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)is work deals with a 2D finite element simulation of nonplanar multiple cracks using fracture and crack propagation analysis.
)is analysis was performed by using the developed source code software written by Visual Fortran Language. )is source code
includes the adaptive mesh generation utilizing the advanced front method and also the mesh refinement process. In order to
correctly represent the field singularity, the quarter-point singular elements are constructed around the tip of the crack. )e crack
growth criteria are used to predict the crack growth direction by utilizing the circumferential stress factor in calculating the
yielding stress in elastic fracture assumptions. )e stress intensity factor determination is one of the most critical procedures as it
determines the crack initiation and propagation mechanism. Moreover, the stress intensity factor histories during the crack
growth are measured with the use of equivalent domain integral methods. )e crack path simulation and stress intensity factor
calculations are compared with the literature and revealed that the results are in agreement with research carried in this domain.

1. Introduction

Characterisation of the mechanical behavior of the solid
materials of the crack-free surface involves important
influencing factors such as stress, strain, force, and loading
system to which the material is subjected. )e crack growth
mechanism of these surfaces is analysed by the two cate-
gories of fracture mechanics, namely, linear elastic fracture
mechanics and elastic-plastic fracture mechanics [1]. Stress
intensity factor plays a major role in predicting and ana-
lysing the crack initiation and growth in the domain of
fracture mechanics analysis. Stress intensity factors (SIFs)
directly relate to the amplitude of the crack initiated in terms
of singular tip.)e tip of the crack has maximum probability
to possess higher stress intensity factor. )e stress intensity
factor calculation involves consideration of variables such as
stress, strain, and displacement. Several books involving the
calculation methods of stress intensity factor calculation are
available [2, 3] for specific geometries and loading. Due to
the limitation of the analytical solution obtained in stress
intensity factor determination, the vast majority of fracture

problems encountered in engineering is solved with the help
of numerical methods [4]. Stress intensity factors can be
computed by various methods, such as the boundary ele-
ment method (BEM)-finite element method (FEM), both
FEM and BEM [5]. )e critical problem encountered by the
researcher in fracture mechanics is opting the appropriate
method for accurate prediction stress intensities.

)ere exist two categories of commercial FEM programs:
finite element programs such as ANSYS [6, 7], ABAQUS,
and NASTRAN can be used to add elements manually and
perform analysis on complex structures. )e other type is
professional FEM programs such as NASGROW and AF-
GROSS, and they are comparatively very accurate in pro-
viding a high-precision calculation [8]. However, there are
limitations when it comes to more complicated geometries
and loading conditions. Complicated geometries require a
high-density mesh and a complex element in the simulation
method. Other researchers developed their own two-di-
mensional source code program to determine and analyse
the fatigue crack growth and crack propagation under the
condition, namely, static loading and also the determination
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of stress intensity factor using the mesh strategy [9–12]. It is
difficult to opt a method for accurate calculation with
minimal time and at low cost. Several techniques involving
various equations in SIF calculation are available in the
literature [2, 13, 14]. Recently, Fu et al. [15] proposed a
crack-tip element for modelling crack propagation by taking
the advantages of the symplectic analytical singular element
(SASE) and the floating node method (FNM). In their
method, accurate crack-tip fields (displacement and stress)
can be captured, and multiple crack propagations can be
modelled without remeshing. )is is essentially because of
the use of the crack-tip asymptotic analytical solution with
higher order expanding terms. Another benefit of their
method is that the stress intensity factors (SIFs) can be
solved without any postprocessing. An investigation of the
generalized dynamic stress intensity factors of cracked
homogeneous and linear magnetoelectroelastic solids using
the extended finite element method was presented by Bui
and Zhang [16]. Furthermore, Bui and Zhang [17] presented
a transient dynamic analysis of stationary cracks in two-
dimensional, homogeneous, and linear piezoelectric solids
subjected to coupled electromechanical impact loads using
the extended finite element method (X-FEM). )ey devel-
oped a dynamic X-FEM computer code using quadrilateral
elements in conjunction with the level set method to ac-
curately describe the crack geometry. )e beauty of the
X-FEM lies in the fact that the discontinuity and singularity
induced by the crack are effectively treated as the mesh is
completely independent of the crack geometry, and more
interestingly, remeshing in crack propagation is no longer
required [18].

)e failures due to cracks developed in mechanical
bodies are due to many factors like geometrical variations as
well as the differing loading conditions. )ere are many
formulas and methods to calculate the stress intensity factor
depending on the various loading conditions and body
geometries. In fact, most of the fracture mechanics analysis
consider the single-loading condition instead of multiple
loads in analysis since the later is complex to analyse in
simulated analysis [19]. Due to these reasons, the deter-
mination of SIF nonstandard geometries is required by using
numerical methods like finite element methods. )is re-
search was motivated by a practical need to model the crack
propagation under mixed-mode loading and fatigue life
prediction in LEFM. )e developed program solves two-
dimensional LEFM problems using the adaptive mesh FEM.
)is model is provided a finite element code that produces
results comparable to the currently available commercial
software. As far as the acquaintanceship is concerned, using
commercial software is not appropriate at least in two
standpoints: first, the fundamental algorithm that lies behind
it is not fully comprehended, and secondly, state of the art in
the programming skill is absolutely unapprehended.
Commercial software may also be employed to simulate
crack propagation and fatigue life prediction, but such
software is very expansive and almost cannot get the source
code to make some development on it. )e computational
efficiency is highly dependent on many parameters such as
the mesh density and number of mesh refinement, as well as

the number of cracks in the geometry. )e computational
efficiency will significantly increase by decreasing or elim-
inating the remeshing process by using the extended finite
element method. Huynh et al. [20] introduced a novel and
effective computational approach that is based on polygonal
X-FEM (named as PolyXFEM) for the analysis of 2D linear
elastic fracture mechanics problems. )e PolyXFEM is
equipped with a new numerical integration technique that
uses the concept of Cartesian transformation method over
polygonal domains. )is method is computationally more
efficient compared to the two-level mapping integration
commonly used on polygons. )is study presents a two-
dimensional finite element simulation of nonplanar multiple
cracks using fracture and crack propagation analysis with the
aid of a developed source code program written by Visual
Fortran Language.

2. Developed Program Criteria and
Mesh Refinements

)is work relates to the advancing front method [21] which
is one among the easiest mesh generation processes. )e
algorithm used to generate the element starts with “front”
form of analysed boundary of the considered domain to
create the element and then advances to the discrete regions
of defined boundaries to complete the entire domain. A
researcher introduced procedures in the advancing front
method of the element generation algorithm [22] involving a
triangulation construct using a set of predetermined points
inside the domain. Another research indicates that the point
generation in triangular element construction is instanta-
neous as part of algorithm generation [23].

)e geometrical characteristics of the mesh generated
can be defined using the background mesh, and graded
meshes are needed to define nonuniform distribution of
element sizes. Introduction of stretches in specified direc-
tions is employed to analyse directional orientation of ele-
ments. )e important paths of mesh generation are given
[24] as follows:

(1) Node generation to define the boundary edge of the
domain

(2) Element and node generations within the discretised
boundary

(3) Element shape analysis and improvement to ensure
quality of the mesh

)e element shape, size, and orientation are the geo-
metrical characteristics of the mesh and said to be the spatial
functions. )e front mesh generation is employed prior to
triangular element creation.)e creation of initial front mesh
involves data of all sides of the discretised boundary edges,
relating to closed loops of boundary conditions. If the pre-
determined region consists of multiple connected subregions
of differing properties, then the front mesh generation is done
for every region of differing material properties [9].

Every side of the front mesh generated is defined by
two end points. )e sides of analysis are arranged such that
the domains to be meshed fall to the left of the generation
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front. In the completion stage of mesh generation, mesh
smoothening is carried out to ensure the improved shape
of the mesh. )e interior nodes of the domains are
repositioned without changing the nodal connections of
the element to improvise on the shape. )e Laplacian
smoothening is a famous and efficient method that can be
used for computational smoothening of the algorithm of
the analysis [25] which indicates the repositioning of the
centroid of the polygon formed by the nodes. )is tech-
nique provides the effective adjustment of the shape of the
element in analysis.

Adaptive subdomain remeshing techniques add each crack
advance segment by modifying the current finite element
mesh.)is is done by replacing elements and nodes in a region
ahead of the current crack tip with smaller elements along the
crack faces to be added. )ese additional elements typically
include a small structured rosette of elements at the new crack-
tip location. )e remaining space between is filled with ad-
ditional elements. Furthermore, geometric updating of a crack
path during each incremental step is carried out because cracks
are not represented explicitly in an adaptive mesh. )is
method insists on the need for themesh refinement among the
tips of the cracks considered [5]. )e maximum circumfer-
ential stress, the energy release rate, and the strain-energy
criteria are used in crack path prediction [26].

In this proposed work, the circumferential stress criteria
are considered for the isotropic materials subjected to
multiple loading conditions [9, 11]. )e following is the
maximum tangential stress at which the crack propagates in
the normal direction:
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)e aforementioned normal direction can be obtained
by solving dσθ/dθ � 0 for θ. )e following is the nontrivial
solution:
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3. Stress Intensity Factor Method

In 1968, Rice [27] introduced the J-integral method to study
nonlinear material behavior in small-scale yielding. It is a
path-independent contour integral defined as

J � 􏽚
C

Wn1 − σijnj

zui

zx
􏼠 􏼡ds, (4)

where strain-energy density is denoted 0 by W; stresses by
σij; local I axis displace ui; the contour has an arc length and
is expressed as s; and nj is the outward unit normal to the
contour C around the crack tip (Figure 1(a)).

)e integral method which utilizes the equivalent do-
main is more appropriate to the finite element simulation

when compared to that of the finite size domain method
relating to the divergence theorem by integration. For 2D
problems, area integral replaces the contour integral i
(Figure 1(b)). )en, equation (4) is rewritten as
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In LEFM simulation, the J-integral by definition take
account the translational mechanical energy balance in the
tip region of the crack along x-axis. In either cases of mode I
or mode II, equation (5) simplifies the SIF calculation KI or
KII but fails for multiple loading conditions to calculate KI
and KII separately. For such a case, the integral that can be
used is as follows [28]:
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where k represents the index of the crack tip. )e integral
method is used for smaller deformations, and then the same
is extended for the greater one. )e following are the
methods by which the SIF can be obtained.)e first case uses
the J-integral and SIFs. )ese relations are
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)e second methodology uses the relation between SIFs:
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)enatural triangle quarter-point elements [29] are used
to obtain the 1/

�
r

√
linear elastic singularity for stresses and

strain field in the vicinity of the crack tip. )e schematic
rosette formation of the quarter-point elements around a
crack tip is shown in Figure 2.

4. Adaptive Mesh Refinement

)e adaptive mesh refinement is employed as the optimi-
zation scheme. )is scheme is based on a posteriori error
estimator which is obtained from the solution from the
previous mesh. )e stress error norm is taken as the error
estimator. )e main idea in the h-type adaptive mesh re-
finement is to obtain the ratio of element norm stress error
to the average norm stress error of the whole domain which
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is also known as relative stress norm error, and from this,
ratio of the new size of the element for the refinement
process can be predicted. In this procedure, the mesh size of
each element is defined as

he �
����
2Ae

􏽰
, (9)

where Ae is the area of the triangle element. )e norm stress
error for each element is defined by
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while the average norm stress error for the whole domain is
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where m is the number of total elements in the whole do-
main and σ∗ is the smoothed stress vector which consists of
smoothed stresses components. In the finite element
treatment, the integration with the isoparametric triangular
element will be converted by the summation of quadratics
following the Radau rules as follows:
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and similarly,
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t
edetJe

Wp,

(13)

where te is the thickness of the element for a plane stress
condition and te � 1 for a plane strain condition. It is ob-
vious that these parameters are evaluated involving the
values of stresses and smoothed stresses at the sampling
points only.

It is considerable then to make the relative stress norm
error for each element ζe less than some specified value ζ (say
5% for many engineering applications [24]. )us,

ζe �
‖e‖e

‖􏽢e‖
≤ ζ, (14)

and the new element relative stress error norm with per-
missible error of ζ is defined as

εe �
‖e‖e

ζ‖􏽢e‖
≤ 1. (15)

)is means any element with εe > 1 needs to be refined,
and subsequently, the new size of mesh refinement needs to
be predicted. Here, the asymptotic convergence rate criteria
are used whereby it is assumed that

‖e‖e∝ h
p
e , (16)

where p is the polynomial order of approximation. In the
present study case, p � 2 since the quadratic polynomial is
used for the finite element approximation. )e approximate
size of the new element is

hN �
1
��εe

√ he. (17)

)e current mesh will be regarded as the new background
mesh, and the advancing front method will be repeated
depending on the number of mesh refinement sets by the user.

5. Results and Discussion

5.1. Plate with One Central Hole and Cracks of Interaction.
In this work, nonplanar multiple crack initiation and
growth under the condition of uniaxial stress and

consisting a hole and three cracks are presented. )e
boundary conditions and load details are revealed in
Figure 3. )e body is subjected to cycling loading with
controlled displacement of − 0.005 mm. )e displace-
ment was observed at the base area of the body so that
the tension prevails at the top portion. )e body is made
of Al-7075 for which the elastic modulus and Poisson’s
ratio are 72 GPa and 0.33, respectively. )e thickness of
the body is fixed as 3 mm to have simulation of the plane
stress condition. In Figure 4, the finite element model of
the specimen is depicted in their initial states.

As shown in Figure 5(a), the source causing the shear
stress is the eccentricity of the cracks so that mode II of
SIF is dominating. Hence, there is change of direction
which is observed in crack propagation from horizontal to
vertical. )e vertical distance between the second and
third cracks is observed to be small leading to higher SIFs
compared to that of surrounding regions. )erefore, the
critical observation is that the second and third cracks
grow faster than that of the first crack.

Figure 5(a) also shows the path of the crack growth
predicted in the present study, and the mathematical results
obtained [30] by FEM were compared with results obtained
by [31], as shown in Figure 5(b). As shown in the figure, the
results are matching with the literature [31].

)e final crack path including the mesh as well as the
final mesh with deformation is shown in Figure 6.

Figure 6 clearly shows that the crack is growing
continuously, and there exists a change in propagation
direction due to the presence of stress redistributions.
)is is clearly visible while analysing Figures 7 and 8.
Here, curved crack length is the summation of all pre-
vious incremental crack growth values at a given step
during propagation. As shown in Figures 7 and 8, the
drops of the values of KI are the reasons for changing the
crack path direction from a straight line to the curvature

100

16

100

70

15

30
15

55

10

2nd crack

1st crack

3rd crack

35

u

Figure 3: Specimen with a hole at its center and three interacting
cracks (all dimensions are in mm).
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(a)

Dundar and Ayhan (2016)
Judt and Ricoeur (2015)

(b)

Figure 5: (a) Present study. (b) [30, 31] results.

(a) (b)

Figure 6: Final crack growth path and the deformed mesh.

Figure 4: Initial mesh for the plate with a hole and three interacting cracks.
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due to the influence of the hole on the crack direction. But,
the effects of the load on crack 1 are smaller compared
with the other two cracks, and there is no influence of
the hole on the crack direction so that it propagates in a

direction away from the existence of the hole only up
to 15 mm, and the predicted SIFs are shown in Figure 9.

For multiple existence of cracks, the crack propagates one
after the other according to SIF values. According to
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Figure 7: Relationship between SIFs and crack length for crack 2.
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Figure 8: Relationship between SIFs and crack length for crack 3.
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Figure 9: Relationship between SIFs and crack length for crack 1.
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Figures 7–9, crack 3 will propagate first followed by crack 2 and
finally crack 1. Figures 10(a) and 10(b) show themaximum and
minimum principal stress distribution for the last step of the
crack growth, respectively, as well as the magnification of the
cracks paths for both stresses is depicted. As seen in the legend
for both stresses, there is a slightly difference in the values
(28MPa for the maximum principal stress compared to
20MPa for the minimum principal stress). For more visuali-
zation for the crack paths, Figure 11 shows the enlargement of
the area around the cracks in the last step of crack propagation.

5.2. Nonplanar Multiple Crack Propagation in a >in Plate.
)e second example deals with two eccentric through-
thickness cracks that eventually propagate in a nonplanar
mode.)is problem was studied using numerical analysis by
Price and Trevelyan in 2014 [32]. In this problem, two
edge cracks in a thin plate with initial lengths of 10 mm
growth under cyclic tensile loading are seen. Geometry
details, load, and the conditions applied for the bound-
aries are shown in Figure 12. As shown in the figure, zero

displacements are applied at the bottom of the plate in x,
y, and z directions. )e top surface of the body is sub-
jected to 100MPa stress. )e modulus of elasticity and

σ1
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11.1469
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5.48468
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(a)

σ2

20.6157

17.9997

15.3836

12.7675

10.1514

7.5353

4.9193

2.3032

–0.31284
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15.3836
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–0.31284

–2.9289

(b)

Figure 10: )e maximum and minimum principal stress distribution for the last step of the crack growth.

Figure 11: A zoomed-in view for the area around the crack paths in
the last step.
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Crack 
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Figure 12: )in plate containing two eccentric edge cracks.
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Poisson’s ratio utilized in the calculation are 30 GPa and
0.3, respectively.

Figure 13 shows the crack growth path predicted by
using the developed program compared with the numerical
results obtained by Price and Trevelyan in 2014 [32] by using
the boundary element method as well as the FEM results
achieved by [30]. As shown in this figure, the agreement with
both results is clear.)e final crack growth path as well as the
mesh in the deformed form are shown in Figure 14.

)e predicted SIF values for the two cracks are shown in
Figures 15 and 16, respectively. As shown in both figures, the
SIF of mode I factor has dominated, and the crack growth
direction has a slight effect on mode II which caused the
curvature path on the end. According to the values of stress

intensity factors, the two cracks will propagate at the same
time.

For more declaration for the stress distribution on this
geometry, the maximum and minimum principal stress
distribution is shown in Figure 17. )e units of the stresses
were in Pa.

6. Conclusions

)e simulation of nonplanar multiple cracks in a two-di-
mensional finite element using fracture and crack propagation
analysis has been performed. )e strategy has been used
successfully to simulate the initiation and propagation of cracks
in a plate specimenwith a hole and others without the hole.)e

(a) (b) (c)

Figure 13: Final crack growth path. (a) Present study. (b) Price and Trevelyan [32]. (c) [30].

(a) (b)

Figure 14: (a) Final crack growth path. (b) Deformed mesh.
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Figure 15: Relationship between SIFs and crack length for crack 1.
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Figure 16: Relationship between SIFs and crack length for crack 2.
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Figure 17: (a) Maximum principal stress. (b) Minimum principal stress.
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existence of the hole in the plate affects the crack to change its
direction towards the hole based on the hole size and position.
However, for multiple cracks, the cracks propagate one after
the other according to the values of the stress intensity factors,
as well as the direction of the crack growth will also be affected
by the existence of other cracks to attract each other depending
on its position one from another.
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cluded within the article.
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