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One of the most common problems encountered by patients using artificial joints is the high wear rate. In this study, a polyvinyl
alcohol/polyethylene glycol (PVA/PEG) gel was prepared through the cross-linking reaction between polyvinyl alcohol (PVA)
and polyethylene glycol (PEG) solutions.3is gel can lubricate artificial joints, thereby lowering their coefficient of friction (COF)
and increasing their service life. Various techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, Raman
spectra, X-ray photon spectroscopy, and thermogravimetric analyses, were used to analyze the structure of this synthetic gel. 3e
tribological results indicated that the synthetic gel’s lubrication effect was the most optimumwhen it contained PVA (10 wt%) and
PEG (15 wt%). An average COF of 0.05 was obtained under a load of 10N and at a speed of 1.0 cm/s. In addition, the wear rate was
reduced in comparison to distilled water. Furthermore, the biological tests proved that the PVA/PEG gel was highly bio-
compatible. 3us, this study introduces a novel technique to prepare PVA/PEG gels that improve the tribological performance of
artificial joints.

1. Introduction

3e applications of gels have rapidly increased and become
diversified. Gels can repair soft tissues, fill tissue cavities, and
address other soft tissue defects [1–4]. Patients suffering
from different joint diseases can opt for joint replacements
[5, 6]. However, frictional and general wear reduce the
service life of artificial joints [7–9]. Several different solu-
tions have been proposed to mitigate this problem [10, 11].
Polyether ether ketone (PEEK) is a biomaterial that is used to
create artificial joints for joint replacement [12, 13] and is
widely used by researchers in other research in the field of
prosthetic implants [14–17]. Several materials are used to
prepare artificial joints, and one such material is CoCrMo
alloy [18–21].

3e coefficient of friction (COF) of the natural joints in
the human body ranges from 0.001 to 0.03 under a pressure
range of 3–18MPa, which is lower than that of most artificial
joints [22]. However, the lubrication of artificial joints is not
easy because the lubricants should be easily absorbed by the
human body. In addition, fragments of materials produced
during friction could lead to inflammation [23–25].
3erefore, the development of alternative lubrication
methods to increase the service life of artificial joints has
attracted considerable attention [26–29].

Polymers are high-molecular-weight compounds that
are repeatedly linked by covalent bonds. 3e reaction be-
tween different macromolecules is called cross-linking re-
action [30, 31]. Katta et al. reported that polyvinyl alcohol/
polyvinylpyrrolidone (PVA/PVP) was cross-linked into
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hydrogels and investigated for its potential use as cartilage
replacement [32]. Li et al. prepared chemical-physical cross-
linked trimesh (TN) hydrogels using PVA, PVP, and acrylic
acid as raw materials. 3e effects of Zn2+ on the mechanical
and frictional properties of hydrogel were studied by con-
trolling the content of Zn2+ in TN hydrogel [33]. Polyvinyl
alcohol (PVA) gel is biocompatible and can act as a lubri-
cant, but its high melting point limits its applicability
[34–36]. Copolymerization or macromolecule reactions can
be used to introduce weak forces into the main chain or side
group of the molecule. 3is weakens the intramolecular and
intermolecular forces of the PVAmolecule, thereby reducing
the melting point [37]. Polyethylene glycol (PEG) is widely
used for lubrication purposes and is biodegradable and
biocompatible [38, 39]. 3erefore, in this study, PEG was
added to PVA to form a composite gel for artificial joint
lubrication using a novel gel preparation technique.

It is important for the prepared gel to be biocompatible,
biodegradable, and nontoxic for clinical applications [40].
PVA solution was added to a PEG solution to obtain a PVA/
PEG gel in this study. Both PEG and PVA contain a large
number of hydrogen-containing functional groups on their
surfaces; therefore, when PEG is added to PVA, a large
number of hydrogen-containing functional groups are
bound together by hydrogen bonding [41–43]. Gel lubri-
cation is preferable to liquid lubrication for clinical appli-
cations because the gel forms a membrane, preventing direct
contact between joints. 3is PVA/PEG gel improves lu-
brication between artificial joints and thus extends their
service life.

2. Experimental Method

2.1. Materials. PEG (molecular weight: 4,000Da) and PVA
were purchased from Tianjin Damao Chemical Reagent
Factory. 3e materials used in this study were of analytic
reagent (AR) grade.

2.2. Preparation of Samples. Different PEG weights were
added to different amounts of distilled water to obtain PEG
solutions with varying concentrations (10, 15, 20, and 25 wt
%). PVA (10 g) was added to 90mL of distilled water, heated
at 90°C, and stirred at 500 rpm for 20min to obtain a 10 wt%
PVA solution; subsequently, the temperature was main-
tained at 70°C. 3e PVA solution (20mL) was then added to
the PEG solution (50mL). Following that, the solutions were
mixed by magnetically stirring the mixture at 70°C and
500 rpm for 20min to obtain the PVA/PEG gel. 3is process
was repeated for different PEG solution concentrations
under identical conditions to obtain gels with varying
concentrations. 3e PVA/PEG gels were then stored in a
room at 25°C for 24 hours.

2.3. Friction Tests. 3e tribological properties were inves-
tigated using the GSR-2 friction machine (rubber alcohol
friction testing machine, China). 3e samples were made to
slide against a disk with a reciprocation friction drive system
at room temperature (25°C). 3e disk was made of CoCrMo

alloy plates (Φ 30mm). A PEEK ball (Φ 9.525mm) was
made to slide against the disk. A 3–10N load was applied for
30min. 3e specifications of the materials, as provided by
the manufacturer, are listed in Table 1. 3e tests were re-
peated three times, and the average values of these results
were used for analysis.

2.4. Characterization. Fourier transform infrared (FT-IR)
spectroscopy was used to study specific interactions. 3e
samples were scanned for waves with wavelength numbers
between 500 cm−1 and 4,000 cm−1 using the Nicolet iS50
spectrometer (3ermo Fisher Scientific, USA). 3e crystal
phase structure patterns were analyzed through X-ray dif-
fraction (XRD) characterization using the D8 ADVANCE
diffractometer (Bruker, Germany). Raman spectra of the two
materials were obtained using Horiba Jobin Yvon, Model
Hr800, under the following conditions: laser wavelength
514 nm, output 17mW, grating 600, objective ×10, time 10 s,
and wavenumber 500–4,000 cm−1. X-ray photoelectron
spectroscopy (XPS) was performed using the ESCALAB
250Xi X-ray photoelectron spectrometer (3ermo Fisher
Scientific, USA) to study the elemental composition of the
material. 3e gels were dried at 37°C for 24 hours in a
vacuum oven. 3ermogravimetric analyses (TGA) were
performed using the 409C thermobalance (NETZSCH
Group, Germany) at temperatures ranging from 25°C to
920°C in an oxygenated atmosphere.

2.5. Biological Tests. 3e three materials (PEG, PVA, and
PVA/PEG) were placed in appropriate amount of PBS, and
the gel solution with a mass volume fraction of 100mg/mL
was obtained through applying high temperature and high
pressure. 3e cell complete medium components were 10%
fetal bovine serum (Gibco), 100U/mL penicillin, and 100 μg/
mL streptomycin (Gibco) and RPMI1640 (Gibco). 3ird-
generation resuscitated L929 cells were used for the ex-
periment. After the cells grew to about 80%, the mediumwas
discarded and washed twice with sterile PBS, and trypsin
(GBICO) was added for digestion for a duration of 1min.
Digestion was stopped with the complete medium, resus-
pended, and centrifuged. 3e supernatant was discarded,
and the complete medium was added to the cell precipitates
to obtain the cell suspension again.3e cell suspensions were
mixed and counted. 3e cell density was 10,000 cells per
well, and the total amount of medium in each well was
150 μL.3e cell is cultured at 37°C in a 5%CO2 incubator for
12 hours. Subsequently, 10 μL of PEG, PVA, or a mixture of
PEG and PVA was added to each well, and the wells were
divided into four groups: PEG, PVA, PEG/PVA, and blank
control groups. Each group had six duplicate holes. 3e
culture was incubated at 37°C in 5% CO2. After 24 h, the
material and medium were discarded; sterile PBS was gently
washed twice, and the complete medium containing 10 μL
CCK8 solution was added to each well for further incubation
for 1 h. 3e solution was fully mixed by shaking at a low
speed for 10min on a shaking table. FLUOstar Omega
analyzer was used to detect the OD value of each hole at
450 nm.
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3. Results and Discussion

3.1. FT-IR, XRD, andRamanAnalysis. Figure 1(a) shows the
FT-IR spectra of the PVA, PEG, and PVA/PEG gels. 3e
absorption peaks of the FT-IR plot of PVA at 1,087 cm−1 and
2,886 cm−1 can be attributed to the asymmetric vibration of
C–O–C and O–H vibration, respectively [44]. 3e absorp-
tion peak of the PEG FT-IR plot at 1,096 cm−1 is similar to
that of PVA, indicating that a C–O–C asymmetric vibration
could be responsible for the PEG peak as well. 3e ab-
sorption peak at 2,883 cm−1 was attributed to the stretching
modes of CH2 in PEG [45, 46]. 3e wideband around
3,349 cm−1 is thought to be due to the stretching vibrations
of the hydroxyl group [47]. Figure 1(b) shows an enlarged
FT-IR plot of the PVA/PEG gel. Although the plot of the gel
contained two absorption peaks at 2,884 cm−1 and
1,144 cm−1, as shown in the magnified plot in Figure 1(b),
they were insignificant in comparison to the raw material.
3is could be due to the lower substance content. 3is
indicates that the tensile vibration of the two materials in the
PVA/PEG gel, which is attributed to the interaction between
PVA and PEG, led to a redshift. Figure 1(c) shows the XRD
patterns of PVA, PEG, and the PVA/PEG gel. 3e PVA/PEG
gel had two diffraction peaks at 19.1° and 23.1°, which are
similar to the characteristic peaks of PEG. However, the
diffraction peaks of PEG have relatively large intensities and
widths and are greater than 19.1° and 23.1°.3e characteristic
peak at 19.5° corresponds to PVA. 3is indicates that the
crystallinity of PVA/PEG is lower than that of pure PEG,
thereby proving that the interactions between PVA and PEG
in the gel affect the crystallinity of PEG. Figure 1(d) shows
the Raman spectra of 10 wt% PVA and PVA/PEG (10 wt
%/15 wt%) gels. PVA has evident characteristic peaks at
856 cm−1, 919 cm−1, 1,446 cm−1, and 2,916 cm−1. 3e char-
acteristic peaks of PVA/PEG are similar to those of PVA but
with higher intensity.3is indicates that the special structure
formed after the interaction between PVA and PEG leads to
peak enhancement.

3.2. XPS and TGA Analysis. 3e composition and chemical
states of the elements were analyzed using an X-ray pho-
toelectric spectrometer. 3e XPS spectral peak of O 1s is
observed at 532 eV, as shown in Figure 2(a). 3is can be
attributed to the presence of the O–H bonds [48]. 3e
Gaussian distribution contains three peaks at 284.3 eV,
285.9 eV, and 288.7 eV, as shown in Figure 2(b). 3e dif-
ferent peaks are attributed to the presence of C bonds in
ethylene and carbon and carbonyl carbon in CH2 [49]. 3e
284.3 eV and 532 eV peaks correspond to the O and C el-
ements in PVA/PEG, respectively, as shown in Figure 2(c).
3e mass of these two materials reduces with increase in
temperature. 3e thermal decomposition rate of the PVA/

PEG gel was relatively low below 252°C, as shown in
Figure 2(d). 3is is attributed to the interactions between
PVA and PEG and a rise in the crystallinity of the polymer.
3e thermal decomposition rate of PVA is greater than that
of the PVA/PEG gel at a given temperature beyond 252°C
because of the presence of PEG in the PVA/PEG gel.

3.3. 0e Lubrication Effect of Different Materials.
Different materials produce different lubrication effects. 3e
conditions were fixed at 2.0 cm−1 and 10N in this section.
Figure 3(a) shows the transient variation of the COF of five
materials. Water lubrication produced a relatively high COF
that gradually increased with time because of the rise in the
contact area. PVA/PEG gels with different concentrations
were obtained by adding different concentrations of PEG
solution to 10 wt% PVA. It can be seen that the overall COF
increases with time; however, the PVA/PEG gel at 15 wt%
PEG concentration has the best lubrication effect, and the
overall COF is the lowest. Figure 3(b) shows the average
COF of various materials within 30min. 3e PVA/PEG gel
(10 wt%/15 wt%) exhibited the lowest COF among the tested
materials. 3e average COF of the gel (10 wt%/15 wt%) was
0.11, which was approximately two-thirds of that of water
(0.15); it was also lower than that of the other gels, indicating
that this gel was most effective in reducing friction.

3.4. 0e Lubrication Effect of Different Loads. 3e previous
section demonstrated that the PVA/PEG gel with a con-
centration of 10 wt% and 15 wt% was more effective than the
other gels. However, the gel may be subjected to different
pressures in different human bodies. A single load trial is
insufficient to analyze an artificial joint. 3erefore, we tested
the COF for different loads, as shown in Figure 4(a), which
demonstrates that the effect of friction increased with an
increase in load and displayed a relatively stable trend.3is is
because the increased load squeezes out the PEG molecules
in the gel, thereby releasing more lubricant in a short du-
ration [50]. It is evident from Figure 4(b) that the average
COF under 10N is lower than that under different loads.
3is also verifies that the lubricating material can be ef-
fectively extruded under higher loads. In addition, the av-
erage pressure of the contact surface under different
pressures is calculated according to the Hertz contact theory
[51, 52]. It can be seen that the average contact pressure
increases with the increase in load. However, the gel exhibits
better lubrication at higher pressures. 3us, these data in-
dicate that the lubrication effect of these gels improved with
increasing pressure.

3.5. 0e Lubrication Effect at Different Speeds. Figure 5(a)
shows the effect of the sliding speed on the COF. 3e final

Table 1: 3e performance of tests materials.

Materials Yield strength (MPa) Young’s modulus (GPa) Tensile strength (MPa) Density (g× cm−3)
PEEK 110 0.305 527 1.5
CoCrMo 310 210 860 8.3
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Figure 1: (a) FT-IR spectra; (b) enlarged view of the FT-IR spectra; (c) XRD patterns of PEG, PVA (10 wt%), and PVA/PEG (10 wt%/15 wt
%); and (d) Raman spectra of PVA (10 wt%) and PVA/PEG (10 wt%/15 wt%).
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Figure 2: Continued.
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COF increases with time for all speeds. 3e overall COF was
relatively large for a wavenumber of 2.0 cm−1. 3e variation
of the average COF with speed is illustrated in Figure 5(b).
3e gel lubrication and COF were maximum and minimum,
respectively, at a sliding velocity of 1.0 cm/s for the PVA/
PEG gel (10 wt%/15 wt%). Most solid materials follow
Amontons’ law of friction [53], which states that the COF
depends only on the positive load. 3e results shown in
Figure 5 indicate that the PVA/PEG gel does not follow this
model because the COF depends on the normal load as well

as on the sliding speed. 3e COF of the PVA/PEG gel in-
creased within a certain range when the sliding velocity was
greater than 1 cm/s. 3is can be attributed to the insufficient
release of lubricating substances at high speeds, which in-
hibits lubrication.

3.6. Influence of Moisture Content on Lubrication Effect.
3e gel was soaked in water for certain duration after it had
been dried to test the influence of the moisture content of the
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Figure 2: (a) O 1s XPS spectra of PVA/PEG, (b) C 1s XPS spectra of PVA/PEG, (c) XPS spectrum of PVA/PEG (10 wt%/15 wt%), and
(d) TGA curves.
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Figure 3: (a) COF curves and (b) comparison of the COF values of distilled water and PVA/PEG gels with different concentrations.
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gel on lubrication. As seen from Figure 6(a), the COF de-
creases as the number of days for which the gel was soaked
increases because the lubricating substances in the gel are
not easily released after drying. 3is is attributed to the
reduction in the COF after soaking. 3e average COF of the
10 wt% PVA/15 wt% PEG gel decreases as shown in
Figure 6(b). 3ese results demonstrate that the gel can be
reimmersed after dehydration to restore its original lubri-
cation capacity, which presents a feasible solution for large-
scale use or production at later stages.

3.7. Wear Analysis of CoCrMo Alloy Disk. Figure 7 shows
four CoCrMo alloy disks under an optical microscope.

Figure 7(a) shows an image of a water-lubricated worn
surface. 3ere are obvious scratches on the disk, which form
a wideband due to the inability of water to reduce wear. An
image of a disk subjected to 10 wt% PVA as a lubricant is
shown in Figure 7(b). 3e wear range is improved in
comparison to that of distilled water; however, this im-
provement is insignificant. Figure 7(c) shows the image of a
CoCrMo subjected to 15 wt% PEG as a lubricant. Although
the material demonstrated a low COF in the tests, the wear
images indicated a high rate of wear and the presence of
marked stripe scratches. Figure 7(d) shows an image of the
disk subjected to PVA/PEG gel (10 wt%/15 wt%) as a lu-
bricant. 3e wear rate is significantly lower than that of the
other lubricants. In addition, the COF for this gel is less than
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Figure 4: (a) Transient variation of COF for different loads and (b) variation of the average COF with a load.
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Figure 5: (a) Transient variation of COF for different speeds and (b) variation of the average COF with speed.
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Figure 6: (a) Transient variation of COF on different days and (b) variation of the average COF with the number of days.
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Figure 7: Surfaces of the CoCrMo alloy disks subjected to different lubricants, such as: (a) water, (b) PVA, (c) PEG, and (d) PVA/PEG gel.
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that of the other lubricants.3is is because the gel utilizes the
positive effects of both its components. 3e film formed by
the gel during wear is reduced, and the lubrication effect is
enhanced because of the influence of PEG.

3.8. Wear Analysis of PEEK Ball. Figure 8 shows four mi-
croscopic images of PEEK balls subjected to different lu-
bricants. Figure 8(a) shows an image of a water-lubricated
worn surface of a PEEK ball. 3e large wear volume is
evident in the image; the bulb diameter produced by water is
larger than that produced by other lubricants. Figure 8(b)
shows the worn surface of a PEEK ball subjected to 10 wt%
PVA as a lubricant. 3e wear diameter is reduced, and the
wear debris cannot be easily observed in comparison to
water lubrication. Figure 8(c) shows the worn surface of a
PEEK ball subjected to 15 wt% PEG as a lubricant. 3e wear
area of the PEEK sphere is significantly lesser than that of
water and identical to that of PVA; however, the wear debris
on the surface can be easily observed. Figure 8(d) shows the
worn surface of a PEEK subjected to PVA/PEG gel (10 wt
%/15 wt%) as a lubricant.3e wear area produced by this gel
was less than that of the other substances. In addition, the
wear debris were small and barely visible.3e corresponding

disks do not appear to be worn out.3erefore, the wear spots
on the surface of the PEEK sphere may be caused by in-
dentation. 3is is attributed to the combined positive effect
of the two components of the gel, which simultaneously
address different aspects of lubrication.

3.9. Schematic andBiologicalAnalysis. 3eCOF is calculated
by applying positive pressure on the PEEK ball in such a way
that the gel remains in position between the ball and the disk
[54]. 3e reciprocating motion records the pressure that
needs to be applied.3e white gelatinous substance, which is
formed because of the combined properties of PVA and
PEG, is equivalent to PVAwrapped around PEG. Figure 9(a)
shows the wear rates and volumes of four lubricants, namely
water, 10 wt% PVA, 15 wt% PEG, and the gel under positive
pressure. 3e wear volume and wear rate of water as a lu-
bricant are relatively large, while the wear volume and wear
rate of the gel are less than those of the other lubricants,
indicating that the prepared gel has high wear resistance.
Figure 9(b) shows the absorbance value (OD value), which
was measured at 540 nm by an enzyme-linked immunoas-
say. 3is value was expressed in cell proliferation rates with
respect to the control group. It is evident that the cell growth
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Figure 8: Worn surface of the PEEK ball subjected to different lubricants, such as: (a) water, (b) PVA, (c) PEG, and (d) PVA/PEG gel.
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was almost uninhibited. 3e cell proliferation rates of the
PVA, PEG, and PVA/PEG gels were similar to that of the
control group, thereby proving the biocompatibility of the
PVA/PEG gel.

3.10. Lubrication Mechanism Analysis. PVA is a polymer
with a large number of hydroxyl groups attached to the main
chain. Water molecules are more likely to be trapped in the
voids of the PVA chains of partially hydrolyzed PVA,
thereby triggering the formation of water-rich cage-like
structures that rapidly exchange bound or free water mol-
ecules [55]. 3e lubricating fluid is mediated by the for-
mation of a normal fluid film [56]. 3is structure prevents
direct contact between the two substances [57], resulting in
reduced wear. In aqueous media, PEG chains form a “brush”
structure at the interface after hydration, which reduces the
friction between the surfaces. Several studies have analyzed
the gels formed by cross-linking PVA and PEG; however,
only a few studies have investigated their lubrication
properties [46, 58, 59]. 3e PVA/PEG gel was developed in
this study by adding PVA to the PEG solution. 3us, the

PVA/PEG gel comprised PEG chains and water, as shown in
Figure 10 illustrating a schematic of the lubrication effect. In
the friction experiment, the PEG and water molecules in the
PVA/PEG gel are squeezed out, filling the surface of the disk
and reducing the COF. Meanwhile, the PVA/PEG gel acts as
a membrane that separates the two substances from direct
contact, which ultimately leads to reduced wear.

4. Conclusions

A PVA/PEG gel was developed in this study by adding
polyvinyl alcohol to a polyethylene glycol solution. Solutions
with varying concentrations were prepared, followed by
methodological stirring to produce an appropriate gel.
Friction tests, FT-IR spectroscopy, and an immunoassay
were used to analyze the reduction in the COF, specific
reactions between different components, and the gel’s bio-
logical properties, respectively. 3e lubrication and wear
resistance of PVA/PEG gels were established by conducting
the friction and wear test, which proved that the gel had a
better lubrication effect than that of the PVA and PEG
materials at a certain pressure. 3e gel formed an isolation
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film because of the presence of PVA, which prevented the
two substances from coming in direct contact, thereby re-
ducing wear. In contrast, the presence of PEG improved its
lubrication performance.3e molecular properties of the gel
were analyzed using the FT-IR, XRD, XPS, and TGA
techniques. In addition, biological experiments demon-
strated that the gel was highly biocompatible, thereby
demonstrating its potential for application in artificial joints.
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