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+e stability of the two-layer undrained clay slopes should be given considerable attention since they are commonly observed in
nature and in manmade structures, and they traditionally have low stability. +erefore, with the elastoplastic finite element
method, this paper thoroughly explores the influence of the soil strength parameter cu, slope angle β, and slope depth ratio DH on
the slope stability and failure mechanisms by the wide-ranging parametric changes. +e aims of this study are also to find the
critical strength ratio (cu2/cu1)crit and the maximum values of the stability numberNc that were observed in the parametric studies.
Numerical results are displayed in the form of charts to giveNc and (cu2/cu1)crit as a function of cu, β, andDH. Moreover, influences
of DH and β on Nc and failure mechanisms are examined in this study. +e results of numerical analysis demonstrate that cu2/cu1
significantly affects both the critical failure mechanism and the stability of the two-layer undrained slope. Improved knowledge of
the location of the critical failure mechanism allows for accurately estimating the stability of the two-layer undrained slopes for
future strengthening measurements to preserve stability.

1. Introduction

Slope stability analysis is a difficult and debatable problem
and has been one of the most important areas of research in
geotechnical engineering because it is probably one of the
most complex and challenging issues in many geotechnical
subdisciplines. Especially, the stability of the two-layer
undrained slope has gained appreciable consideration in the
research studies [1–7]. Investigators showed that two-layer
undrained clay slopes are frequently encountered in the
construction of embankments or dams and cutting slopes. In
the past few decades, a lot of scholars assessed the slope
stability, and they developed a quantity of advanced and
effective methods over time for observing the behavior and
failure mechanism of the slopes. Traditionally, limit equi-
librium approaches assume a failure surface and require

dividing the failing soil mass into slices (i.e., the ordinary
method of slices [8], Bishop’s methods [9], Morgenstern and
Price’s method [10], Spencer’s method [11], and Janbu’s
generalized procedure of slices [12]). Most of these methods
assume that the side force directions between slices as well as
the shape of continuous failure surfaces need to be defined.
+e slope failure, from the local to the overall, is a pro-
gressive failure process in which the tensile stresses and the
shear stresses are gradually released and transferred instead
of the simultaneous destruction of all points in the slope.
However, the failure criterion of the limit equilibrium
method (LEM) is formulated according to the simultaneous
failure of sliding surfaces but not the progressive failure
process of the slopes.

Generally, the results indicate that traditional ap-
proaches simulate the slopes with highly homogeneous and
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linear problems, but the actual slopes are usually anisotropic
and heterogeneous. Moreover, traditional approaches fail to
show discontinuous failure mechanisms which can result in
conservative evaluation of the slope stability. Typically, the
failure mechanisms of slopes have a remarkable increase in
complexity, which is more likely to combine the deforma-
tion with the failure of the slopes. +erefore, just giving a
conservative factor of safety (FS) to evaluate the yield and
failure progress of the slopes does not capture the principal
phenomena in slope stability analysis.

With the development of computer technology, slope
stability analysis using the finite element method (FEM) has
become a popular means and has been increasingly
employed in geotechnical engineering practice during the
past decades (e.g., [13, 14]). +e advantages of using FEM,
including enough accuracy and simplicity for slope stability
analysis over conventional approaches, have been summa-
rized by many specialists. As an alternative method to the
LEM, the FEM with the strength reduction method (SRM-
FEM) was suggested as early as in 1975 by Zienkiewicz et al
[15]. and has been adopted in [15–17]. In addition to being
one of the most powerful approaches for quantifying slope
stability, FEM does not require that the shape and location of
the potential sliding surface to be determined in advance,
and the critical sliding surface could be naturally sought out
when the soil shear strength is unable to maintain the ap-
plied shear stresses [18–22]. +is method could be applied to
receive information about the deformation, stress distri-
bution, and the strain in the slope for different conditions
such as rain and earthquake. Also, it can handle the com-
plexity of geometries, boundary and loading conditions,
varied soil properties, and the nonlinear stress-strain rela-
tionships [23]. In addition, FEM is able to single out the
shear strength reduction of the landslide yield zone and
monitor the progressive failure surface until the overall shear
failure occurs.

+e focus of this paper is to estimate the stability and to
study the failure mechanism of two-layer undrained clay
slopes consisting of different soil strengths. +e transition
point of the failure mechanism is introduced for one case
by Griffiths and Lane [13]; based on this research, this paper
considers the influence of different slope angles β and depth
ratios D on the critical value of cu2/cu1 and the corre-
sponding critical failure mechanism of the slopes. FEM is
then used to study cu2/cu1, β, and D on the stability number
Nc. +e paper thoroughly investigates the influences of the
shear strength ratio cu2/cu1, the slope angle β, and the depth
ratio D on slope stability and failure mechanisms of the
slopes by wide-ranging parametric changes. Numerical
simulations demonstrate that both the variances of ge-
ometry and soil properties of the slope can affect the
stability and failure mechanisms of the two-layer un-
drained slopes.

2. Review of Methods and Mechanisms for
Determining Slope Stability

2.1. Basic Assumptions. +e program of the slope stability
analysis involving the slope is subjected to gravity loads,

and it has the ability to simulate slope situations with the
variation of soil strength properties and geometric pa-
rameters. When this program is used to investigate the
slope stability, several main assumptions are applied: (1)
the nonlinear elastic-perfectly plastic constitutive model
with the Mohr–Coulomb yield criteria assuming zero di-
lation is applied for two-dimensional plane strain analysis.
(2) As a frictional material, the soil mass is ideal rigid and
the soil model calls for four soil parameters: cohesion (cu),
Young’s modulus (E), Poisson’s ratio (υ), and the unit
weight of the soil (c). (3) +e nonlinear problem is known
as small-displacement analysis. +e key target of this study
follows the influence of the slope geometries and soil
property variations on stability and the failure mechanisms
of the slopes.

2.2. Strength Reduction Method (SRM). To implement slope
stability analysis with the FE technique, the strength re-
duction factor (SRF) provides a quantitative indication of a
slope, that is, for a series of the methodically reduced shear
strength parameter cur, which is acquired by means of di-
viding the original strength parameters by a trial SRF. +e
reduced cohesion cur can be therefore defined as

cur �
cu

SRF
, (1)

where cu is the original cohesion of the soil and cur is the
reduced cohesion.

First of all, the gravity load program of the slope is
simulated by the original strength parameter. +en, the SRF
value incrementally increases until the slope failure just takes
place. +e critical value of SRF which is corresponding to
slope failure can be regarded as the FS of the slope.

It is of great importance to determine the reasonably
critical limit state, i.e., failure criteria and the critical
failure mechanism of the slope. When determining the
critical limit state, some common criteria used as indi-
cators of slope failure are (1) a plastic yielding zone
running through from the top to the toe of the slope. At
failure, there is a plastic yielding band forming within the
slope, and it would extend through the entire slope.
However, the running through of the yielding zone is not
an adequate situation for slope instability [24]. (2)
Nonconvergence of the solution occurs [25]. Zienkiewicz
et al. [15] proposed that a lack of convergence of the
numerical solution is often taken as a symptom of slope
failure. It is considered that nonconvergence would
happen in the iteration of the system solution when the
slope reaches the critical status. (3) A sharp increase in the
maximum nodal displacements within the mesh appears.
Griffiths and Lane [13] and Griffiths et al. [27] employed
the dramatic increase in the nodal displacements within
the mesh as an indicator of slope failure. In addition, most
of the numerical examples demonstrate that this failure
indicator has received more acceptance. When the stress
distribution is unable to satisfy the failure indicator and
the overall equilibrium at the same time, slope failure is
considered to have occurred. Within the mesh, the
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calculation program is required to supply an iteration
ceiling beyond where the algorithm will stop attempting
to redistribute the stresses. +is paper utilizes indicator
(3) that supplies an iteration ceiling of 2000 and intro-
duces a ratio of the maximum nodal displacement umax to
the height of the slope H, i.e., maximum relative dis-
placement δmax � umax/H (see Figure 1) is calculated in
terms of SRF. Evidently, δmax is a monotonically in-
creasing function.

2.3. Slope Stability Number in Strength Reduction. In a di-
mensionless manner, the theoretical numberNc is defined in
view of the stability number put forward by Taylor [28]:

Nc �
cu1

c · H · FS
, (2)

where FS is the factor of safety of the slope, c is the unit
weight of soil, and H is the slope height.

+e failure surface of the slope is characterized by slope
inclination angle β and depth ratio (DH), respectively, where
DH is the depth from the slope crest to a firm stratum. Under
the static loading condition, for FS� 1, the stability number
Nc in equation (2) expresses the combination of cu, c, and
DH, which warrants the slope to be at critical failure (limit
equilibrium). When the slope’s β and DH of the soil are
given, then Nc can be calculated readily from Taylor’s sta-
bility charts [29–33]. However, most of Taylor’s original
charts are for the homogeneous slopes, and these charts do
not provide a common and easy means to assess the critical
sliding surface related to a slope stability issue. Critical slip
surfaces [34] determine the range of the potential failure
region, and it is very important for evaluating slope analysis.
+is paper establishes not only the slope stability numberNc,
but also the critical slip surface and failure mechanisms
associated with stability numbers.

2.4. Failure Mechanisms of Slopes. For the purposes of de-
termining the shape of a slope at failure and seeking out the
most potential critical failure surface, this study considers
slope failure mechanisms which can be divided into three
different types: shallow failure mechanism, toe failure
mechanism, and base deep failure mechanism [35–42].
+ree failure mechanisms and their numerical character-
izations are illustrated in Figure 2. It has been proven that
the exact failure surface has a log-spiral shape, which has
been widely utilized. In Figure 2, YS(X) represents the slope
surface and Yf(X) describes the critical slip surface. +e
origin of the coordinate system (XC, YC) is located at the C
point of the slope. +e coordinates (XO, YO) are the pole of
the log-spiral with its circle points at the toe or the surface of
the slope. (XA, YA) or (XB, YB) and (XD, YD) are the coor-
dinates where the failure surface intersects the slope surface
which is associated with angle θ (the central angle defining
the slip circle). Taylor [28] derived the relations of spiral
radius R, XO, and YO as follows.

For toe failure mechanism,

R �
H

sin α sin θ
;

YO � R cos
θ
2

− α ;

XO � R sin
θ
2

− α .

(3)

For base failure mechanism,

R �
H

sin α sin θ
;

YO � R cos
θ
2

− α ;

XO �
H

2 tan β
,

(4)
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Figure 1: +e rapid increase in the dimensionless displacement
along with nonconvergence signifies slope failure, at which
FS� 1.00 (D� 1.5, cu2/cu1 � 1.12, and cotβ� 1.0).
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Figure 2: +ree types of slope failure mechanisms of the finite
slope.
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where α is the angle of the chord associating the start points
and the end points (e.g., point D and point A) of the slip
circle, θ is the central angle defining the slip circle, and β is
the slope inclination angle.

Slope failures occur in three different failure mecha-
nisms, depending on different parametric combinations
of cu, DH, and β. +e shallow toe failure mechanism is
shown as failure mechanisms #1 and #2 in Figure 2. +e
toe failure mechanism is where the failure surface passes
through the toe of the slope (shown as #2 in Figure 2). +e
base deep failure mechanism indicates that the failure
occurs with the failure surface passing at some distance
below the toe of the slope (shown as failure mechanism #3
in Figure 2).

3. Numerical Modeling Setup

It is apparent that the effects of the variation of soil
strength parameters are especially significant for the
slopes on undrained clays. As indicated by the finite el-
ement analysis, the four parameters (cu, E, υ, and c) and
appropriate boundary conditions should be considered
due to their significant influences on the development of
internal stresses of a slope. +e stresses will influence the
shape and location of the failure surface and the values of
the minimum FS which correspond to the failure surface.
+e slope has the total unit weight c � 20 kN/m3, the
height H � 18.0 m, and the undrained shear strength pa-
rameter cu1 � 60.0 kPa, which are all held constant for
calculating the FS or the stability number (Nc). +e elastic
parameters of Young’s modulus (E) and Poisson’s ratio (υ)
are assigned to normal values of 105 kPa and 0.3,
respectively.

For the model demonstrated in this study, the slope is
divided into two regions (embankment and foundation) to
account for the slope properties. +e undrained shear
strength in the embankment is assigned as cu1 and thickness
H, while the undrained shear strength of the foundation is
appointed as cu2. +is paper considers using the ratio of cu2
to cu1 to represent the variation of strength parameters
between the two distinct layers. +e cu2/cu1 ratio is named as
P which varies from 0.2 to 3.5. Defining that cu2/cu1< 1.0
corresponds to the cases of a stiff clay-over-a soft clay layer,
whereas cu2/cu1> 1.0 corresponds to the reverse. +e slope
geometry shown in Figure 3 has a foundation depth ratio
DH, accounting for values ranging from 1.2 to 4.5, and the
slope angle β ranges from 75° to 15° (namely,
cotβ� 0.286–3.732). +e boundary conditions for the
parametric study are illustrated in Figure 3: horizontal
displacements are fixed for nodes along the left and right
boundaries and all displacements are fixed along the bottom
boundary. Gravity loads are implemented to the mesh, and
the trial factors of safety (SRF) gradually increase until
nonconvergence occurs within the iteration ceiling in the
mesh [43].

+e critical value of P, herein named Pcrit, represents the
borderline value at which the critical mechanism changes
from shallow to deep. For the two-layered clay system, Pcrit is
the function of combinations of cotβ and D, which are

utilized to analyze the failure mechanism of two-layer un-
drained slopes. +e formulas of soil strength properties can
be simply expressed in the following form:

P �
cu2

cu1
,

Pcrit � f(cot β, D).

(5)

4. Numerical Modeling Results

4.1. Critical Strength Ratio cu2/cu1. +e previous model de-
termines the cotβ and DH values, and it is also important to
illustrate the critical value of cu2/cu1 using an undrained
slope example (φu � 0). It has a gradient of cot β� 1.5 and
D� 1.5. +e geometry and finite element mesh of this slope
are shown in Figure 4. +e meshing utilized 8-node
quadrilateral elements with reduced integration. Moreover,
the model mesh has nels� 1800 elements and nn� 5635
nodes. In this slope, the undrained shear strength (cu2) of the
lower layer varies from 0.5 to 3.0, while other soil properties
of embankment and foundation are kept constant, as
mentioned above. Meanwhile, these slopes are calculated
using FEM to make comparisons with the results obtained
by LEM.

Table 1 lists the FS results and failure mechanisms of the
slopes, both FEM and LEM. Figure 5 shows the curves of
computed FS with a range of the cu2/cu1 ratio. As expected,
the results are very similar. A clear behavior change occurs
at cu2/cu1≈ 1.4 with the finite element method, and an
obvious discontinuity transition point is also at cu2/cu1≈1.4
with the LEM. +at is, for this example, the critical cu2/cu1
value is approximately 1.4. However, it may be noted that
LEM requires the critical mechanism to be circular, while
FEM places no restriction on its shape. Furthermore, the FS
values are remarkably reduced when the foundation be-
comes weaker than the embankment. +e foundation soil
should be about 40% stronger than the embankment soil
before the critical mechanism moves to the shallow loca-
tion, at which the FS maintains a constant value after the
critical cu2/cu1.

Figure 5 shows typical failure mechanisms corre-
sponding to different values of cu2/cu1. It can be observed
that the transition point at Pcrit � 1.4 correlates with two
failure mechanisms, indicating an ambiguous situation in
which both shallow and deep mechanisms are trying to

2H
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DH

cu1 φu = 0

cu2 φu = 0

Embankment layer
1

cot β
β H

γ = 20 kN/m3, E = 105 kN/m2, υ = 0.3

Foundation layer

Figure 3: Two-dimensional geometry and input parameters for the
slope model.
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form simultaneously. +e corresponding critical failure
mechanism should emphasize that both the values of cotβ
and D are the given values, and it is only cu2/cu1 that is
changing: P < Pcrit for deep failure mechanism
(Figure 5(a)); P � Pcrit for two failure mechanisms of the
slip surface (Figure 5(b)); P > Pcrit for shallow toe failure
mechanism (Figure 5(c)). Furthermore, the results by

FEM are compared with other results of four methods for
each cu2/cu1 ratio along the x axis. Figure 6 shows the
stability number Nc results of the different methods.

It can be seen that the FEM results according to each cu2/
cu1 ratio plot between the results of the upper bound (UB)
and the lower bound (LB) and are higher than the results of
the LEM method. +is phenomenon illustrates that FEM is
very suitable to be used in practice directly to give a safe
design. In general, there is no doubt that the failure
mechanism relates to many influencing factors, not only the
undrained strength property cu but also the slope angle β and
the depth ratioD. +e study also investigates the influence of
β and D on the failure mechanism and stability of different
soil slopes.

Here, the paper defines “the two strongest surfaces” as
the two most apparent failure mechanism circles, forming
in the embankment and foundation soil layers at the same
time. As the results show, the critical transition point Pcrit
is corresponding to the critical failure mechanism, which
passes through two layers of the soil (two failure mech-
anisms). +erefore, the “two strongest failure mechanism”
is the most interesting in that it involves two soil layers at
the same time. +e FS and failure mechanisms are esti-
mated by FEM for the case slope compared with results
obtained from LEM. +e values of depth ratio D � 1.5 and
a gradient cotβ� 1.0 are fixed, while cu2/cu1 is varied in the
range cu2/cu1 � 0.5, 0.8,. . ., 3.0. Figure 7 shows the results
of FEM and LEM.

According to many trial computations, the results of the
critical cu2/cu1 � 1.12 (FEM) and the critical cu2/cu1 � 1.08
(LEM) are obtained. When SRF� 1.0, there is a rapid in-
crease in the dimensionless displacement E′δmax/cH2, and
the algorithm is unable to converge within the iteration limit
2000. Figure 1 shows the curve of dimensionless displace-
ment against SRF for this case. +e results of LEM are
displayed in Figure 7(b), which obtains theminimum FS that
corresponds to the critical cu2/cu1 ratio and the critical failure
surfaces of the slope. For these two failure surfaces, the

Nc
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Figure 6: Comparison of Nc results by different methods.

Figure 4: Typical mesh used for slope stability analysis.

Table 1: +e computed FS and failure mechanisms of the slope for
the case of D� 1.5 and cotβ� 1.5.

cu2/cu1
FEM LEM

FS Mechanisms FS Mechanisms
0.50 0.647 Deep 0.647 Deep
0.80 0.845 Deep 0.851 Deep
1.00 0.956 Deep 0.967 Deep
1.10 1.054 Deep 1.060 Deep
1.20 1.123 Deep 1.130 Deep
1.40 1.190 Two 1.185 Two
1.50 1.190 Shallow 1.185 Shallow
1.60 1.190 Shallow 1.185 Shallow
1.80 1.190 Shallow 1.185 Shallow
2.00 1.190 Shallow 1.185 Shallow
2.50 1.190 Shallow 1.185 Shallow
3.00 1.190 Shallow 1.185 Shallow

(c) cu2/cu1 > 1.4

(b) cu2/cu1 = 1.4

(a) cu2/cu1 < 1.4

10.8 1.10.5 1.4 31.2 1.81.5 21.6 2.5
cu2/cu1

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

FS

FEM
LEM

Figure 5: Computed FS and deformed meshes at failure for dif-
ferent strength ratio cu2/cu1 (D� 1.5 and cotβ� 1.5).
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minimum FS is 1.013. As for the slope shown herein, the
critical failure mechanism and the computed FS match well
within the two methods.

4.2. Critical FailureMechanisms. In order to investigate the
influence of geometry of the slope (as shown in Figure 4) on
slope stability and critical cu2/cu1, the stability numbers Nc,
corresponding to different cotβ and cu2/cu1, can be easily
obtained and are plotted in Figure 8 for the slope of D � 1.5.
Referring to Figure 8, it can be observed that the stability
number Nc decreases with cu2/cu1 increasing at first and
then maintains constant regardless of the change in the cu2/
cu1 ratios, just as expected. Taking into consideration
equation (2) where Nc is proportional to the inverse of the
FS, a higher Nc equates to a lower FS and vice versa. It can
be found from Figure 8 that the arrow shows the direction
of stability increasing. Nc decreases with increasing cotβ
that is also expected. Based on equation (2) and Taylor’s
slope stability chart (Figure 2), it can be shown that Nc of
the steep slope is higher than that of the flat slope when they
have the same constant situation. In the case of steeper
slopes, Nc could be as high as 0.54. +e stability of a steeper
slope is lower than that of a flatter slope in the same
condition. Another phenomenon is that there are many
definitely different transition points at the different ratios
of cu2/cu1, and the FS of each transition point is the
maximum value. +e transition points also demonstrate
that the different cotβ values correspond to the various
critical failure mechanisms. +e different transition points
(Pcrit) are obtained with various cotβ and constant D � 1.5
as shown in Table 2.

As shown in Figure 8 and Table 2, when cotβ increases,
the critical cu2/cu1 gradually increases. It should be noted
that the maximum critical cu2/cu1 is 1.6 for the case of
cotβ� 3.732 (β�15°), in which the strength of the lower soil
is approximately 60% stronger than the upper soil. It means
that the failure mechanism changes from the deep to the
shallow toe when the ratio of cu2/cu1 is just beyond the
transition point 1.6. Concerning cotβ� 0.286 (β� 75°), it is
noticed that the strength of the lower soil is equal to the
upper soil (cu2/cu1 � 1.0) before the deep failure mechanism
becomes the most critical mechanism. +is result indicates
that cotβmakes a significant difference to the critical failure

mechanism for slopes with the same D. Generally, most of
the critical failure mechanisms corresponding to the
transition points at Pcrit are the two conflicting failure
mechanisms. In addition, it should be known that the
transitions of the failure mechanism are not only in terms
of different cotβ, but also relate to different D. +erefore,
the influence of cotβ and D on Pcrit and the critical failure
mechanisms has also been investigated at the same time in
this paper. For many cases considered, Figure 9 presents
the computed critical cu2/cu1, namely, Pcrit, of purely co-
hesive two-layered (φu � 0) slopes. Further details and
discussions are given below.

In Figure 9, on the whole, it can be clearly observed that
when the D values are relatively high, such as D� 1.8 and
D� 2.0, Pcrit increases completely with the increase in the
cotβ values. When D is large, the lower soil should be
stronger than the upper soil before the critical mechanism
moves to a shallow location. With the increasing of cotβ
values, Pcrit has many similar values when D≤ 1.6, especially
for D� 1.2. +erefore, the slope angle, cotβ, has insignificant
influence on the critical failure mechanism of the slopes for
the very small D values. Increasing the D value leads to an
increase in the cotβ influence on the critical failure mech-
anism. A positive correlation between Pcrit and D is noticed,
but it is just for some cases, such as the flatter inclination
angle. For example, from cotβ� 2.0 (β� 26.57°) to
cotβ� 3.732 (β�15°), Pcrit increases with the increase in the
D values. Some of the results presented in Figure 9, however,
illustrate that D cannot affect the values of Pcrit, which keep
constant no matter how the value of D changes for the
relatively steeper slope cases. Further detailed observation
reveals the Pcrit has a large difference value between D� 1.2
(Pcrit � 1.4) and D� 2.0 (Pcrit � 1.8) when cotβ� 3.732
(β�15°). +is occurrence demonstrates that the changing of
the critical failure mechanisms of flatter slopes is more
strongly sensitive to various D values.

5. Stability and Failure Mechanism Analysis

5.1. Influence of Slope Geometry. Because the slope geometry
has a great influence on the values of Nc, the variation of Nc
for the different combinations of cotβ and D is shown in
Figure 10. +e values of cu2/cu1 are equal to 0.5, 1.0, 1.5, and
3.0 from the stiff layer over the soft layer to the soft layer over

(a)

(–36.0, 0.0) (0.0, 0.0)

(–36.0, 27.0)

(–36.0, 18.0) (18.0, 18.0) (36.0, 18.0)

(36.0, 27.0)

FS(min) = 1.013

FS(min) = 1.013

x
y

(b)

Figure 7:+e “two strongest surface failure mechanism” for this case with two methods. (a) Deformed mesh at failure corresponding to the
“two strongest surface mechanism” with FEM. (b) +e “two strongest surface mechanism” with LEM and computed minimum factor of
safety.
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the stiff layer. For all values of cu2/cu1, by changing D values,
in the range of (1.2, 1. 5. . ., 4.5), in all cases, the value of Nc
decreases with increasing cotβwhichmakes a great influence
on slope stability. For studying the influence of D on slope
stability, similar curve plotting is carried out for the values of
Nc, which are very close, or even coincide with each other for
the soft layer-over-stiff layer slope. As illustrated in
Figure 10(a), for cu2/cu1 � 0.5 in the stiff layer over the soft
layer, in all of cotβ, the values of Nc increase as the D values
increase. +at is, when the lower soil is weaker than the
upper soil, theD values significantly influence slope stability.
In general, the corresponding failure mechanism for cu2/
cu1 � 0.5 is a deep mechanism because of the weaker lower
soil. FEM permits the failure mechanism of the slope to look
for the weakest layer path through the soil mass, which can
cause higher instability.

For the homogeneous undrained clay slope, cu2/cu1 � 1.0,
β is greater than 53°, the failure takes place along a circular
slip surface passing through the toe, and this kind of circle
arc is called a toe sliding surface. From Taylor’s charts, for β

greater than 53°, the failure circle may be always a toe circle.
When β is less than 53°, the failure circle becomes toe, deep,
and base circles (tangent to a firm base), depending on the
values of D. +erefore, when β> 53°, the critical failure
mechanism is consistently a toe circle, as shown in
Figure 10(b). +e value of D has no influence on the slope
stability and failure mechanism if cotβ< 0.6.
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Figure 9: Computed Pcrit corresponding to different cotβ and
various D.
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Figure 8: Nc and cu2/cu1 for different values of cotβ (D� 1.5).

Table 2: Pcrit corresponding to different cotβ and D� 1.5.

cotβ Pcrit � (cu2/cu1)crit
0.268 1.0
0.6 1.1
1.0 1.2
1.5 1.4
2.0 1.5
2.5 1.5
3.0 1.6
3.732 1.6
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Figure 10: Continued.
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As mentioned above, the slope angle β has a remarkable
influence on slope stability and the failure mechanism as
shown in Figure 10(c). It can be supported by the failure
mechanisms illustrated in Figure 11. +e FE deformed
meshes indicates that, depending on the slope angle β, the
failure mechanisms change from shallow to deep. It is in-
teresting to highlight a toe mechanism at the steep slope of
β� 75°, as shown in Figure 11(a). +e failure mechanism
appears in two conflicting and ambiguous mechanisms at
β� 24.44° as presented in Figure 11(b), and the deep
mechanism is critical for the relatively flat slope at β� 15° as
shown in Figure 11(c). For flatter undrained slopes, the

typical failure mechanisms, as reported by Griffiths et al. [2],
are that the failure mechanisms are nearly always deep and
pass through the foundation soils. For steeper slopes, the
failure mechanism has more potential actions and may go
through the toe, leading to a higher Nc.

In addition, there is no notable shape variations in the
failure mechanism for different D values in Figures 10(c)–
10(d)), which indicates that Nc is almost independent of the
slope depth D. Particularly, D� 1.2, 1.5, and 2.0, and all of
the values of Nc are exactly the same for given cotβ, which is
shown in the illustration in Figure 10(e). +e reason for this
phenomenon is that the slope stability is controlled by the

(a) (b)

(c)

Figure 11: Deformed meshes at failure for different cotβ (cu2/cu1 � 1.5 D� 1.5). (a) cotβ� 0.268 (β� 75°). (b) cotβ� 2.2 (β� 24.44°).
(c) cotβ� 3.732 (β�15°).
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Figure 10: Influence of different cotβ and D on Nc of the undrained slope with various cu2/cu1. (a) cu2/cu1 � 0.5 (stiff-over-soft). (b) cu2/
cu1 � 1.0 (uniform soil). (c) cu2/cu1 � 1.5 (soft-over-stiff). (d) cu2/cu1 � 3.0 (soft-over-stiff). (e) cu2/cu1 � 3.0 (soft-over-stiff).
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weaker soil, while lower layer soil strength is assumed to be
three times stronger than that of the upper layer soil (cu2/
cu1 � 3.0).+us, the lower layer soil should be considered as a
rigid layer, and the upper layer soil plays a significant role in
slope stability and failure mechanisms. +e exactly equal
values do not exist in the relatively large D values
(D� 2.5–4.5), as shown in Figure 10(d), but the values of Nc
are very close. All in all, the influence of D is less sensitive to
slope stability and failure mechanism for the soft-over-stiff
slopes.

Charts in Figure 10 indicate that the stability number Nc
decreases with the increasing cotβ.All results received by the
previously mentioned implementations illustrate that de-
creasing the slope angle β leads to an increased slope sta-
bility, irrespective of the variance of the strength parameters.
For the stiff-over-soft slope system, the values ofNc are lower
for slopes with a low slope depth ratioD than for slopes with
a high slope depth ratio D. For the soft-over-stiff, the values
of Nc are higher for slopes with a low slope depth ratio D
than for slopes with a high slope depth ratio D. Further
examination of those phenomena provided by the slopes
shows that the failure mechanisms change from the shallow
toe to two obvious failures and then to deep, which has
relevance to β and D.

5.2. Influence of Slope Strength Parameter cu2/cu1. +e ac-
curacy of Figure 12 is confirmed for steep and flat slopes
using the different values of cu2/cu1 andD. It can be obviously
observed that Nc increases with increasing D but decreases
with increase in the ratio of cu2/cu1, when cu2/cu1≤ 1.0 (stiff-
over-soft). +e value of Nc for the thick lower layer (e.g.,
D> 1.8) has clearly influenced various D values on the flat
slope, where Nc has a obviously decreased tendency with
increasing cu2/cu1 for higher slopes. +e influence of D on Nc
is found to be less sensitive for the ratio of cu2/cu1≥ 1.5 (soft-
over-stiff) for both flat and steep slopes. It is also noted that
the steep slope (β� 75°) has the same Nc values after cu2/
cu1 � 1.0, which implies that the FS is a constant value, re-
gardless of the increasing D values. +erefore, D has almost
no influence on the soft-over-stiff steep slope stability.

So, as to clearly understand the influence of D on the
failure mechanism of the slopes, for cotβ� 2.0 and cu2/
cu1 � 1.5 slopes, a series of computations and comparisons
have been performed to obtain the results. Figure 13 displays
the failure mechanisms with variousD values. An interesting
phenomenon is found that the depth of the failure surface
increases with increasing D. It can be remarked that the
failure mechanism stays shallow if there is a relatively thin
foundation depth of D� 1.5 (Figure 13(a)); the failure
mechanism involves both the shallow and deep failure
mechanisms within two soils in the embankment and the
foundation for D� 1.8 (Figure 13(b)), and a deep mecha-
nism is preferred at D� 2.0 (Figure 13(c)). Hence, further
exhaustive observation illustrates that the shallow-to-deep
failure mechanisms are affected by increasing D values while
holding cu2/cu1 and cotβ values constant.

+e strength ratio cu2/cu1 has a greater influence on Nc
for flat slopes than steep slopes. In addition, except for cu2/

cu1 � 0.2, 0.5, and 0.8, other cu2/cu1 values cause the same Nc
value for allD values in the steep slope.+e influence ofD on
the failure mechanism for holding cu2/cu1 and cotβ slope
constant is that the increasing D corresponds to the shallow
toe-to-deep mechanisms. For a lower slope, the failure
mechanism has more choices and may go through the
shallow and pass through the toe foundation soils. For a
higher undrained slope, at least one failure surface is deep
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Figure 12: Influence of different D and cu2/cu1 of undrained slope
with various cotβ. (a) cotβ� 3.732 (β�15°). (b) cotβ� 0.268
(β� 75°).
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and passes through the foundation soil, leading to higher
slope instability probability.

6. Concluding Remarks

+is paper has investigated the stability and the failure
mechanism specifically of two-layer undrained clay slopes
with varied soil shear strengths. +e weaker soil always
dominates the overall performance and results in slope
instability. In addition, the failure mechanism seeks out the
path of the weakest resistance through the soil mass. +e
critical strength ratio cu2/cu1 and the distinct transition
points of failure mechanisms of the two-layer slopes are
obtained utilizing finite element analysis. More specific
conclusions can be summarized from this study as follows
[44]:

(1) +e critical failure mechanism corresponding to the
critical strength ratio (cu2/cu1)crit involves a situation
in which both shallow and deep mechanisms attempt
to form simultaneously. For the flatter slopes, the
critical cu2/cu1 increases with the increase in slope
depth D, but it has a negative relationship with the
slope angle β. However, for the steeper slopes, (cu2/
cu1)crit does not depend on D, and it still increases as
β decreases.

(2) Soil strength ratio cu2/cu1 has notable effects on the
stability of the two-layer undrained clay slope. For a
stiff-over-soft clay slope (cu2/cu1< 1.0), the variation
of the strength parameters has significant influences
on the slope stability, so that the values of Nc are
decreasing with increasing cu2/cu1.+is effect is more
remarkable with greater values of D. However, for a
soft-over-stiff clay slope (cu2/cu1> 1.0), the variation
of the strength parameters have slight influences on
the slope stability.

(3) +e slope stability is decreasing as the value of β
increases. +is situation is more noteworthy at
higher values of strength ratio cu2/cu1. And, for
another aspect, the variation of the strength

parameters has more remarkable influences on the
slope stability for flat slopes than that of steep slopes.
+e higher the values of D, the more obvious the
influences of cu2/cu1 on the stability of an undrained
clay slope which can be observed in the flat slopes’
context.

(4) +is paper has performed stability charts to dem-
onstrate the magnitude ofNc for different parametric
(cu2/cu1, β, and D) combinations. Slopes with higher
D result in lower stabilities than slopes with lower D
for stiff-over-soft clay. Nevertheless, for soft-over-
stiff slopes, it is noted that Nc is completely insen-
sitive to the value of D, which is found to have few
influences on slope stability.

(5) +e failure mechanism of the slope will be changing
gradually from the shallow toe to two failure surfaces
and then to deep with the increase in both cu2/cu1 and
D and a decrease in β.
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Figure 13: Deformed meshes at failure for different D values (cu2/cu1 � 1.5, cotβ� 2.0). (a) D� 1.5. (b) D� 1.8. (c) D� 2.0.
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