickness direction and be independent on
the temperature change. By using the numerical shooting method to solve the coupled ordinary differential equations, the
nonlinear response of static thermal bending of a FGM semielliptic beams subjected to transversely nonuniform temperature rise
is obtained numerically. /e effects of material gradient, shear deformation, and temperature rise on the response of the curved
beam are discussed in detail. Nonlinear bending of a closed FGM elliptic structure subjected to two pinching concentrated loads is
also analyzed. /is paper presents some equilibrium paths and configurations of the elliptic curved beam for different pinching
concentrated loads.

1. Introduction

Curved beams have been widely applied in many engineering
disciplines such as civil, mechanical, and aerospace [1]. For
instance, robotic arms, coil laminated springs, and reinforced
stiffeners in aircraft structures are generally designed as
curved beams. For another example, golf shafts and fishing
rods have apparently deformed shapes during use, both of
which can be analyzed by curved beam theory./e analysis of
static, stability, and dynamic behavior of curved beam
structures was frequently performed by researchers. However,
as the extending of application range of curved beams, the
performance of traditional composite materials cannot meet
the increasing requirements. To adapt to high temperature
environment, functionally graded material (FGM) may be
suggested. FGM structures become increasingly attractive in
many engineering applications [2]. Typically, these materials
consist of a mixture of ceramic and metal or a combination of
different materials. /e mechanical properties vary smoothly
and continuously from one surface to another. It has many
good performances in engineering applications, such as high

resistance to large temperature gradients and reduction of
stress concentration [3].

/ere have been lots of literatures on geometrically
nonlinear analysis of curved beams. Pi and Bradford [4, 5]
presented a theoretical analysis of the nonlinear elastic in-
plane behavior and buckling of a pinned-fixed curved beam
subjected to a radial load distributed uniformly around the
beam axis and a central concentrated radial load, re-
spectively. Liu and Lu [6] formulated a variational frame-
work for large-displacement space curved beams by
considering geometric nonlinearity and different scalings of
kinematic variables. Based on a new variational principle
expressed in terms of stress components, Cannarozzi and
Molari [7] proposed a nonlinear formulation for curved,
extensible, shear flexible, elastic planar beams. /e research
of curved beams considering the extension of axis length was
also conducted by Pulngern et al. [8]. In their work, the
postbuckling behaviors of a variable-arc-length circular
curved beam subjected to an end follower force were ex-
amined by using the elliptic integrals method and shooting
method.
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In the above-cited references, one can note that the
material properties of curved beams were assumed to be
homogeneous. Extensive nonlinear analysis of the me-
chanics of straight FGM beams has been done in order to
understand the nonlinear static and dynamic responses of
FGM beams [9–11]. However, the published papers which
have been devoted to FGM curved beams are fewer. Based
on the classical beam theory along with the nonlinear
shallow shell theory of Donnell, Asgari et al. [12] presented a
theoretical investigation on the thermoelastic behavior of
pin-ended FGM circular shallow arches. Temperature de-
pendency of constituents was taken into account, and the
arch was subjected to a uniform temperature field. In the
study of Bateni and Eslami [13, 14], they studied the non-
linear stability behavior of FGM circular shallow arches
subjected to a central concentrated force and a uniform
radial pressure, respectively. Numerical results were pre-
sented as the influences of material dispersion, geometrical
characteristics, and boundary conditions on the stability
behavior of the FGM circular shallow arches. Based on the
first-order shear deformation theory and von Karman
geometrically nonlinear theory, Kerdegarbakhsh et al. [15]
studied the buckling and postbuckling behaviors of a ring
made of a through-the-thickness FGM. Kurtaran [16] per-
formed a large displacement static and transient analysis of
thick FGM curved beams by using generalized differential
quadrature method. Large displacements were taken into
account through Green-Lagrange nonlinear strain-
displacement relations. Equilibrium equations were ob-
tained by using virtual work principle and solved with
Newton and Newmark methods for static and dynamic
problems, respectively. Eroglu [17] examined the large in-
plane deflections of planar curved beams made of FGM
using variational iteration method. In the study, axial and
shear deformations were taken into account.

Note that the abovementioned research works are lim-
ited on curved beams with constant curvature; thus, the
problems can be simplified by ignoring the variable cur-
vature effect in integrations. However, it is generally known
that the curved beams with variable curvatures have been
widely applied in engineering structures. Consequently,
considerable research efforts have been made for the im-
proved analysis of curved beams. Moghaddasie and Stan-
ciulescu [18] investigated the equilibrium paths and locus of
critical points based on a modified Bernoulli beam theory
with large transversal displacements for a half-sine pinned
curved beam under transversal loading in a thermal envi-
ronment. In the study of Kim et al. [19], an improved
formulation for free vibration and spatial stability of non-
symmetric thin-walled curved beams was presented based
on the displacement field considering variable curvature
effects and the second-order terms of finite-semitangential
rotations. Lin and Lin [20] used Lagrangian description
together with Eulerian description to derive analytical so-
lutions of laminated curved beams with variable curvature
under pure bending and axial forces. Luu and Lee [21]
considered geometrically nonlinearity in their buckling and
postbuckling analyses of elliptic curved beams subjected to a
central concentrate vertical load under clamped-clamped,

hinged-hinged, and clamped-hinged boundary conditions.
Recently, Huynh et al. [22] investigated the bending,
buckling, and free vibration of FGM curved beams with
variable curvatures using isogeometric approach, based on
Timoshenko curved beam theory. Four shapes of curved
beams with variable curvature including circular, cycloid,
elliptic, and parabolic were considered. /e nonuniform
rational B-spline basis functions were used in representing
the geometry and approximating the unknown fields. Based
on the static bending and free vibration analysis of FG
microbeams by using isogeometric approach in combination
with the quasi-3D beam theory, the research work about
analyzing mechanical behavior of FG curved beams
employing the same method is attracting great attention
[23, 24].

As is well known, nonlinear mechanical performance of
curved beam is very complex because the normal displace-
ment, tangential displacement, and rotation are coupled in the
differential governing equations. From the previously cited
references, one can note that despite extensive research for the
static and dynamical behaviors of the curved beams, to the
knowledge of authors, notmuch work has been devoted to the
geometrically nonlinear analysis of functionally graded
curved beams with variable curvature. In this paper, by
considering axial extension and transversely shearing, the
nonlinear governing equations of FGM Timoshenko curved
beams with variable curvatures subjected to thermo-
mechanical loads will be presented. /en, the shooting
method is applied to numerically solve the nonlinear
boundary value problem. In order to illustrate the validity and
practicability of the present method, numerical examples for
FGM elliptic curved beams under thermal and mechanical
loadings are analyzed. /e effects of material gradient, shear
deformation, and temperature rise on the response of the
curved beams are investigated. Some equilibrium paths and
configurations of FGM elliptic curved beams under different
pinching concentrated loads are presented.

2. Theoretical Formations

2.1.Material Properties of FGM. We consider a FGM curved
beam with rectangular cross sections, made of two isotropic
constituents with the material properties Pi and Po. /e
effective material properties (including Young’s modulus E,
Poisson’s ratio ], thermal expansion coefficient α, and the
thermal conductivity coefficient K) of the FGM curved beam
are assumed to be varied continuously in the thickness
direction from the inner surface with Pi to the outer surface
with Po. Furthermore, the material property gradient pro-
files in the thickness direction are specified by the power law
functions, and then the effective material properties of the
FGM can be expressed in the unified power law form as

P(ρ) � PiψP(ρ),
−h
2
≤ ρ≤

h

2
, (1)

where

ψP(ρ) � 1 + fP − 1( 􏼁
1
2

+
ρ
h

􏼒 􏼓
n

, (2)
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where h denotes the thickness; fP � Po/Pi; Pi and Po denote
the material properties at the inner (ρ � −h/2) and the outer
(ρ � h/2) surfaces, respectively; and n is the volume fraction
exponent (0≤ n<∞), especially, n � 0 and n⟶∞ rep-
resenting the two kinds homogeneous material curved beam
made of the pure outer and the inner surface materials,
respectively.

2.2. Geometrical Equations. Consider an arbitrary plane
curved beam element with variable curvature with uniform
cross section as shown in Figure 1. Choose Cartesian co-
ordinate systems (x, z) and (X,Z) to position the points
at the initial and the deformed con�gurations of the
central axis of the curved beam, respectively. Herein, it
is assumed that the geometrical central axis still remains
in x− z plane in the deformed state. When the beam is
deformed, the material point C moves to the point
C′ : (X,Z) � (x + u, z + w), where u(x) and w(x) are
displacements of the point C in x− and z− directions,
respectively. At the same time, we choose the arc length
coordinate, s0 and s∗0 , to measure the central axis of the
curved beam in the undeformed and deformed states, re-
spectively. So, the relationship between the di�erential beam
elements in the deformed and undeformed states is given by

ds∗0 �
������������
(dX)2 +(dZ)2
√

� Λ0ds0, (3)

where Λ0 is the stretching of the axis expressed by

Λ0 �

������������������������

dx

ds0
+
du

ds0
( )

2

+
dz

ds0
+
dw

ds0
( )

2

√√

. (4)

If we ignore the axial extension of the beam, then we
have Λ0 ≡ 1, or ds∗0 � ds0.

By accurately considering the axial extension, the ki-
nematics relations of the deformed central axis of the curved
beam are derived as follows [25]:

ds∗0
ds0

� Λ0,

du

ds0
� Λ0 cos θ− cos θ0,

dw

ds0
� Λ0 sin θ− sin θ0,

(5)

where θ0 and θ are the angles of the di�erential line elements,
ds0 and ds∗0 , with the x-axis, respectively.

Based on Timoshenko beam theory, the cross sections
are assumed to remain plane in the course of deformation.
�en, we attain the normal and the shearing strains at ar-
bitrary point in the cross section, respectively:

ε �
ε0 + ρκ∗1
1 + ρκ0

,

c � Λ0 sin c0,

(6)

where ε0 is the normal strain of the central axis and κ0 and κ∗1
denote the initial curvature and the curvature increment of
the central axis of the curved beam, respectively. For the
curved beam with variable curvature, both κ0 and κ∗1 are
functions of the arc length s0. �ey are given by

ε0 � Λ0 cos c0 − 1,

κ0 �
dθ0
ds0

,

κ∗1 �
dψ
ds0
,

(7)

where c0 is the shear angle and ψ is the rotational angle of the
cross section. Denoting φ as the angle between the normal of
the curved beam’s cross section and the x-axis in the de-
formed state, we obtain the following relations:

φ � θ + c0,

ψ � φ− θ0.
(8)

2.3. Constitutive Equations. For the linear thermoelastic
material, the stress-strain relations are given by Hook’s law
as follows:

σ � E(ε− αT),

τ �
E

2(1 + ])
c,

(9)

where T is the temperature rise. We assume that the tem-
perature rise changes nonhomogeneously along the thick-
ness of the curved beam; then, it is governed by one-
dimensional steady-state heat conduction equation of

d

dρ
K(ρ)

dT(ρ)
dρ

[ ] � 0. (10)

By integrating equation (10) and using the associated
boundary conditions T(h/2) � To and T(−h/2) � Ti, the
temperature rise �eld in the curved beam can be expressed as
follows:

T(ρ) � TiψT(ρ), (11)

C

C′

O

x

z

x u
X

z

w
Z

θ0

θ

Figure 1: Schematic diagram of the curved beam’s geometry.
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with

ψT(ρ) � 1 + fT − 1( 􏼁
􏽒
ρ
−h/2(1/K(ρ))dρ

􏽒
h/2
−h/2(1/K(ρ))dρ

, (12)

where fT � To/Ti is the ratio of the temperature rise at the
outer to that at the inner surfaces of the curved beam with
fT � 1 representing the uniform temperature rise.

Substituting equation (6) into (9) and taking integration
over the cross section, we obtain the axial and shear resultant
forces N and Q and bending moment M as follows:

N � B
A
σ dA � A1ε0 + B1κ

∗
1 −NT, (13)

M � B
A
σz dA � B1ε0 + D1κ

∗
1 −MT, (14)

Q �
1
k
B

A
τ dA �

1
k

S1Λ0 sin c0, (15)

where k is the Timoshenko shear correction factor, which
depends on the shape of the cross section of the beam and
A1, B1, D1 and S1 are stiffness coefficients to be defined as

A1, B1, D1( 􏼁 � B
A

1
1 + ρκ0

,
ρ

1 + ρκ0
,

ρ2

1 + ρκ0
􏼠 􏼡E(ρ)dA,

(16)

S1 � B
A

E(ρ)

2(1 + ])
dA, (17)

where NT and MT are the thermal axial force and the
thermal bending moment, given by

NT, MT( 􏼁 � B
A

(1, ρ)E(ρ)α(ρ)T(ρ)dA. (18)

Substitution of Young’s modulus and thermal expansion
coefficient in the form of equations (1) and (11) into
equations (16)–(18) yields

A1, B1, D1, S1( 􏼁 � Aϕ1, Ahϕ2, Iϕ3,
Aϕ4

2(1 + ])
􏼠 􏼡Ei, (19)

NT, MT( 􏼁 � β1, hβ2( 􏼁AEiαiTi, (20)

where Ei and αi are, respectively, Young’s modulus and
thermal expansion coefficient at the inner surface of the
curved beam and A and I are the area and inertia moment of
the cross section, respectively. Dimensionless coefficients
ϕj (j � 1, 2, 3, 4) and βj (j � 1, 2) are defined in Appendix.

From equations (13)–(15), we arrive at the other kinds
of constitutive equations:

κ∗1 �
−B1 N + NT( 􏼁 + A1 M + MT( 􏼁􏼂 􏼃

C
, (21a)

ε0 �
D1 N + NT( 􏼁−B1 M + MT( 􏼁􏼂 􏼃

C
, (21b)

Λ0 sin c0 �
kQ

S1
, (21c)

where C � A1D1 −B2
1.

2.4. Equilibrium Equations. In the deformed state, the
curved beam is assumed to be in static equilibrium. /e
equilibrium equations governing geometrically nonlinear
deformation of Timoshenko curved beam can be derived by
considering the deformed segment ds∗0 as follows:

dH � qxds
∗
0 ,

dV � qzds
∗
0 ,

dM � (V cos θ−H sin θ)ds
∗
0 .

(22)

By virtue of the first formula of equation (5), one can get
Lagrange forms of equation (22) as follows:

dH

ds0
� Λ0qx,

dV

ds0
� Λ0qz,

dM

ds0
� Λ0(V cos θ−H sin θ),

(23)

where H and V are the horizontal and vertical resultant
forces, respectively, and qx and qz are components of the
distributed force along the beam in the x− and the z− axis,
respectively. /e resultant forces (H, V), being equivalent to
(N, Q), can be expressed as

N � −H cosφ−V sinφ,

Q � H sinφ−V cosφ.
(24)

Substituting equation (24) into equations (21a)–(21c)
yields

dψ
ds0

�
1
C

􏼂−B1 −H cosφ−V sinφ + NT( 􏼁

+ A1 M + MT( 􏼁􏼃,

(25)

Λ0 cos c0 �
1
C

􏼂D1 −H cosφ−V sinφ + NT( 􏼁

−B1 M + MT( 􏼁􏼃 + 1,

(26)

Λ0 sin c0 �
k

S1
(H sinφ−V cosφ). (27)

So far, we finally arrive at the governing equations of the
geometrically nonlinear deformations of FGM Timoshenko
curved beams with variable curvatures subjected to thermal
and mechanical loads, consisting of equations (5), (23), and
(25) in terms of the seven basic unknown functions s∗0 , u, w,
H, V, M, and ψ. /e axial stretching Λ0 and shearing angle
c0 can be also expressed in terms of the above-mentioned
seven unknown functions.
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3. Dimensionless Governing Equations

/e following dimensionless quantities are introduced:

S0, S, U, W, λ( 􏼁 �
1
L

s0, s
∗
0 , u, w, h( 􏼁, (28a)

Qx, Qz( 􏼁 �
L3

EiI
qx, qz( 􏼁,

PH, PV, nT( 􏼁 �
L2

EiI
H, V, NT( 􏼁,

m, mT( 􏼁 �
L

EiI
M, MT( 􏼁,

(28b)

η1, η2, η3( 􏼁 �
EiI

C
A1,

B1

L
,
D1

L2􏼒 􏼓,

η4 �
EiI

S1L
2,

(28c)

where L is a characteristic length of the curved beam, which
can be the main radius or the length of the central axis of the
curved beam.

/us, the dimensionless thermal axial force and thermal
bending moment can be expressed as

nT � τiβ1,

mT � τiλβ2,
(29)

where τi is used as the reference thermal load parameter,
which represents the dimensionless temperature rise of the
homogeneous curved beam made of the pure inner surface
material. It is defined as

τi �
12αiTi

λ2
. (30)

Substituting equations (28a)–(28c) into equations (5),
(23), and (25), the governing equations can be transformed
into the dimensionless forms as follows:

dS

dS0
� Λ0,

dU

dS0
� Λ0 cos θ− cos θ0,

dW

dS0
� Λ0 sin θ− sin θ0,

(31)

dPH

dS0
� Λ0Qx,

dPV

dS0
� Λ0Qz,

dm

dS0
� Λ0 PV cos θ−PH sin θ( 􏼁,

(32)

dψ
dS0

� −η2 −PH cosφ−PV sinφ + nT( 􏼁 + η1 m + mT( 􏼁,

(33)

where

cos θ � cosφ cos c0 + sinφ sin c0,

sin θ � sinφ cos c0 − cosφ sin c0,
(34a)

cosφ � cos θ0 cosψ − sin θ0 sinψ,

sinφ � sin θ0 cosψ + cos θ0 sinψ,
(34b)

Λ0 �

�������

Δ21 + Δ22
􏽱

,

tan c0 �
Δ2
Δ1

,
(34c)

Δ1 � η3 −PH cosφ−PV sinφ + nT( 􏼁

− η2 m + mT( 􏼁 + 1,
(34d)

Δ2 � kη4 PH sinφ−PV cosφ( 􏼁, (34e)

η1 �
1

ϕ3 − 12ϕ22/ϕ1( 􏼁
,

η2 �
λ

ϕ1ϕ3/ϕ2( 􏼁− 12ϕ2
,

η3 �
λ2

12 ϕ1 − 12ϕ22/ϕ3( 􏼁( 􏼁
,

η4 �
(1 + ])λ2

6ϕ4
.

(34f)

From equation (34c), it can be seen that the shear de-
formation is relevant to parameter Δ2. If Δ2 � 0, or η4 tends
to zero, then we have c0 � 0 and φ � θ. In this case, the
governing equations (31)–(33) reduce to those of FGM
Euler–Bernoulli curved beams.

4. Numerical Examples

In this section, numerical results for thermal andmechanical
bending of FGM elliptic curved beam composed of ceramic
(ZrO2) and metal (Al) are presented./e outer surface of the
curved beam is fully ceramic and the inner surface is fully
metal. /e material properties of the two constituents are
listed in Table 1./e effective material properties of the FGM
curved beam are given by equations (1) and (2).

As the first example, we consider a FGM semielliptic
curved beam made with the two ends completely clamped,
which is shown in Figure 2. /e beam is only subjected to
thermal load given by equations (11) and (29).

/e parametric equations of the semielliptic beam are
given as follows:

x � a cos ζ,

z � b sin ζ,

0≤ ζ ≤ π.

(35)

/en, the dimensionless arc length element of the curved
beam can be given by
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dS0 �
ds0
a
� J(ζ)dζ , (36)

where J(ζ) �
��������������
sin2 ζ + δ2cos2 ζ
√

is the Jacobian of the
transformation from the curvilinear domain to the para-
metric domain, δ � b/a. Herein, the characteristic length is
de�ned by L � a.

For the elliptic curved beam, we have

cos θ0 �
dx

ds0
� −

sin ζ
J
,

sin θ0 �
dz

ds0
�
δ cos ζ
J

.

(37)

Substituting equations (36) and (37) into equations
(31)–(33), we can obtain di�erential equations de�ned in the
parametric domain. In the view of symmetry of the struc-
ture, we select the half of the semielliptic curved beam
(0≤ ζ ≤ π/2) in the analysis. �e boundary conditions can be
written by

S(0) � 0,

U(0) � 0,

W(0) � 0,

ψ(0) � 0,

(38a)

U
π
2
( ) � 0,

PV
π
2
( ) � 0,

ψ
π
2
( ) � 0.

(38b)

It is di�cult to �nd any analytical solutions of com-
plicated ordinary di�erential equations (31)–(33) under
boundary conditions (38a) and (38b) due to the inclusion of
strong nonlinearity. So, the shooting method is used to
search for the numerical solutions of the abovementioned
two-point boundary value problem of the ordinary

di�erential equations. First, the boundary value problem is
transformed into an initial-value problem containing some
unknown initial parameters.�en, the Runge–Kutta method
is applied to search the solution of the initial problem, and
the Newton–Raphson method is used to modify these un-
known initial parameters until the boundary conditions at
ζ � π/2 are satis�ed. �us, the solution of the boundary
value problem is obtained. �e details about this numerical
approach can be found in Reference [26]. For the FGM
semielliptical curved beam only subjected to nonuniform
thermal loading, we set Qx � Qz � 0 in equation (32).

First, we consider a semicircular beam (δ � 1) made of
full metal (n⟶∞) and subjected uniform heating
(fT � 1). In Table 2 we list the values of nondimensional
displacement W(π/2) changing with the temperature rise
parameter τi for some speci�ed values of the slenderness
parameter λ and make a comparison with those given by Li
et al. [27], which shows a good agreement between the
present results with those in the literature.

By specifying δ � 0.5, characteristic curves of di-
mensionless displacement W(π/2) and bending moment
m(π/2) of semielliptic FGM curved beam versus the power
law index n are plotted in Figures 3 and 4, respectively, for
di�erent values of λ, where the results in solid lines and
dotted lines are based on the Timoshenko and Euler curved
beam theories, respectively. �e di�erence between two
types of lines reveals the in¥uence of the shear deformation
on the deformation and internal forces of the curved beam.
Obviously, the shear deformation leads to the ¥exibility of
the curved beam to be increased. But from the �gures, we
can �nd that the solid lines and dotted lines are almost
coincident when the value of λ is less than 1/15, whichmeans
that the e�ect of the shear deformation weakens gradually
and along with that the beam becomes thinner. For a given
value of parameter of λ, displacementW(π/2) increases with
the increment of the power law index n, which accounts for
the fact that a great value of n implies the curved beam has a
large amount of the metal components which leads to a
larger thermal expansion coe�cient and lower sti�ness.

Figures 5 and 6 illustrate the characteristic curves of the
displacement W(π/2) and bending moment m(π/2) versus
thermal load parameter τi, respectively, for n � 0, 5, 10 and
fT � 5. It can be seen that the increase in the value of the
power law index leads to the increase in the deformation of
the curved beam, which is due to the fact that the increase in
the value of n results in the increase in the volume of the
metal, in other words, the decrease in the equivalent elastic
modulus of the curved beam.

As the second example, let us consider a closed FGM
elliptic structure subjected to two pinching concentrated
loads as shown in Figure 7(a). �e nondimensional con-
centrated force can be expressed as P � pa2/(EiI). Using the
symmetry of the structure and loadings, only a quarter of the
closed elliptic structure is analyzed, as shown in Figure 7(b).
By selecting point A as the initial point of the parameter
coordinate ζ, the whole domain of the problem is de-
termined by ζ ∈ [0, π/2]. �e dimensionless boundary
conditions are written as [28]

Table 1: Material properties of the FG curved beams.

Property E (GPa) α · 106(/K) K (W/(m·K)) ]
Zirconia (ZrO2) 151 10 2.09 0.3
Aluminum (Al) 70 23 204 0.3

a

b

z

x
O

Figure 2: Con�guration of the semielliptic curved beam with two
ends clamped.
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Table 2: Dimensionless displacement W(π/2) of Al semicircular curved beam with two ends clamped under uniform temperature rise
(fT � 1).

λ τi
50 100 150 200 250 300 350 400

1/30 Present 0.009 0.018 0.027 0.035 0.044 0.053 0.062 0.070
Reference [27] 0.009 0.018 0.026 0.035 0.044 0.053 0.061 0.070

1/20 Present 0.020 0.040 0.059 0.079 0.098 0.117 0.136 0.154
Reference [27] 0.020 0.040 0.059 0.078 0.098 0.117 0.135 0.154

1/10 Present 0.078 0.154 0.227 0.299 0.369 0.439 0.506 0.573
Reference [27] 0.078 0.154 0.227 0.299 0.369 0.438 0.506 0.573

λ = 1/10

λ = 1/12

λ = 1/15

λ = 1/20

Timoshenko beam theory
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Figure 3: Dimensionless displacement W(π/2) versus the power
index, n, of the semielliptic FGM curved beam for di�erent values
of λ (δ � 0.5).
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Figure 4: Dimensionless bending moment m(π/2) of the semi-
elliptic FGM curved beam versus the power index n for di�erent
values of λ (δ � 0.5).
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Figure 5: Variation ofW(π/2) versus τi with di�erent values of n
(λ � 1/10).
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Figure 6: Variation of m(π/2) versus τi with di�erent values of n
(λ � 1/10).
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S(0) � 0,

W(0) � 0,

PH(0) � 0,

ψ(0) � 0,

(39a)

U
π
2
( ) � 0,

PV
π
2
( ) � −

P

2
,

ψ
π
2
( ) � 0.

(39b)

�e relative horizontal displacements ΔU of point A and
point B of the FGM elliptic curved beam versus the load P for
di�erent values of the power law index n are depicted in
Figure 8. It can be seen that when the load increases, the
relative horizontal displacements increase �rst and then

decrease. �is is because under the action of the vertical
loads, the left and right sides of the elliptic ring will protrude.
With the value of the load becoming larger and larger, point
C and pointDmeet, and then the elliptic ring will contract in
the horizontal direction.

In Figure 9, we have exhibited the equilibrium con�g-
urations of the curved beam for corresponding to di�erent
values of the pinching concentrated loads and for the power
law index n� 1. As the load increases, the elliptic ring be-
comes more and more ¥at in the direction of the load.
During the inception phase, the main deformations are
compression and bending. When the value of load exceeds
12.1, point C gets to the negative y-axis, and point D gets to
the positive y-axis. �e main deformations become tensile
and bending.

5. Conclusions

Based on the Timoshenko beam theory, geometrically
nonlinear behaviors of the FGM curved beam with variable
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Figure 7: A pinched FGM elliptic structure model.
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Figure 8: Variations of ΔU versus P with di�erent values of n.
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Figure 9: Equilibrium con�gurations of the elliptic curved beam
for di�erent values of P.
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curvatures have been researched by solving a system of seven
coupled and strongly nonlinear ordinary differential equa-
tions. /e material properties of the FGM curved beam are
assumed to be varied continuously from the outer surface to
the inner surface in the thickness direction. As a numerical
example, geometrically nonlinear responses of a FGM
semielliptic curved beam with two ends clamped under
transversely temperature rise were obtained by using the
numerical shooting technique. Characteristic curves of the
displacement and bending moment versus the power law
index for different slenderness and those versus thermal
loading for different power law index were illustrated. From
the numerical results, we find that the effects of shear de-
formation become significant along with the increase of the
slenderness ratio, and the midspan deflection and bending
moment of the curved beam are proportional to the thermal
loading. In addition, some equilibrium paths and configu-
rations of a FGM elliptic structure under two pinching
concentrated loads were plotted. Numerical solutions in this
paper may be the references to study geometric nonlinearity
of FGM curved beams.

Appendix

Expressions of nondimensional coefficients in equations (19)
and (20):

ϕ1 � 􏽚
1/2

−1/2

ψE

1 + κη
dη,

ϕ2 � 􏽚
1/2

−1/2

ψEη
1 + κη

dη,

ϕ3 � 12􏽚
1/2

−1/2

ψEη2

1 + κη
dη,

ϕ4 � 􏽚
1/2

−1/2
ψEdη,

(A.1)

β1 � 􏽚
1/2

−1/2
ψEψαψTdη,

β2 � 􏽚
1/2

−1/2
ψEψαψTη dη,

(A.2)

where κ � κ0h, η � ρ/h.
For elliptic curved beam,

κ0 �
b

a2J3
,

κ � κ0h �
δλ
J3

.

(A.3)
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