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A recent quest for more sustainable cement-based construction materials has triggered the pursuit of technically viable alter-
natives of cement, making reactive magnesium oxide (MgO) one of the least known top contenders to reduce this sector’s
environmental impact since it participates in the cement’s hydration reactions and presents enhanced carbon capture ability
during its life cycle. In this study, two different commercially available reactive MgO samples were evaluated as partial cement
replacements (at 10%, 15%, and 20%, by weight) in the production of mortars. /ermogravimetric analysis (TGA), energy-
dispersive X-ray (EDX) analysis, differential thermal analysis (DTA), and powder X-ray diffraction (XRD) analysis of cement,
MgO samples, and resulting mortars were carried out. All specimens were evaluated in terms of their mechanical and durability-
related performance (i.e., flexural and compressive strength, carbonation, water absorption by capillary action, and shrinkage).
/e main results suggest that, in spite of the decreased, albeit acceptable, performance with increasing incorporation of MgO as
partial cement replacement, a significant decrease was observed in the shrinkage strain of cementitious materials.

1. Introduction

Cement industry is one of the most polluting industries in the
world, contributing around 5% to 7% of the total global CO2
emission [1], thereby making it of fundamental importance to
seek new solutions that can further decrease its environmental
impact. Some of the solutions involve improving the calci-
nation process energy efficiency, using alternative fuels or raw
materials, and exploring the role of cement systems in carbon
capture and storage technologies [2]. Among the afore-
mentioned, the one considered the most effective from an
environmental impact reduction point of view is direct re-
placement of cement (i.e., supplementary cementitious ma-
terials) with constituents that partake in the hydration and
strength development processes, especially if sourced from

industrial wastes (e.g., fly ash, ground granulated blast-
furnace slag, palm oil fuel ash, and electric-arc furnace
dust) [3–6]. /is makes the use of reactive magnesium oxide
(MgO) a unique opportunity to reduce the resulting com-
posite’s carbon footprint, as well as to improve some of its
features [7].

/e use of MgO-based constituents in the clinkerization
process has been restricted to no more than 5% of MgO [8],
as the high temperatures involved in this process would yield
the production of dead-burned MgO with a very slow hy-
dration rate [9]. Consequently, the late expansion of MgO in a
hardened and stable cementitious microstructure would
jeopardize its soundness. However, this is not the case for
MgO subjected to lower calcination temperatures (i.e., light
burned MgO calcined at 700–1000°C). Not only does it
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typically present a great reactivity and early age expansion
[10–12], but its overall CO2 emissions were reported to be up
to 73% lower than those of cement [13], considering the higher
carbon capture capacity of MgO-based cements throughout
their life cycle [7, 14, 15].

Hydration reaction of MgO, which leads to the for-
mation of Mg(OH)2, is as follows [16]:

MgO + H2O⟶ Mg2+
+ 2OH− ⟶ Mg(OH)2 (1)

Since the volume of hydration products is higher than
that of the reagents, the hydration of MgO leads to an ex-
pansion, which, if properly controlled, may be used to
compensate the shrinkage typically observed in cementitious
composites [10, 17–21] and possibly their deformation due
to creep as well. /e compatible chemical nature of MgO
with that of cement may produce beneficial expansive
components capable of reducing the number of microcracks
and contribute to strength gain under certain circumstances
[22]. Similar to that observed in the hydration of cement,
after the formation of Mg(OH)2, ensuing pozzolanic re-
actions can lead to the formation of magnesium silicate
hydrates (i.e., MgO-SiO2-H2O or M-S-H) [23] capable of
presenting considerable strength gain [24], if in the presence
of amorphous silica-bearing mineral additions, such as fly
ash [25, 26] or silica fume [27, 28]. Another practical feature
of using reactive MgO-based cementitious composites is
their ability to capture a considerable amount of CO2
thereby further decreasing the material’s environmental
impact throughout its life cycle. Furthermore, the carbon-
ation of brucite may result in phases (i.e., magnesium
carbonate hydrates such as nesquehonite, hydromagnesite,
dypingite, and artinite) capable of significantly increasing
the strength of the matrix [29, 30].

/ere have been quite a few studies on the micro-
structure of cementitious composites containing reactive
MgO, by means of X-ray diffraction (XRD) and thermog-
ravimetric analyses [11, 23, 31–36], specifically on the for-
mation of Mg(OH)2 and M-S-H phases [16, 37]. Various
reports based on SEM analyses have suggested that the
hydration products of MgO exhibit a tendency to migrate
towards the interfacial transition zone (ITZ) area thereby
reducing the porosity of the resulting material [38–41].

In the light of the recent positive findings regarding this
component and its practical impact in the construction in-
dustry, this paper reports the interaction of the hydration
products of commercially available MgO, from two different
sources, with those of cement, from a cementitious micro-
structure viewpoint and its implications on the composite’s
macroperformance. /is study is the first of upcoming state-
funded research projects, involving various companies within
the construction sector. Contrasting with the mix design of
other research studies, which typically involve lower re-
placement levels of cement withMgO, relatively high contents
of 10%, 15%, and 20%, by weight, of MgO samples were used
as cement replacement thus constituting one of the novelties
of this paper. /ese relatively higher contents were chosen
with the purpose of further reducing the environmental
impacts of concrete, given the considerable carbon capture of

MgO-containing cementitious systems, and also its costs since
the manufacture of cement is an energy-intensive process
unlike that of light burned MgO. /ermogravimetric analysis
(TGA), energy-dispersive X-ray (EDX) analysis, differential
thermal analysis (DTA), and powder XRD analysis were
carried out on cement, the two MgO samples, and selected
mortars. /e specimens’ mechanical- and durability-related
performances were evaluated by means of their flexural and
compressive strength, carbonation, water absorption by
capillary action, and shrinkage.

2. Materials and Methods

2.1. Cement and MgO. /e cement used was CEM I 42.5R,
and its chemical composition is presented in Table 1. /e
cement presents initial and final setting times of 161min and
232min, respectively./e water used in the production of all
specimens was potable tap water.

Two types of MgO were used: MgO A was supplied by
Styromag, an Austrian company, and MgO G from Grecian
Magnesite S.A., a Greek company. Both are light burned
MgO due to their relatively low calcination temperature of
about 800°C [11]. Both MgO samples’ chemical composi-
tions are presented in Table 1./emorphology of bothMgO
samples can be observed by means of the scanning electron
microscopy (SEM) micrographs presented in Figure 1.

/e particle-size distributions of cement and both MgO
samples are presented in Figure 2(a). MgO A and cement
present similar distributions, as most of their particles have a
diameter between 10 μm and 60 μm. MgO G, which is
similar to MgO A, contains slightly smaller particles (mostly
between 10 μm and 30 μm) and presents a less extensive
particle-size distribution when compared to the other two.
About 52.1% and 65.3% of the particles of MgO A and MgO
G, respectively, were found in the range of 3 µm–32 µm.
Above 32 µm (20.2% of MgO A and 3.5% of MgO G), the
particles may be too large to hydrate rapidly, and below 3 µm
(27.7% of MgO A and 31.1% of MgO G), they may have a
smaller contribution to the mechanical strength and si-
multaneously demand more water [42–44]. /e bulk den-
sities of MgO A, MgO B, and cement were 653, 618, and
1040 kg/m3, respectively.

/e BET specific surface areas of MgO A and MgO G
were 20.12m2/g and 18.01m2/g, respectively. /e pore size
distributions, obtained from the adsorption-desorption
isotherms of N2, are shown Figure 2(b). Both additions
show a range of pore diameter of 4–200 nm, according to the
BJHmethod. Although the distribution of the pore volume is
comparable in both materials, for MgO A, the highest
quantity of the pore volume is centred at a slightly lower
pore diameter than MgO G (23 nm vs. 33 nm, respectively).

/e results of the XRD analysis are presented in Figure 3.
/e pattern of MgO A shows that the main phase was
periclase (MgO) (International Centre for Diffraction Data-
ICDD #45-0946), suggesting its crystallinity due to the
narrow peak. For MgO A, peaks corresponding to the
presence of calcite (CaCO3) (ICDD #05-0586), dolomite
(CaMg(CO3)2) (ICDD #36-0426), and talc (ICDD #13-0558)
are also visible. /e presence of the first two could also be
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observed in the TGA in Figure 4(a). Unlike the XRD pattern
of MgO A, the one of MgO G shows just a periclase phase.
/e absence of other smaller phases indicates a lower degree
of impurity when compared to MgO A.

Figure 4 presents the results of TGA and DTA of MgO A
and MgO G. /e initial weight loss up to 150°C, slightly
higher in MgO G when compared to that in MgO A, is
possibly due to the OH group residual in the surface of the
material or to the presence of the hydromagnesite com-
pound. At temperatures between 300°C and 400°C, a weight
loss was observed in MgO G (4.67%), attributable to the
dehydroxylation of Mg(OH)2. /is suggests greater partial
hydration of MgO G in comparison with MgO A. /e in-
crease in weight loss and decrease in heat flow up to around
750°C may have been due to the decarbonation of calcite
(CaCO3) and dolomite (CaMg(CO3)2) as suggested by the
XRD patterns of MgO A.

2.2. Characterization of Aggregates. /e sand’s particle-size
distribution was made in accordance with EN 1015-1 [45].
/e bulk density was evaluated according to EN 1097-3 [46],
whereas water absorption and apparent density as per EN
1097-6 [47]. /e fine particles content classification was
determined in accordance to EN 13139 [48]. /e physical
properties and particle-size distributions of both fine and
coarse sand (0/2 and 0/4mm, respectively) are presented in
Table 2.

An XRD analysis was also carried out on the sand used
in this study (Figure 5). Both fine and coarse sand showed
that the main phase was quartz (crystalline SiO2) (ICDD
#33-1161) and were thus expected to have marginal re-
activity with the cement’s products of hydration and
Mg(OH)2. /e presence of orthoclase (ICDD #31-0966),
albite (ICDD #41-1480), and microcline (ICDD #19-0926)
was observed.

Table 1: Chemical composition of cement and MgO (% by mass).

Component SiO2 Al2O3 Fe2O3 CaO MgO SO3 CuO ZnO C3S C2S C3A C4AF
CEM I 42.5R 19.5 5.0 3.3 63.5 1.3 3.3 — — 57.7 16.5 4.3 11.2
MgO A 4.6 — 7.4 5.5 78.6 — 2.8 1.1 — — — —
MgO G — — — 4.4 89.5 — 3.4 2.6 — — — —

50 µm

(a)

50 µm

(b)

Figure 1: SEM micrographs of (a) MgO A and (b) MgO G.
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Figure 2: Particle-size distributions by using laser diffraction (a) and pore volume (b) of MgO A, MgO G, and cement.
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2.3.MixDesign. /emortar’s composition was based on the
method proposed by Nepomuceno et al. [49], and the
contents are presented in Table 3. /e method adopted for
the mix design allows the production of mortars exhibiting
characteristics and performance equivalent to those of a
concrete counterpart and not mortars typically used in
rendering and masonry. All mortars were produced with a
volumetric ratio of 1/3 (binder/aggregate)./emixes’ spread
was fixed at 200± 15mm, which was achieved by varying the
water/binder (w/b) ratio, starting from 0.50 for the control
mixes (CMs)./e cement was partially replaced by each type

of MgO with the ratios of 10%, 15%, and 20%, by weight.
Mortars incorporating MgO A and MgO G, henceforth, are
MA and MG, respectively.

2.4. Test Methods. /e unbound constituents and the
resulting hardened specimens were analyzed by means of
XRD patterns using a Bruker D8 Discover A25 instrument
with Cu-Kα radiation. All diffraction patterns were obtained
by scanning using a goniometer from 10° to 80° (2θ) at a rate
of 0.05°·s−1. TGA was performed using a Setaram SETSYS
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Figure 4: TGA (a) and DTA (b) of the two MgO samples and of the control mortar (CM) and mortar with 20% MgO A (MA20).
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Evolution 16/18 apparatus at a heating rate of 5°C/min. /e
electron microprobe technique was conducted using an
electron microscope JEOL JSM-6300 at an acceleration

voltage of 20 kV and a working distance of 15mm./e X-ray
detector model is Oxford Instruments ATW2-6699. /e
particle sizes were measured using a Mastersizer S laser

Table 2: Characteristics of fine and coarse sand.

Properties Fine sand Coarse sand
Nominal size (d/D) 0/2 0/4
Apparent density (g/cm3) 2.62 2.63
Oven-dry density (g/cm3) 2.60 2.61
Saturated and surface-dry density (g/cm3) 2.61 2.62
Water absorption (%) 0.23 0.25
Fine particles content Category 1 Category 1
Chloride content (%) ≤ 0.01 ≤ 0.01
Particle-size distribution (mm) Cumulative retained material for fine and coarse sand (%)
4.0 100
2.0 93.2
1.0 77.4
0.5 50.9
0.25 15.6
0.125 1.4
0.063 0.0
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Figure 5: XRD patterns for (a) fine sand (FS) and (b) coarse sand (CS).

Table 3: Composition of mortars.

Mix Cement (kg/m3) MgO (kg/m3) Water (kg/m3) Sand (kg/m3) w/b ratio
CM 560.7 — 280.3 1406.9 0.50
MA10 504.6 56.1 280.3 1406.9 0.50
MA15 476.6 84.1 294.3 1406.9 0.52
MA20 448.5 112.1 304.3 1406.9 0.54
MG10 504.6 56.1 280.3 1406.9 0.50
MG15 476.6 84.1 342.3 1406.9 0.61
MG20 448.5 112.1 342.3 1406.9 0.61
CM: control mortar; MA: mortars with MgO A; MG: mortars with MgO G.
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diffraction particle size analyzer (Malvern Instruments) with
ethanol as dispersant.

Mortars were produced and cast in accordance with EN
1015-2 [50]. Fresh mortars were tested for their consistence
[51] and bulk density [52]. Hardenedmortars were evaluated
in terms of their flexural and compressive strength (3 and 6
specimens, respectively, per mix and age; total of 105 and 210
specimens, respectively) [53], carbonation (3 specimens per
mix and age; total of 42 specimens, carbonation chamber
with 5± 0.1% CO2, 60± 5% RH, and at a temperature of
23± 3°C) [54], water absorption by capillary action (3
specimens per mix; total of 21 specimens) [55], and
shrinkage (2 specimens per mix; total of 14 specimens) [56].

3. Results and Discussion

3.1. Physicochemical Characterization of Hardened Mortars.
Figure 4 presents the TGA and DTA of control mortars and
those incorporating 20% MgO A as partial cement re-
placement with a curing age of 28 days. /e initial mass loss
for temperatures up to 200°C can be attributed to the de-
hydration of C-S-H and AFt phases. /e thermal de-
composition of M-S-H usually occurs in the same range of
temperatures [24] and thus cannot be clearly observed, but it
is likely that this phase did not form due to lack in the
presence of amorphous SiO2 capable of reacting with
Mg(OH)2 [35]. Two drops are readily noticeable for MA20
between 300°C and 500°C. /e first one, between 300°C and
400°C, can be attributed to the dehydroxylation ofMg(OH)2.
/e second drop, observed in both specimens, between
400°C and 500°C, is due to the dehydroxylation of Ca(OH)2,
as a result of the cement’s hydration. /e final endothermic
peak at around 700°Cmay be attributed to the decarbonation
of CaCO3 for control mixes and both CaCO3 andMgCO3 for
MA20 specimens.

Figure 6 presents the results of the XRD analysis of the
CM and MA20 specimens. It is clear from both patterns that
the main mineral phase was quartz (ICDD #33-1161), being
a result of the incorporation of sand. /e presence of
portlandite (Ca(OH)2) (ICDD #04-0733), from the hydra-
tion of cement, was also noted; and, to a lesser extent, calcite
(ICDD #05-0586), albite (ICDD #41-1480), orthoclase
(ICDD #31-0966), Ca3SiO5 (ICDD #42-0551), and micro-
cline (ICDD #19-0926) were noted. For MA20, quartz
(ICDD #33-1161) was also the main mineral phase. Other
phases include portlandite (ICDD #04-0733), calcite (ICDD
#05-0586), albite (ICDD #41-1480), orthoclase (ICDD #31-
0966), Ca3SiO5 (ICDD #42-0551), microcline (ICDD #19-
0926), dolomite (ICDD #36-0426), periclase (ICDD #45-
0946), and talc (ICDD #13-0558); the last three were derived
from the incorporation of MgO A.

3.2. Flexural andCompressive Strength. Figures 7(a) and 7(b)
present the flexural and compressive strength, respectively,
of all mixes at 3, 7, 14, 28, and 56 days. A general decrease in
strength can be observed with increasing MgO content,
which was also observed by other researchers assessing lower
replacement levels [57]. /e magnitude of this decrease in

strength is more noticeable for MG specimens. /is decline
is a result of two factors, i.e., the need to increase the w/b
ratio and the cement’s dilution with increasing MgO con-
tent. In the former, the additional water led to a more porous
microstructure for specimens containing 15% and 20%
MgO. In the latter, the addition of MgO as cement re-
placement, in spite of the formation of Mg(OH)2, leads to a
decreasing quantity of available C2S and C3S and conse-
quently of C-S-H phases [35, 58, 59]. Nevertheless, if in the
presence of an addition with amorphous SiO2, a greater rate
of strength development could be observed as a result of
pozzolanic reactions with Mg(OH)2 [25]. Although the
formation of Mg(OH)2 is vital for strength gain at early
curing ages, the ensuing formation of M-S-H will be the
main contributing factor of the improvement of cementi-
tious materials incorporating MgO [23]. Moreover, the
existence of alumina from aluminosilicate mineral additions
may also offer an advantage concerning the material’s
mechanical behaviour. It may interact with Mg(OH)2 and
form a hydrotalcite-like phase [60] that is capable of en-
hancing the overall mechanical performance through im-
proved bond with the cementitious matrix [23] and due to
the hydrate’s ability of decreasing the porosity of the
resulting composite [61].

Concerning the strength development of MA and MG,
the former presented improved performance when com-
pared to the latter. One of the reasons for this may be due to
the fact that MgO A presented a more extensive particle-size
distribution similar to that of cement (Figure 2), which may
have improved the packing of the resulting mortar speci-
mens. Furthermore, as a result of the smaller particle size
and greater surface area of MgO G, more water was required
(Table 3) to obtain mixes with comparable workability levels.
Naturally, this led to a more porous and less resistant mi-
crostructure. Still, in cases wherein an additional amount of
water was not required (i.e., MA10 and MG10), specimens
containing MgO A exhibited lower loss in performance. /e
TGA on bothMgO samples showed that MgOG presented a
greater mass loss probably due to the dihydroxylation of
Mg(OH)2 (mass losses of 1.76% and 4.67% within the
300–400°C range for MgO A and MgO G, respectively),
which suggests that it was already partially hydrated and did
not contribute to the mortars’ strength gain as effectively as
MgO A.

3.3. Carbonation. Table 4 presents the carbonation depth of
the MgO-containing specimens after being exposed for 28
and 91 days in a CO2 chamber. /e results show greater
carbonation depths with increasing MgO content, and there
is no significant difference between MA and MG specimens.
Even though less porous microstructures incorporating
MgO have been observed elsewhere [25, 62] suggesting
reduced carbonation, the opposite trend was observed in the
present study, and in others [62, 63], they were substantiated
by the results in Figure 8. /e higher porosity in mixes
containing increasing MgO content may have led to a
greater surface area within the cementitious microstructure
available to carbonate in the presence of CO2. Nevertheless,
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this higher porosity may exist only at an initial stage as
ensuing carbonation yields the formation of further prod-
ucts of hydration reducing the volume of the porous mi-
crostructure [62].

Another factor must also be taken into account, which is
the suitability of the phenolphthalein test to ascertain the

amount of CO2 uptake in the specific case of mortars
containing MgO. Since cement was partially replaced with
MgO, there was a lower quantity of the former available to
produce Ca(OH)2, which exhibits a higher pH level than that
of its counterpart from the hydration of MgO (i.e.,
Mg(OH)2) (∼12.5 and ∼10.5, respectively) thereby
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reducing the specimens’ overall pH level. Nevertheless, the
slightly greater mass loss of MA20 specimens in comparison
with that of CM specimens between 500°C and 850°C in
Figure 4 (3.71% vs. 3.34%, respectively) suggests increased
CO2 uptake and thus increased rate of carbonation.

3.4. Water Absorption by Capillary Action. Figure 8 and
Table 4 present the results of the water absorption by
capillary action of MA and MG. As expected, there was a
slight increase in water absorption with increasing MgO
content, though not as obvious for MG10 and MG15. Even
though the hydration of MgOmay result in the formation of
a phase that exhibits higher volume than that of the initial
constituents, replacing a part of the cement will directly
decrease the amount of C-S-H that is capable of producing a
more tortuous and less interconnected porous network [37],
especially after carbonation of the specimen [62, 64].
However, lower total pore volume and water absorption
would likely be observed over time with ensuing carbonation

reactions and formation of additional magnesium carbonate
hydrates [30, 37, 65].

3.5. Shrinkage. Figure 9 presents the shrinkage strains of
MA and MG. Up to a replacement level of 15%, both MA
and MG exhibited lower shrinkage strain when compared to
the control. /is trend was also observed for MA-20, but not
for MG-20, which presented significantly higher shrinkage
strain. /ese findings are in agreement with those of others
[19, 66] and can be explained by the aforementioned reason
that Mg(OH)2 presents a greater volume than that of its
initial reagents. /e specimens’ expansion, prompted by the
MgO particles’ rapid reaction (typical of light-burned MgO
[67]), occurred 2-3 days after casting. A similar behaviour
was observed by Polat et al. [68] for mixes containing up to
7.5% MgO. After that, a distinctive behaviour of drying
shrinkage could be observed, nonetheless significantly offset
by the initial expansion; MA-15 and MA-20 exhibited about
80% lower shrinkage strain after 90 days. Others observed
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Figure 8: Water absorption by capillary action of mortars with (a) MgO A (MA) and (b) MgO G (MG).

Table 4: Carbonation depth and sorptivity of specimens with increasing MgO content.

Mix
Carbonation depth (mm) Sorptivity (×10−3 g/mm2)

28 days 91 days 3 hours 6 hours 24 hours 72 hours
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

CM 1.32 1.44 1.76 1.47 4.21 0.09 5.49 0.17 9.69 0.61 12.12 0.50
MA10 1.22 1.31 3.00 1.53 3.52 0.18 4.70 0.18 9.19 0.29 13.89 0.35
MA15 1.39 1.21 4.38 0.88 3.86 0.29 5.19 0.34 10.21 0.09 15.18 0.16
MA20 2.39 1.93 5.83 1.20 4.35 0.08 5.68 0.12 9.93 0.25 14.31 0.52
MG10 1.21 1.14 2.04 1.07 3.33 0.14 4.46 0.17 8.36 0.12 12.42 0.20
MG15 1.56 1.52 4.13 1.38 3.66 0.05 4.90 0.05 8.55 0.06 12.65 0.22
MG20 2.74 1.82 — — 4.74 0.09 6.36 0.13 11.27 0.26 16.77 0.36
Note: CM: control mortar; MA: mortars with MgO A; MG: mortars with MgO G.
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similar decreases in shrinkage for MgO contents of 7.5%
[68, 69]. However, for MgO G, the lower shrinkage strain
could be observed only for replacement levels of 10% and
15%, with values of about 40% and 20%, respectively, lower
than those of the control./is can be explained by the partial
hydration of MgO G before its inclusion and thus did not
contribute as effectively in the specimens’ expansion as in
MgO A-bearing mortars. Furthermore, for higher re-
placement levels of MgO G, the water requirement also
increased, which increased the specimens’ open porosity and
decreased their stiffness. /is facilitated the evaporation of
free water and decreased the material’s ability to restrain
shrinkage, which outweighed the expansion of MgO G.

4. Conclusions

An experimental investigation on the role of MgO, as partial
cement replacement, in the hydration reactions was per-
formed. /e following conclusions were drawn:

(i) Commercially available reactive MgO exhibits a
particle-size distribution that is comparable to that
of cement, which avoids further size-reduction
processing stages after the manufacture of light
burned MgO before its inclusion in cementitious
composites.

(ii) Although the formation of Mg(OH)2 was apparent
in MgO-bearing mortars, TGA results did not
present visible M-S-H-like patterns or those of
hydrotalcite-like compounds, suggesting marginal
interaction with the cement’s products of hydration
and siliceous aggregates. Nevertheless, additional
analysis should be carried out on specimens without
the incorporation of sand to further understand the
hydration reactions.

(iii) /e dilution of cement with progressively higher
replacement levels of MgO, and thus lower quantity
of C-S-H, probably led to the formation of a less
resistant microstructure (lower flexural and com-
pressive strength). Additionally, greater water re-
quirement was observed in mixes including MgO
since the mortars in this study were produced with
equivalent consistence and without the use of water-
reducing admixtures. /e resulting increased po-
rosity, apart from causing a decline in mechanical
performance, also led to increased carbonation and
water absorption by capillary action.

(iv) Mortars incorporating MgO are likely to present
lower shrinkage strain in comparison with cor-
responding control specimens made solely with
cement. Nevertheless, this enhanced performance
(∼80% less shrinkage strain for mixes containing
15% and 20%MgOA), prompted by the expansion
of Mg(OH)2, heavily depends on the quantity of
hydrated compounds and reactivity of MgO. From
a structural point of view, the MgO-containing
elements are likely to exhibit reduced shrinkage-
induced cracking thereby improving the mate-
rial’s overall structural and durability-related
performances.

Data Availability

/e data used to support the results of this study are in-
cluded in the manuscript.
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