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Prostate cancer (PCa) is one of the most prevalent malignant tumors. The alternation of microRNA (miRNA) expression is
associated with prostate cancer progression, whereas its way to influence progression of prostate cancer remains elusive. The
expression levels of PRDM16 mRNA and miR-372-3p in PCa cell lines were analyzed using qRT-PCR. The protein expression
of PRDM16 in PCa cell lines was also analyzed using western blot. CCK-8, wound healing, and Transwell assays were applied
to examine cell proliferation, migration, and invasion in prostate cancer cells, respectively. Dual-luciferase reporter assay was
utilized to validate the interaction between miR-372-3p and PRDM16. In the present study, markedly decreased PRDM16
mRNA and protein expression levels were observed in prostate cancer cells. PRDM16 overexpression hampered cellular
proliferation, migration, and invasion, while silencing PRDM16 had the opposite effect. Moreover, miR-372-3p could target the
regulation expression of PRDM16. Rescue experiments demonstrated that upregulating miR-372-3p conspicuously restored the
inhibitory effect of increased PRDM16 on cell proliferation, migration, and invasion in PCa. Overall, our study clarifies the
biological role of miR-372-3p/PRDM16 axis in prostate cancer progression, which may be effective biomarkers for clinical
treatment of prostate cancer.

1. Introduction

Prostate cancer is the most prevalent nonskin cancer, and it
is a major cause of cancer-related deaths [1]. Prostate cancer
is an epithelial malignancy in the prostate, and compression
and metastasis appear as tumorigenesis, leading to ostealgia
or pathological fractures [2]. Prostatectomy can greatly
improve overall survival rate of patients with early prostate
cancer [3], but relapse and metastasis still exist [4, 5]. The
cure rate and 5-year survival rate of prostate cancer patients
remain low [6]. Therefore, novel treatment options for pre-
venting prostate cancer progression and prolonging patient’s
survival time in this area are of high unmet need.

The positive regulatory domain containing 16 (PRDM16)
is featured by an N-terminal PR domain and multiplex Zn-

finger repeats [7, 8]. It was confirmed that PRDM16 has
intrinsic histone methyltransferase activity and catalyzes the
H3K9me1 [9]. Li and Wu [10] investigated epigenetic
mechanism of glioblastoma and revealed that both cancer sus-
ceptibility 2 and miR-101 result in overexpression of hypome-
thylation gene PRDM16. Moreover, PRDM16 also serves as a
transcriptional modulator [11]. Zhang et al. [12] systemati-
cally revealed transcription factors pivotal for lung cancer
oncogenesis, wherein PRDM16 is the potential tumor repres-
sor. PRDM16 can also modulate multiple biologic processes,
such as cancer cell proliferation andmetastasis [13], epigenetic
modification [14, 15], and potential biomarkers for cancer
treatment [16]. PRDM16 is rarely studied relative to other
PRDMs, and research on its function in prostate cancer is
warranted.
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Almost all normal cells are controlled by microRNAs
(miRNAs) [17]. Noncoding RNAs are one of the main
players in the regulation of multiple pathways and cellular
processes [18]. miRNAs are short noncoding RNAs that
are involved in many biological processes [19]. There are
also differentially expressed miRNAs (DEmiRNAs) in pros-
tate cancer; these DEmiRNAs modulate messenger RNA
(mRNA) expression to affect incidence and progression of
prostate cancer [20], such as miR-1182 [21], miR-515-5p
[22], and miR-1301 [23]. miR-371-373 cluster has an essen-
tial function in stem cell pluripotency [24]. miR-371-373
cluster also affects tumor development and is aberrantly
expressed in tumors [25–27]. A study [28] unearthed that
miR-373 represses CD44 to hasten tumor invasion and
metastasis. miR-372-3p targets FXYD6 to repress growth
and metastasis of osteosarcoma cells [29]. Nonetheless, spe-
cific mechanism of miR-372-3p in regulating prostate cancer
is elusive.

In this study, to comprehensively reveal the underlying
mechanisms of PRDM16 in prostate cancer, we assayed its
expression and effects on cell functions in prostate cancer.
Additionally, bioinformatics methods and dual-luciferase
reporter assays identified that PRDM16 was the target of
miR-372-3p in prostate cancer. Upregulating miR-372-3p
conspicuously restored the inhibitory effect of increased
PRDM16 on cell proliferation, migration, and invasion in
prostate cancer. The findings here may provide potential
novel therapeutic targets and biomarkers for prostate cancer
patients.

2. Materials and Methods

2.1. Bioinformatics Analysis. miRNA mature data (normal:
52 and tumor: 499) and mRNA expression profiles (normal:
52 and tumor: 499) of prostate cancer were acquired from
The Cancer Genome Atlas (TCGA) database, along with
the corresponding clinical data. “edgeR” package was uti-
lized for differential expression analysis on miRNAs and
mRNAs between the two groups (jlogFCj > 1:5, padj < 0:05
) for acquisition of DEmiRNAs and DEmRNAs. The mRNA
of interest was identified through a literature review.
mirRDB, TargetScan, starBase databases were employed for
predicting upstream regulatory genes of target mRNA.
DEmiRNAs that had binding sites with target mRNA were
obtained, and their correlation was analyzed to make a final
determination of target miRNA.

2.2. Cell Lines and Cell Culture. Human normal prostate epi-
thelial cell line RWPE-1 (ATCCCRL-11609) and prostate
cancer cell lines PC-3 (ATCCCRL-1435), DU145
(ATCCHTB-81), LNCaP (ATCCCRL-1740), and VCaP
(ATCCCRL-2876) were accessed from American Type Cul-
ture Collection. RPMI-1640 medium (Gibco, California,
USA) plus 10% fetal bovine serum (FBS) was recommended
for cell preparation in an environment at 37°C with 5% CO2.

Negative control (NC) mimics and miR-372-3p mimics
were synthesized by Shanghai GenePharma Co., Ltd.
PRDM16 overexpression plasmid (oe-PRDM16) and empty
plasmid (oe-NC) were purchased from the same company.

Lipofectamine 2000 (Invitrogen, USA) was implemented to
run the transfection. 48 h later, quantitative real-time poly-
merase chain reaction (qRT-PCR) or western blot was car-
ried out to check transfection efficacy.

2.3. qRT-PCR. TRIzol reagent (Invitrogen, USA) was utilized
for isolation of total RNA from cells. A spectrophotometer
(BioTek) was utilized for quantitation. PrimeScript RT
Reagent Kit (TaKaRa, Japan) was implemented to reverse
transcribe 1μg RNA into cDNA, which was quantified by
qRT-PCR with SYBR Green Master Mix Kit (TaKaRa,
Japan). miR-372-3p and PRDM16 were normalized to U6
and β-actin. Data analysis applied 2-ΔΔCt method. Primer
sequences are listed in Table 1.

2.4. Western Blot. Cells were collected from cell lysate (Cell
Signaling Technology; Cat#: 9803). Protein samples were
separated on 10% sodium dodecyl sulfate polyacrylamide
gel electrophoresis and were transferred onto polyvinylidene
fluoride membrane (Roche, Switzerland). Membrane was
sealed with skim milk for 1.5 h and was soaked in primary
antibodies (PRDM16 (1μg/ml, ab85874, Abcam, UK) and β-
actin (1 : 1000, ab115777, Abcam, UK)) at 4°C overnight.
Then, the membrane was soaked in horseradish peroxidase-
labelled goat anti-rabbit IgG H&L (ab6721, Abcam, UK) for
2h. Protein bands were evaluated on BeyoECL Plus (P0018,
Beyotime, China). Target protein was evaluated on ImageJ
version 1.38 (National Institutes of Health, USA), and it was
normalized to β-actin level. β-Actin was considered an
internal reference.

2.5. Cell Counting Kit-8 (CCK-8) Proliferation Assay. CCK-8
was utilized to assess proliferative capability of PCa cells
after transfection. In short, after 4 h of cell incubation at a
constant temperature of 37°C and 5% CO2 in CCK-8 (Beyo-
time, China), viability of PC-3/DU145 cells was assayed at
24, 48, 72, 96, and 120h. Absorbance was assessed at
450 nm with a microplate reader (Bio-Rad 680, USA).

2.6. Wound Healing Assay. Cells were cultivated in 6-well
plates until 100% confluence. Next, a pipette tip was imple-
mented to scratch a straight line in center of each well. After
being rinsed two times with phosphate-buffered saline, cells
were soaked with an FBS-free medium. At 0 h and 24 h,
wound images of each well were captured. Image Pro Plus
software (Media Cybernetics, USA) was employed to mea-
sure wound healing areas.

2.7. Transwell Invasion Assay. The 24-well Transwell cham-
bers with Matrigel (Corning, NY, USA) were used for inva-
sion detection. Briefly, 3 × 104 cells were inoculated into the
upper insert with a serum-free medium. In the lower cham-
ber, a medium containing 10% FBS was taken as a chemical
attractant. Twenty-four hours later, cells on the membrane
were wiped off. The remaining cells were soaked for 30min
in 95% ethanol and stained for another 30min with 0.2%
crystal violet. Invaded cells were counted and photographed
under the inverted microscope.

2 Andrologia



2.8. Dual-Luciferase Reporter Gene Assay. Luciferase vectors
expressing wild-type (WT) or mutant (MUT) 3′-untrans-
lated region (3′-UTR) PRDM16 sequences were designed.
PC-3 cells were cotransfected with luciferase vector and
miR-372-3p mimics or NC mimics. Forty-eight hours later,
a fluorescence reader (Promega Corporation, USA) was
applied to compute luciferase signal.

2.9. Statistical Analysis. Statistical analysis was completed on
SPSS 19.0 and GraphPad Prism 5.0. Data were shown as
mean ± standard deviation. Student’s t -test was for two-
group comparison, while single factor analysis of variance
was for multiple comparisons. p < 0:05 meant that the result
reached statistical significance.

3. Results

3.1. PRDM16 Expression Decreases in Prostate Cancer. Dif-
ferential analysis revealed 1,412 DEmRNAs in prostate can-
cer (Figure 1(a)). An existing study theorized the anticancer
role of PRDM16 in cell proliferation and metastasis [30], but
few investigations were carried out on the function of this
gene in prostate cancer. Besides, through data from TCGA,
PRDM16 was found to decrease in prostate cancer tissue
(Figure 1(b)). qRT-PCR and western blot assays also assayed
PRDM16 mRNA and protein expression in cell lines of pros-
tate cancers. As illustrated in Figure 1(c), PRDM16 mRNA
and protein levels were low in cancer cells relative to normal
cells. All in all, PRDM16 was conspicuously lowly expressed
in prostate cancer.

3.2. PRDM16 Upregulation Hampers Aggressive Phenotype of
Prostate Cancer Cells.We investigated whether PRDM16 is a
controller of prostate cancer cell behaviors. PC-3 and
DU145 cells with relatively low PRDM16 expression were
selected. First, PRDM16 was overexpressed in PC-3 and
DU145 cells. PRDM16 expression in the oe-NC and oe-
PRDM16 groups was compared through qRT-PCR and
western blot. As presented in Figures 2(a) and 2(b), trans-
fecting oe-PRDM16 notably increased PRDM16 expression
in cells. CCK8 assay authenticated the suppressive effect of
oe-PRDM16 on cell viability (Figure 2(c)). In wound healing
assay, migration rate noticeably decreased with overexpres-

sing PRDM16 (Figure 2(d)). Transwell confirmed that oe-
PRDM16 hindered cell invasive capability (Figure 2(e)).
These data validated that PRDM16 repressed phenotype
progression of prostate cancer cells.

3.3. Increased miR-372-3p Downregulates PRDM16 in
Prostate Cancer. Through bioinformatics analysis, upstream
modulatory genes of PRDM16 were excavated. Following
differential analysis, a total of 51 DEmiRNAs were acquired
(36 upregulated DEmiRNAs and 15 downregulated
DEmiRNAs) (Figure 3(a), Supplementary Figure 1). Next,
mirRDB, TargetScan, and starBase databases were applied
for predicting upstream modulatory genes of PRDM16. The
results were taken intersection with upregulated DEmiRNAs
to gain 2 DEmiRNAs that had binding sites with PRDM16
(Figure 3(b)). Moreover, it was previously authenticated that
miR-372-3p facilitates malignant behaviors of cancer cells
[29, 31, 32]. Finally, miR-372-3p as an upstream modulatory
gene of PRDM16 was chosen for further study. Afterwards,
expression analysis was conducted on miR-372-3p in
downloaded data, and miR-372-3p level was conspicuously
high in prostate cancer (Figure 3(c)). qRT-PCR assay also
verified its marked high expression in prostate cancer cell
lines (Figure 3(d)).

To validate binding of miR-372-3p and PRDM16, binding
sites of PRDM16 3′UTR and miR-372-3p were predicted
(Figure 3(e)). PC-3 cells were transfected with miR-372-3p
mimics and NC mimics, separately. Dual-luciferase assay
authenticated that miR-372-3p mimics remarkably reduced
luciferase activity of cells expressing PRDM16 WT but had
no influence on cells expressing PRDM16 MUT (Figure 3(f
)). To further certify whether miR-372-3p targets PRDM16,
PC-3 cells expressing miR-372-3p mimics were generated.
qRT-PCR and western blot disclosed the decrease of PRDM16
levels by overexpressing miR-372-3p (Figures 3(g) and 3(h)).
Hence, increased miR-372-3p targeted PRDM16 in prostate
cancer.

3.4. miR-372-3p Facilitates Malignant Progression of Prostate
Cancer Cells via PRDM16 Repression. As discussed above,
miR-372-3p targeted PRDM16, and thus, we planned to
overexpress miR-372-3p and PRDM16 in PC-3 and
DU145 cells to testify influence of their modulatory mode
on cell function.

In the first place, qRT-PCR and western blot were
conducted to assay PRDM16 levels in various transfection
groups. In comparison to the NC mimic+oe-PRDM16
group, PRDM16 mRNA and protein expressions dramat-
ically downregulated with overexpressing miR-372-3p
(Figures 4(a) and 4(b)). CCK8 verified that oe-PRDM16
restrained cell viability, while this impact was weakened
by simultaneous miR-372-3p and PRDM16 overexpres-
sion (Figure 4(c)). As such, oe-PRDM16 hampered cell
migration and invasion in comparison to the control
group, but transfecting miR-372-3p mimics and oe-
PRDM16 together markedly rescued this repressive effect
(Figures 4(d) and 4(e)). Hence, we believed that miR-
372-3p facilitated malignant progression of prostate can-
cer cells via PRDM16 repression.

Table 1: Primer sequences in qRT-PCR.

Target gene Primer (5′-3′)

miR-372-3p
F: 5′-TAGCAGGATGGCCCTAGACC-3′
R: 5′-TCCGTTGATATGGGCGTCAC-3′

U6
F: 5′-GCTTCGGCAGCACATATACTAAAAT-3′
R: 5′-CGCTTCACGAATTTGCGTGTCAT-3′

PRDM16
F: 5′-AGGCTGCATCACAAAGATCTCC-3′
R: 5′-CCTCACCTGGCTCAATGTCC-3′

β-Actin
F: 5′-CGTCGACAACGGCTCCGGCATG-3′
R: 5′-GGGCCTCGTCACCCACATAGGAG-3′

3Andrologia



4. Discussion

Prostate cancer has a high fatality rate globally and is the
most prevalent among male malignant tumors, which is
increasingly the focus of basic and clinical researchers’ atten-
tion [33]. In Asia, prostate cancer has become a serious med-
ical, social, and economic issue, which is in complete accord
with western countries [34]. Hence, there is increasing inter-
national concern about developing novel targets for prostate
cancer and literature that recognizes the pivotal role of
mRNAs as key modulators in incidence and progression of
various malignancies [35].

PRDM16 is a methylation-associated gene. Hypome-
thylation of PRDM16 promoter is associated with dismal
outcomes in patients with astrocytoma [36]. Through bio-
informatics analysis, PRDM16 was found to be decreased
in prostate cancer. PRDM16 is also a vital regulator of
lipometabolism [37] and a potential diagnostic target in
cancer [12]. As reported, PRDM16 exerts its effect through
varying forms. For instance, a short-form PRDM16 is
capable of fostering cell growth to be involved in progres-
sion of several malignancies [38]. Yoshida et al. [39] man-
ifested that PRDM16 lacking a PR domain hampers cell
growth mediated by TGFβ in adult T-cell leukemia cells.
On the contrary, Takahata et al. [40] ascertained that total
length PRDM16 interacts with SKI (TGFβ signaling sup-
pressor), thereby preventing cell growth induced by TGFβ.
Moreover, Fei et al. [41] disclosed that enforced expression

of total length PRDM16 or PRDM16 lacking a PR domain
can both repress transcription of MUC4 and restrain lung
adenocarcinoma cell invasion and migration. Zhu et al.
[42] also exhibited that PRDM16 is reduced in prostate
cancer and affects cancer cell viability, which may repre-
sent a novel therapeutic target. As previously investigated,
we found the decreased PRDM16 in prostate cancer and
conducted cellular functional assays to reveal the repres-
sive impact of PRDM16 overexpression on cell phenotype
progression of prostate cancer. To sum up, PRDM16
exerts an important effect on tumor occurrence and pro-
gression, and different forms of PRDM16 function vari-
ously in multiple cancers. This conclusion provides a
novel research direction for PRDM16.

Mature miRNAs are single-stranded RNA molecules
about 22 nucleotides in length that regulate a wide range
of biological functions from cell proliferation and death
to cancer development and progression [43]. miRNAs
can function as novel tumor oncogenes or tumor suppres-
sor genes [44, 45]. miR-372-3p is a pivotal biomarker in
liver cancer, and it cooperates with Rab11a to serve as
controller in progression of liver cancer [46]. It is reported
that the mature miRNA strand binds to the 3′UTR of its
target genes [47]. We found that miR-372-3p and
PRDM16 had binding sites, and experiments illustrated
that miR-372-3p downregulates PRDM16. It theorized
the abnormal expression of miR-372-3p in multiplex
tumors as a tumor repressor or oncogene [31, 48, 49].
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Figure 1: PRDM16 is lowly expressed in prostate cancer. (a) Volcano map of DEmRNAs in the normal and tumor groups in prostate cancer
dataset. (b) Box plot of PRDM16 expression. (c) Compared with normal prostate cells (RWPE-1), PRDM16 mRNA and protein expressions
decreased in prostate cancer cells (PC-3, DU145, and LNCaP); ∗p < 0:05.
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Yamashita et al. [50] unearthed that miR-372-3p upregula-
tion is implicated in colorectal cancer patients’ prognoses.
miR-372 aberrant expression targets CDK2 Cyclin A1 to
hinder cell growth of cervical cancer [51]. Besides, Cho
et al. [52] unveiled that decreased miR-372-3p modulates
LATS2 to restrain cell proliferation of gastric cancer.
miR-372 may be an oncogenic miRNA and an indepen-
dent biomarker of glioma [53]. In our research, rescue
experiments denoted that miR-372-3p overexpression
restored repressive effect of PRDM16 on malignant pro-
gression of prostate cancer, which suggested that it may
act as an oncogene in prostate cancer. However, Kong
et al.’s study reported that miR-372 may function as a
tumor suppressor gene by regulating p65 in prostate can-
cer [54]. These findings confirmed the fact that miRNA

plays both tumor-promoting and tumor-suppressing roles
in the same cancer type, and the reason is that miRNAs
in the same tumor are stimulated by external stimuli or
have different levels of certain cytokines [55, 56].
Together, these findings unraveled that miR-372-3p hin-
dered PRDM16 to facilitate cell aggressive phenotype of
prostate cancer, thus becoming a controller of prostate
cancer progression.

Our study confirmed the vital role of miR-372-3p/
PRDM16 on prostate cancer progression. However, the
upstream processes of miR-372-3p involving lncRNAs or
circRNAs and the downstream processes of PRDM16
involving key signaling pathways have not been elucidated
and need to be further investigated. In addition, the effect
of the interaction between miR-372-3p and PRDM16 needs
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Figure 4: miR-372-3p facilitates malignant progression of prostate cancer cells via PRDM16 repression. (a) qRT-PCR assayed PRDM16
mRNA expression in the NC mimic+oe-NC, NC mimic+oe-PRDM16, and miR-372-3p mimic+oe-PRDM16 groups of PC-3 and DU145
cells. (b) Western blot assessed PRDM16 protein level. (c) CCK8 detected cell viability. (d) Wound healing assay assayed cell migratory
capability (40x). (e) Invasion assay detected cell invasive capability (100x); ∗p < 0:05.
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to be confirmed in vivo. In conclusion, we demonstrated that
miR-372-3p regulated prostate cancer progression in vitro
by targeting PRDM16. In vitro experiments certificated that
in prostate cancer, miR-372-3p enhanced cell aggressive
phenotype through modulation of PRDM16.
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