Review Article

Review of Recent Progress in Dye-Sensitized Solar Cells

Fan-Tai Kong, Song-Yuan Dai, and Kong-Jia Wang

Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

Received 27 March 2007; Accepted 25 June 2007

Recommended by Armin G. Aberle

We introduced the structure and the principle of dye-sensitized solar cell (DSC). The latest results about the critical technology and the industrialization research on dye-sensitized solar cells were reviewed. The development of key components, including nanoporous semiconductor films, dye sensitizers, redox electrolyte, counter electrode, and conducting substrate in dye-sensitized solar cells was reviewed in detail. The developing progress and prospect of dye-sensitized solar cells from small cells in the laboratory to industrialization large-scale production were reviewed. At last, the future development of DSC was prospective for the tendency of dye-sensitized solar cells.

Copyright © 2007 Fan-Tai Kong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Since Professor M. Grätzel in EPFL introduced the nanoporous films into dye-derived wideband semiconductor research and made the breakthrough in the photoelectric conversion efficiency of dye-sensitized solar cells (DSCs), academic and commercial interests have been paid on DSCs for their high efficiency, their potential low-cost and simple assemble technology, especially in the past 6 years since Grätzel and his group team at EPFL were able to demonstrate the first 10% efficient cells certified by NREL in USA [1–18]. Dye-derivatized mesoporous titania film is one of the key components for high efficiency in such cells. They use bis(bipyridyl) Ru(II) complexes cis-di(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II), known as the N3 dye, in conjunction with the nanocrystalline colloidal TiO2 films and I3−/I− solution in an organic volatile solvent mixture, to convert 10% of AM 1.5 solar radiation into electrical energy. However, the main drawback of the N3 dye is the lack of light absorption in the red region of the visible spectrum. Carboxylated terpyridyl complexes of tris-thiocyanato Ru(II), known as the black dye, display outstanding properties as a charge-transfer sensitizer and the first certified efficiency of the solar cells that based is over 10%. In recent years, great developments have been made for both the academic research and the industrial research. This paper reviewed the latest developing progress of dye-sensitized solar cells.

2. STRUCTURE AND OPERATING PRINCIPLE OF DYE-SENSITIZED SOLAR CELLS

Dye-sensitized solar cell is composed of nanocrystalline semiconductor oxide film electrode, dye sensitizers, electrolytes, counter electrode and transparent conducting substrate. Typically, dye-derived nanocrystalline titania films were used as photoanode, platinized counter electrode, filled with electrolyte solution of I3−/I− in organic solvent, then the sandwiched solar cells are formed. The operating mechanism of the solar cells is shown in Figure 1. Under the irradiation of sunlight, the dye molecular became photo-excited and ultrafastly injected an electron into the conduction band of the semiconductor electrode, then the original state of the dye is subsequently restored by electron donation from the electrolyte, usually the solution of an organic solvent or ionic liquid solvent containing the I3−/I− redox system. The regeneration of the sensitizer by iodide intercepts the recapture of the conduction band electron by the oxidized dye. The iodide is regenerated, in turn, by reduction of triiodide at the counter electrode, the circuit being completed through the external load. The voltage generated under illumination corresponds to the difference between the Fermi level of the electron in the semiconductor electrode and the redox potential of the electrolyte. Overall, electric power is generated without permanent chemical transformation. Along with these processes, electrons in the conduction band of semiconductor may be recombined with the oxidized dye sensitizers or electron acceptor species in the electrolyte solution.
When it comes to solid-state dye-sensitized solar cells, the electrolyte solution is replaced by a wide band gap inorganic semiconductor of p-type polarity, such as CuI or CuSCN, or a hole-transmitting solid, for example, an amorphous organic aryamine and its derivatives. The excited dye injects electrons into the n-type oxide, and it is regenerated by hole injection in the p-type material. In recent years, organic solvent electrolyte containing I$_3$−/I$^−$ redox couple was also considered as the transport material. Then the operating principle of DSC based on liquid electrolyte is in corresponding with that of solid-state DSC.

3. DSC MATERIALS

3.1. Nanocrystalline semiconductor film electrode

Semiconductor oxides used in dye-sensitized solar cell include TiO$_2$, ZnO, SnO$_2$, Nb$_2$O$_5$, and so forth, which serve as the carrier for the monolayers of the sensitizer using their huge surface and the medium of electron transfer to the conducting substrate. Due to low-cost price, abundance in the market, nontoxicity, and biocompatibility, and as it is also used widely in health care products as well as in paints, TiO$_2$ becomes the best choice in semiconductor till now. Titanium dioxide films are covered on the conducting substrate such as conducting glass, metal foil, and flexible polymer film. The two selected deposition processes, so-called doctor-blading and screen-printing, are widely used to prepare the nanocrystalline TiO$_2$ films by spreading a viscous dispersion of colloidal TiO$_2$ particles on a conducting glass support before sintering at high temperature. Two methods of preparation of colloidal TiO$_2$ dispersions were typically employed [2]. Method A follows the sol-gel procedure of titinate described by Grätzel et al. with the autoclaving being performed at 200°C–250°C. After the colloid is spread on the conducting glass support and calcined, a few monolayers of TiO$_2$ are electrodeposited onto the colloidal TiO$_2$ film from an aqueous Ti(III) solution or treatment with titanium tetrachloride aqueous solution followed by renewed annealing at 450°C–550°C. This treatment was found to improve significantly the short-circuit photocurrent (J_{sc}) as well as the open-circuit voltage (V_{oc}) of the solar cell. The second method for preparation of nanocrystalline films (Method B) employs commercial TiO$_2$ (P25, Degussa AG, Germany). Electron microscopy shows the mean size of primary particles to be about 25 nm. In order to break the aggregates into separate particles, the P25 powder is ground in a porcelain mortar with a small amount of water containing acetylacetone or other stabilizers such as acids, bases, or TiO$_2$ chelating agents to prevent reaggregation of the particles. After being dispersed by the high shear forces in the viscous paste, the powder was diluted by slow addition of water under continued grinding. Finally, a detergent, Triton X-100 or ethyl cellulose, was added to facilitate the spreading of the colloid on the substrate.

In the production of large-scale dye-sensitized solar cell modules in our group, the multilayer microstructure of the semiconductor nanocrystalline TiO$_2$ films is optimized [18]. TiO$_2$ photoelectrodes with three different layers (Figure 2), including layers of small pore-size films, larger pore-size films, and light-scattering particles on the conducting glass with the desirable thickness are being employed in large-area dye-sensitized solar cells and modules and contributed to high efficiency of DSC and DSC modules.

To make DSC a commercially competitive technology in the market for flexible solar cells, a new method that permits a film being prepared on flexible organic substrate is needed for purposes of flexibility, weight, and overall device thickness. However, the traditional methods being mentioned above are challenged while using DSC being based on organic flexible substrate. Especially, the polymer substrate such as low-temperature annealing at the temperature below 150°C [20, 21] and a compressing method [22, 23] to achieve electrically connected TiO$_2$ network have been reported. Pichot et al. [20] reported the preparation
of nanocrystalline TiO₂ electrode without any organic surfactant by sintering at 100 °C and the conversion efficiency of the solar cells is 1.2%. Hagfeldt et al. [23] demonstrated a mechanically compressed nanostructured TiO₂ layer on a plastic film yielding a fill factor of 47% and a conversion efficiency of 3.0%. Miyasaka et al. [24, 25] obtained a fill factor of 61% and the high conversion efficiency up to 4.1% with an electrophoretic deposited TiO₂ layer following a chemical treatment and a thermal treatment of 150 °C for interconnecting TiO₂ particles. Dürr et al. [26] reported the so-called liftoff technique, in which pre-sintered porous layers on conducting glasses substrate can be transferred to an arbitrary flexible substrate, and the original electrical properties of the transferred porous layers are maintained. They obtained a conversion efficiency of 5.8% with flexible PET (polyethylene terephthalate) substrates under AM1.5 irradiation (100 mW·cm⁻²). This method is too complicated for commercial application. Kijitori et al. [17, 27] prepared binder-free coating paste by using TiO₂ sol in acidic aqueous solution as the interconnection agent, and coated the paste on ITO/polyethylene naphthalate (ITO/PEN) film by doctor blade method followed by drying at 150 °C to obtain TiO₂ photoanode. The conversion efficiency of the plastic based DSC is large than 6%. Grätzel group [28] developed the high-efficiency (7.2%) flexible solar cells based on a Ti-metal foil substrate for photoanode and a Pt-electrodeposited counter electrode on ITO-PEN, which is the highest efficiency for flexible DSC.

Nanocrystalline semiconductor films adsorbed a large amount of dye molecules and increased the harvesting efficiency of solar energy. However, the huge surface area also increases the recombination between electrons in the conduction band of semiconductor oxides and the electron acceptor in the electrolyte. In recent years, increasing interest in DSC is addressing the use of more sophisticated device architectures in order to reduce interfacial recombination losses. Examples include the use of composite metal oxides as the semiconductor with different band gaps, for example, Nb₂O₅, ZnO, the incorporation of spacer units between the oxidized dye and the TiO₂ surface, and surface passivation by coating of semiconductor oxides with high conduction band edge or electrodeposition of insulating polymers. One particularly attractive approach involves the coating of the nanocrystalline metal oxide film with a thin overcoat of another metal oxide with a higher conduction band edge, as illustrated in Figure 3, with the aim of increasing the physical separation of injected electrons from the oxidized dye redox couple, thereby retarding the recombination reactions. When the surface of the TiO₂ nanocrystalline electrode was coated with a thin layer semiconductor oxides, such as ZnO, Nb₂O₅, SrO, SrTiO₃, the conversion efficiency of based DSC increased dramatically. After coating of ZnO and Nb₂O₅, the electron density of the conduction band of TiO₂ increase with the reduction of charge recombination due to the core-shell barrier. As a result, the open-circuit voltage (V_oc) and conversion efficiency of the solar cells that based rise, while the short-circuit current density dropped sharply, which led to the reduction of overall photoelectric conversion efficiency of the solar cells.

The preparation of high-efficiency semiconductor electrode is of significant importance for the improvement of the efficiency and the commercial application of dye-sensitized solar cells. To prepare the semiconductor film electrode with uniform-size high-special surface area, and the porous structure whose direction is perpendicular to the conducting substrate is one of the focuses of present research [37]. In order to improve the portability of DSC and scope of application, more and more researchers were interested in the preparation methods for nanocrystalline semiconductor film electrode on flexible substrate.

3.2. Dye sensitizer

Dye sensitizers serve as the solar energy absorber in DSC, whose proprieties will have much effect on the light harvesting efficiency and the overall photoelectric conversion efficiency. The ideal sensitizer for dye-sensitized solar cells should absorb all light below a threshold wavelength of about 920 nm. In addition, it should be firmly grafted to
the semiconductor oxide surface and inject electrons to the conduction band with a quantum yield of unity. Its redox potential should be sufficiently high that it can be regenerated rapidly via electron donation from the electrolyte or a hole conductor. Finally, it should be stable enough to sustain at least 10^8 redox turnovers under illumination corresponding to about 20 years of exposure to natural light [38]. The best photovoltaic performance in terms of both conversion yield and long-term stability has so far been achieved with polypyridyl complexes of ruthenium and osmium. The sensitizers used in DSC were divided into two types: organic dye and inorganic dye according to the structure. Inorganic dye includes metal complex, such as polypyridyl complexes of ruthenium and osmium, metal porphyrin, phthalocyanine and inorganic quantum dots, while organic dye includes natural organic dye and synthetic organic dye.

Compared with organic dye, inorganic complexes dye has high thermal stability and chemical stability. Among these complexes, Polypyridyl ruthenium sensitizers were widely used and investigated for its high stability and outstanding redox properties and good responding for natural visible sunlight. The sensitizers anchored on the surface of semiconductor film electrode with carboxylate group or phosphonate group, which enable the electron injection into the conduction band of the semiconductor. Polypyridyl ruthenium dye may be divided into carboxylate polypyridyl ruthenium dye, phosphonate ruthenium dye, and polynuclear bipyridyl ruthenium dye. The difference between the first two types of sensitizers lies in the adsorption group. The first two types of sensitizers differ from the last type of sensitizer in the number of metal center. The carboxylate polypyridyl ruthenium dye is in level structure, which enables the electron injection into the conduction band of the semiconductor quantitatively. Among these sensitizers, N3 and its tetrabutylammonium salt N719, black dye showed the unmatched performance. The efficiency records of more than 11% for dye sensitized solar cells are based on N719 or black dye. In recent years, amphiphilic ruthenium dye represented by Z907 and high-molar-extinction-coefficient ruthenium sensitizers represented by K19 became the focuses of the research about carboxylate polypyridyl ruthenium sensitizers. Figure 4 and Table 1 showed us the molecular structure and the photovoltaic performance of based solar cells [39-50].

Carboxylate polypyridyl ruthenium sensitizers are easily to be desorbed from the surface in the aqueous solution when the pH value is lower than 5 though they have a lot of advantages. While the phosphonate polypyridyl ruthenium sensitizers used phosphonate group to be anchored to the surface of the semiconductor, which is hardly desorbed from the semiconductor surface even at high pH value, however, phosphonate group is not in conjugation with the polypyridyl plane due to their non-plane structures, which is in disadvantage to the injection of electrons. Péchy et al. [49] developed the first phosphonate polypyridyl ruthenium dye (complex 1) that have the lifetime of excited state of 15 nanoseconds and the Langmuir adsorption coefficient of 8×10^5, which is 80 times larger than that of the N3 dye. The incident photon-current conversion efficiency of complex 1 achieves the maximum 70% at the wavelength of 510 nm. Grätzel et al. [48] developed the phosphonate polypyridyl ruthenium analogue of Z907 and gained the conversion efficiency of more than 8% for the solar cells that based.

Polynuclear complexes exhibiting an antenna effect have been employed in order to increase absorption coefficients. However, the antenna does not enhance the light response efficiency at longer wavelengths, where absorption coefficients and the IPCE of ruthenium charge-transfer sensitizers decrease strongly. Moreover, these bulky sensitizers require more space on the TiO$_2$ surface and penetrate less easily in the small cavities of the nanocrystalline TiO$_2$ than the mononuclear complexes. Hence, for polynuclear complexes, the increased absorption coefficients in solution do not necessarily lead to the enhanced light absorption on the TiO$_2$ electrode due to the reduced surface concentration of the bulkier sensitizer molecules on the nanoporous TiO$_2$ [51].

Organic dye is easy to be designed and various in style with molar extinction coefficient and low cost. In recent years, the development of DSC based on organic dye is very rapid and the conversion efficiency of the solar cells that based is comparable to that based on polypyridyl ruthenium dye. Generally, organic dye has the general structure of “Donor (D)-π conjugation bridge-acceptor (A).” With the electron withdrawing and donating effects of acceptor and the donor moiety, the absorption response of the visible light are red-shifted, which improves the light harvesting and short circuit photocurrent of the solar cells. Figure 5 showed us the structure of several organic dyes and the conversion efficiency of based DSC [52-62]. Huang et al. [62] developed hemicyanine dyes BTS and IDS and get the efficiency 5.1% and 4.8% for solar cells that based. Yang et al. [59] reported the organic dye containing thienothiophene and thiophene segments and achieved high solar energy-to-electricity conversion efficiency of 6.23% for D-ST (structure shown in Figure 5) sensitized solar cells. Yanagida group [57] and Arakawa group [58] reported polyene dye or so-called phenyl-conjugated oligoene dye and gained the efficiency of 6.6% and 6.8%. Hara et al. [53-56] developed a series of coumarin derivatives and received the efficiency of 7.7%, which is comparable with that for N719. Uchida group [60] used indoline dye D149 as sensitizer and gained 8.0% conversion efficiency for solar cells without antireflection layer. Grätzel group [61] reported the 9.03% conversion efficiency for solar cells with D149 as sensitizer after optimizing nanocrystalline TiO$_2$ films. This showed the new results for organic dye sensitized solar cells.

Sensitization with one single dye was restricted for its absorption spectrum is hardly matched with the solar emission spectrum. Cosensitization of several dyes with different spectral response instead of one single dye was used for wide-band-gap semiconductor. Zhang et al. [63, 64] used a series of squaraine dye as cosensitizer of ruthenium polypyridyl complexes and improved 13% efficiency for dye-sensitized solar cells than those sensitized with simple ruthenium polypyridyl complexes. By cosensitization of squaraine dye and polypyridyl ruthenium dye in a proper ratio, the spectral response scope was widened the photovoltaic performance of based solar cells was improved.
3.3. Electrolyte

The electrolyte is one of key components for dye-sensitized solar cells and its properties have much effect on the conversion efficiency and stability of the solar cells. The electrolyte used in DSC is divided into three types: liquid electrolyte, quasi-solid state electrolyte, and solid electrolyte. Liquid electrolyte could be divided into organic solvent electrolyte and ionic liquid electrolyte according to the solvent used.

Organic solvent electrolytes were widely used and investigated in dye-sensitized solar cells for their low viscosity, fast ion diffusion, high efficiency, easy to be designed, and high pervasion into nanocrystalline film electrode [2–7, 65–68]. The composition of the electrolytes includes organic solvent, redox couple, and additive.

Organic solvent used in organic liquid electrolyte include nitrile such as acetonitrile, valeronitrile, 3-methoxypropionitrile, and esters such as ethylene carbonate (EC), propylene carbonate (PC), y-butyrolactone.

The major redox couple contained I\(_3^-\)/I\(^-\) couple. Expecting that redox couple, Wang et al. [69] used Br\(^-\)/Br\(_2\) as redox couple in eosin sensitized solar cells. SCN\(^-\)/(SCN)\(_2\) couple, SeCN\(^-\)/(SeCN)\(_2\) couple were also shown in the literature [70, 71]. Sapp [72] reported the substituted bipyridyl cobalt(III/II) couple as redox couple in DSC. However, the performance of these couples can hardly match that of I\(_3^-\)/I\(^-\) couple.

Alkyl imidazolium cation and lithium cation were usually used as the counterions of I\(_3^-\)/I\(^-\) couple in DSC. Alkyl imidazolium cation may be adsorbed on the surface of semiconductor film to form the Helmholtz layer, which restricted the contact of triiodide and semiconductor films, for the recombination between triiodide and electron in the conduction band of semiconductor. As the result, the fill factor, and conversion efficiency of the solar cells were improved. On the
Table 1: Absorption spectra and photoelectric performance of different polybipyridyl ruthenium(II) complexes.

<table>
<thead>
<tr>
<th>Dye</th>
<th>$Abs/nm (\varepsilon/10^4\text{m}^2\text{mol}^{-1})$</th>
<th>IPCE(a)</th>
<th>$J_{sc}/mA\cdot\text{cm}^{-2}$</th>
<th>V_{oc}/mV</th>
<th>FF</th>
<th>$\eta/%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3</td>
<td>534(1.42)</td>
<td>83%</td>
<td>18.2</td>
<td>720</td>
<td>0.73</td>
<td>10 [2]</td>
</tr>
<tr>
<td>N719</td>
<td>532(1.4)</td>
<td>85%</td>
<td>17.73</td>
<td>846</td>
<td>0.75</td>
<td>11.18 [8]</td>
</tr>
<tr>
<td>Black Dye</td>
<td>605(0.75)</td>
<td>80%</td>
<td>20.53</td>
<td>720</td>
<td>0.704</td>
<td>10.4 [3]</td>
</tr>
<tr>
<td>Black Dye</td>
<td>—</td>
<td>80%</td>
<td>20.9</td>
<td>736</td>
<td>0.722</td>
<td>11.1 [6, 7]</td>
</tr>
<tr>
<td>Z907</td>
<td>526(1.22)</td>
<td>72%</td>
<td>13.6</td>
<td>721</td>
<td>0.692</td>
<td>6.8 [39, 42]</td>
</tr>
<tr>
<td>Z907</td>
<td>526(1.22)</td>
<td>72%</td>
<td>14.6</td>
<td>722</td>
<td>0.693</td>
<td>7.3 [39]</td>
</tr>
<tr>
<td>K8</td>
<td>555(1.80)</td>
<td>77%</td>
<td>18</td>
<td>640</td>
<td>0.75</td>
<td>8.64 [40]</td>
</tr>
<tr>
<td>K19</td>
<td>543(1.82)</td>
<td>70%</td>
<td>14.61</td>
<td>711</td>
<td>0.671</td>
<td>7.0 [41]</td>
</tr>
<tr>
<td>N945</td>
<td>550(1.89)</td>
<td>80%</td>
<td>16.5</td>
<td>790</td>
<td>0.72</td>
<td>9.6 [43]</td>
</tr>
<tr>
<td>Z910</td>
<td>543(1.70)</td>
<td>80%</td>
<td>17.2</td>
<td>777</td>
<td>0.764</td>
<td>10.2 [44]</td>
</tr>
<tr>
<td>K73</td>
<td>545(1.80)</td>
<td>80%</td>
<td>17.22</td>
<td>748</td>
<td>0.694</td>
<td>9.0 [45]</td>
</tr>
<tr>
<td>K51</td>
<td>530(1.23)</td>
<td>70%</td>
<td>15.40</td>
<td>738</td>
<td>0.685</td>
<td>7.8 [46]</td>
</tr>
<tr>
<td>HRS-1</td>
<td>542(1.87)</td>
<td>80%</td>
<td>20</td>
<td>680</td>
<td>0.69</td>
<td>9.5 [47]</td>
</tr>
<tr>
<td>Z955</td>
<td>519(0.83)</td>
<td>80%</td>
<td>16.37</td>
<td>707</td>
<td>0.693</td>
<td>8.0 [48]</td>
</tr>
</tbody>
</table>

(a) Platform region. IPCE, Incident photon-current conversion efficiency.

Figure 5: Photoelectric conversion efficiency of DSC based on several organic dyes with high extinction coefficient and their molecular structure.

other hand, the high solubility of alkyl imidazolium cation in organic solvent and the high activity of iodide increased the light harvesting efficiency and photocurrent as well as the stability of the sensitizer.

The commonly used additive used in the electrolytes for dye-sensitized solar cells contained 4-tert-butylpyridine (TBP) and N-methylbenzimidazole (NMBI). The addition of these additives could suppress the dark current and improve the photoelectric conversion efficiency. TBP could reduce the recombination of electrons in the conduction band of the semiconductor and the electron acceptor in the electrolyte through the coordination between N atom and the Ti ion in incomplete coordination state on the surface of TiO$_2$ film. Then, the photovoltage fill factor and the conversion efficiency increased dramatically.

The efficiency record of DSC was obtained on the solar cells based on organic solvent electrolyte, especially the highly volatile organic solvent electrolyte due to the efficient
infiltration of organic electrolyte in nanocrystalline films. However, the solar cells based on organic electrolyte have the disadvantages such as less long-term stability, difficulty in robust sealing and leakage of electrolyte due to the volatility of organic solvent.

Ionic liquid electrolytes were developed in recent year in view of the disadvantage of organic solvent electrolyte. Compared with normal organic solvent electrolyte, ionic liquid have a lot of advantage, such as good chemical and thermal stability, negligible vapor pressure, nonflammability, high ionic conductivity and high solubility for organic or inorganic materials, and a wide electrochemical window, which has been intensively pursued as alternative electrolytes for DSC and other electrochemical devices. In recent years, ionic liquid electrolyte was developed rapidly. Kubo et al. [73] investigated the physical and physiochemical properties of 1-alkyl-3-methylimidazolium iodides (alkyl chain: C3–C9). They found that the viscosity of the molten salts increases with increasing alkyl chain length because of van der Waals forces. The conductivity of the molten salts decreases with increasing viscosity since the diffusion of ions in a liquid depends on its viscosity. The electrolyte with 1-hexyl-3-methylimidazolium iodide gave the highest photoelectric conversion efficiency. Among these ionic liquids, alkyl imidazolium-based ionic liquids are both iodide sources and solvents of electrolytes in solar cells. The counterions in the alkyl imidazolium-based ionic liquid included I\(^-\), N(CN)\(_2\)\(^-\), B(CN)\(_4\)\(^-\), (CF\(_3\)COO)\(_2\)N\(^-\), BF\(_4\)\(^-\), PF\(_6\)\(^-\), NCS\(^-\), and so forth 1-Alkyl-3-methylimidazolium iodides are viscous liquids, whose viscosity is much higher than that of organic-solvent-based liquid electrolyte. Then the transport I\(_3\)\(^-\) in the electrolyte is very slow and the mass transfer process occupies the leading position. To improve the mobility of redox couple in the electrolyte and the photovoltaic performance, various ionic liquid with low viscosity were developed. Grätzel et al. reported the solar cells based on low-viscosity ionic liquid and MIPII mixture. Figure 6 and Table 2 summarize the structure and viscosity of some ionic liquid and the photovoltaic performance of DSC based on ionic liquid electrolyte of different composition [73–83].

Besides alkyl imidazolium cation, alkyl pyridinium salt and trialkylmethylsulfonium-salt-based ionic liquid were developed for electrolytes. Paulsson et al. [74] obtained 3.7% photoelectric conversion efficiency for solar cells based on (Bu\(_2\)Me)SI ionic liquid containing 1% iodine. Watanabe [81] reported 2% conversion efficiency in alkyl pyridinium-cation-based ionic liquid. Wang [75] achieved 7.5% efficiency in solvent-free EMISnC-based ionic liquid containing (SeCN)\(_3\)/SeCN\(^-\) electrolyte, which is comparable with I\(_3\)/I\(^-\) couple. However, the rareness of selenium and high costs has limited its application in DSC. Matsui [83] reported the application of ionic liquid electrolyte in large-area solar cells and gained 2.17% conversion efficiency 2.7%.

The evaporation of the liquid electrolyte often caused some practical limitations of sealing and long-term operation. Recently some attempts were made to improve the long-term stability by using a p-type semiconductor [89, 90] or hole transporting organic materials [91] to replace a liquid electrolyte. However, their conversion efficiencies are not comparable with those of the liquid solar cells. Thus, it can be seen that quasi-solid-state ionic liquid electrolytes might be a better choice to increase stability. Owing to their unique physicochemical properties such as high thermal stability, negligible vapor pressure, relatively high ionic conductivity, and good stability, Ionic liquids were widely used in dye-sensitized solar cells. In general, quasi-solid-state ionic liquid electrolyte consists of I\(_3\)/I\(^-\) couple such as 1-methyl-3-propylimidazolium iodide (MIPII) and framework materials. In quasi-solid electrolytes, framework materials play an important role in offering a liquid channel for the I\(_3\)/I\(^-\) diffusion. Some polymers, [83–86, 92–97] low-molecular-weight gelator [73, 80], and silica nanoparticles [77, 87] have been

![Figure 6: Structure and the viscosity of several ionic liquids.](image-url)
Table 2: Efficiency of DSC based on ionic liquid electrolyte system with different composition.

<table>
<thead>
<tr>
<th>Composition of electrolyte</th>
<th>Dye</th>
<th>η/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₂, LiI, and NMBI in PMII and EMIDCN (13:7,v/v)</td>
<td>Z907</td>
<td>6.6 [76]</td>
</tr>
<tr>
<td></td>
<td>N719</td>
<td>5.0 [76]</td>
</tr>
<tr>
<td>HMII, I₂ et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂ and NMBI in MPII</td>
<td>Z907</td>
<td>6.0 [77]</td>
</tr>
<tr>
<td>I₂, GuSCN, TBP in PMII and EMINCS (13:7,v/v)</td>
<td>Z907</td>
<td>7.0 and 6.4* [78]</td>
</tr>
<tr>
<td>I₂, NMBI, and GuSCN in MPII and EMII-CN (13:7,v/v)</td>
<td>Z907</td>
<td>7.0 and 6.4* [79]</td>
</tr>
<tr>
<td>I₂, GuSCN, and NMBI in PMII and EMINCS (13:7,v/v)</td>
<td>Z905</td>
<td>5.5 [48]</td>
</tr>
<tr>
<td></td>
<td>K19</td>
<td>6.3 [80]</td>
</tr>
<tr>
<td>MPII, LiI, I₂ TBP in EMIDCA</td>
<td>N3</td>
<td>5.5 [81]</td>
</tr>
<tr>
<td>MPII, LiI, I₂, TBP in EMITFSI</td>
<td>N3</td>
<td>4.5 [81]</td>
</tr>
<tr>
<td>I₂ and NMBI in PMII and functional PMII derivative ionic liquids (13:7, v/v)</td>
<td>K19</td>
<td>5.4~5.9 [82]</td>
</tr>
<tr>
<td>EMII, I₂, LiI, TBP in EMITFSA</td>
<td>N3</td>
<td>4.5(0.45 cm²).</td>
</tr>
<tr>
<td>(Bu₂Me)SI and 1% I₂, TBP</td>
<td></td>
<td>2.7(69 cm²) [83]</td>
</tr>
<tr>
<td>MPII, LiI, I₂ TBP in PTFSI</td>
<td>N3</td>
<td>3.7 (0.1 sun) [74]</td>
</tr>
<tr>
<td>GuSCN, K(SeCN)₃, NMBI in EMISCN</td>
<td>Z907</td>
<td>5.5 [75]</td>
</tr>
<tr>
<td>* With and without PPA as coadsorbent, PTFSI: 1-butylpyridinium bis-(trifluoromethane sulfonyl)imide.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Photovoltaic performance of quasi-solid-state DSC with different gelators and ionic liquid electrolytes.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Gelator</th>
<th>Dye</th>
<th>η/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMII, I₂ et al.</td>
<td>Low-molecular-weight gelator</td>
<td>N719</td>
<td>5.01 [73]</td>
</tr>
<tr>
<td>I₂, MPII, NMBI</td>
<td>PVDF-HFP</td>
<td>Z907</td>
<td>5.3 [84]</td>
</tr>
<tr>
<td>I₂ and NMBI in MPII</td>
<td>Silica Nanoparticles</td>
<td>Z907</td>
<td>6.1 [77]</td>
</tr>
<tr>
<td>I₂, GuSCN, NMBI in PMII/EMINCS (13:7,v/v)</td>
<td>Low-molecular-weight gelator</td>
<td>K-19</td>
<td>6.3 [80]</td>
</tr>
<tr>
<td>EMImI, I₂, LiI, TBP in EMITFSA</td>
<td>PVDF-HFP</td>
<td>N3</td>
<td>3.8(0.45 cm²)</td>
</tr>
<tr>
<td>TMS-PMII/I₂ in 10:1 ratio</td>
<td>Self-gelation</td>
<td>N3</td>
<td>3.2 [85]</td>
</tr>
<tr>
<td>I₂, LiI, TBP in MPII</td>
<td>Agarose</td>
<td>N719</td>
<td>2.93 [86]</td>
</tr>
<tr>
<td>I₂, LiI, TBP, DMPII in EMIDCA</td>
<td>Agarose</td>
<td>N719</td>
<td>3.89 [86]</td>
</tr>
<tr>
<td>EMII, LiI, I₂, and TBP in EMITFSI</td>
<td>Nanoparticles</td>
<td>N3</td>
<td>4.57~5.00 [87]</td>
</tr>
</tbody>
</table>

4. SUMMARY

In the past ten years, different efficiency records were announced for dye-sensitized solar cells with different active area in the laboratories and corporations in the world. More than 11% efficiency have achieved by EPFL and Sharp Corporation in small-area DSC. The conversion efficiency record of 8.12%, 10.1%, 10.4%, 9.9% was announced by ECN, EPFL, Sharp Corporation, Arakawa group for strip solar cells with aperture area of 1~5 cm², which is comparable to that for small-area solar cells. Table 4 showed us the conversion efficiency record reported by the main research team of dye-sensitized solar cells or DSC modules. It can be seen that the module efficiency is still low for practical application. Since 1993, industrial researchers have led the way with teams from Germany, Australia, and Switzerland. Based on licenses to the core patents held by EPFL, these teams built strong bases for product development. A 200 m² DSC showcase in roof has been constructed by the STI Company in
Table 4: Photoelectric conversion efficiency of DSC in the world [5–17, 88]. EPFL: Laboratory for Photonic and Interfaces, Switzerland. NREL: National Renewable Energy Laboratory, USA. ECN: Energy Research Centre of the Netherlands. STI: Sustainable Technology International, Australia. SHARP: Sharp Corporation. INAP: Institute of Photovoltaic, Germany. TUS: Tokyo University of Science. FMRC: Freiburg Materials Research Centre. IPP: Institute of Plasma Physics, Chinese Academy of Sciences. Data reported above were measured using solar simulator indoor (AM1.5, 100 mW/cm²) if there is no further statement.

<table>
<thead>
<tr>
<th></th>
<th><0.5 cm²</th>
<th>1~5 cm²</th>
<th>100 cm²</th>
<th>300 cm²</th>
<th>400 cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.04% (2004)</td>
<td>(1.31 cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.18% (2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NREL</td>
<td>9% (2000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI</td>
<td>—</td>
<td></td>
<td></td>
<td><3%</td>
<td></td>
</tr>
<tr>
<td>SHARP</td>
<td>10.8% (2005)</td>
<td>10.4% (2005)</td>
<td>6.3% (26.5 cm², confirmed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.227 cm⁻²)</td>
<td>(1.004 cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.1%</td>
<td>8.0% (2006)</td>
<td>6.3% (101 cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.219 cm²)</td>
<td>(5 cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INAP</td>
<td>—</td>
<td>—</td>
<td>4.7% (1998) (141.4 cm², confirmed)</td>
<td></td>
<td>6.8% (2000)</td>
</tr>
<tr>
<td>TUS</td>
<td>10.3% (2006)</td>
<td>9.9% (2006)</td>
<td>8.4% (2006) (67.5 cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMRC</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.5% (2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.3% (0.5 sun) (0.95 sun, outdoor)</td>
<td></td>
</tr>
</tbody>
</table>

2003. Sharp Corporation and Arakawa group reported 6.3% (efficient area: 26.5 cm², confirmed, 6.3% for 101 cm²) and 8.4% (100 cm²) conversion efficiency for DSC modules. Our group have prepared the DSC modules with efficiency more than 6% in the size of 15 cm × 20 cm. Many corporations in Japan have focused on DSC research and have got good results in organic dye-sensitized solar cells and flexible solar cells. Gifu University (Japan) developed colorful plastic solar cells with the efficiency of 5.6% based on organic indoline dye and electrodeposited nanocrystalline ZnO film electrode. Toin University of Yokohama (Japan) has achieved more than 6% conversion efficiency on full flexible solar cells based on low-temperature TiO₂ electrode preparation technology. Pecell Technologies (Japan) have succeeded in the development of full flexible substrate DSC with the size of 12 cm × 12 cm, voltage more than 4 V, current 0.1 A and the efficiency of 4.3%~5.2%. Konarka Corporation and G24 in England are currently setting up pilot production in their 20 MW factory facility.

Industrial research in China was under the financial support of the National Basic Research Program of China and CAS Innovation Program. After five years, 15 cm × 20 cm DSC modules were prepared and assembled to 45 cm × 80 cm DSC panel, and the efficiency of the DSC modules and panels is more than 5%. In 2004, a 500 W DSC showcase was founded and generated electricity without obvious performance degradation until now [98]. The fundamental and industrial researches have been carried out since 1994. There are more than 30 groups engaged in the research of DSC. The research involved the dye sensitizers, nanocrystalline semiconductor film, electrolyte, counter electrode, substrate and theoretical research of interface transport, and so forth. In the near future, DSC panels that have outstanding architectural appeal are forecast to be in wide use in the commercial market. Within a few years, lower cost rigid and flexible products will become available. Later in the decade, electrophotochromic windows should be commercialized. During the next decade, the introduction of tandem water-splitting devices is possible.

ACKNOWLEDGMENTS

This project was financially supported by National Basic Research Program of China (Grant no. 2006CB202600) and the Anhui Province Key Technologies R & D Programme (Grant no. 06012024A).

REFERENCES

sion of light to electricity by cis-Xbis(2,2′-bipyridyl
dicarboxylate)ruthenium(II) charge-transfer sensitizers (X =
Cl, Br, I, CN, SCN) on nanocrystalline TiO2 electrodes,”
ing of efficient panchromatic sensitizers for nanocrystalline
TiO2-based solar cells,” Journal of the American Chemical
5] M. Grätzel, “Conversion of sunlight to electric power by
nanocrystalline dye-sensitized solar cells,” Journal of Pho-
dye-sensitized solar cells and module,” in The 16th Interna-
tional Conference of Photochemical Conversion and Solar Storage,
Uppsala, Sweden, July 2006, W4-P-11.
7] Y. Chiba, A. Islam, Y. Watanabe, R. Komiyama, N. Koide, and
L. Han, “Dye-sensitized solar cells with conversion efficiency of
11.1%,” Japanese Journal of Applied Physics, vol. 45, no. 25,
8] M. K. Nazeruddin, F. De Angelis, S. Fantacci, et al., “Com-
bined experimental and DFT-TDDFT computational study of
photoelectrochemical cell ruthenium sensitizers,” Journal of the
American Chemical Society, vol. 127, no. 48, pp. 16835–
16847, 2005.
tised solar cells from laboratory scale to pre-pilot stage,” in
Proceedings of the 3rd World Conference on Photovoltaic Energy
Conversion (WCPEC ’03), vol. 1, pp. 196–199, Osaka, Japan,
May 2003.
dye-sensitized solar cells having maximum performance,”
Progress in Photovoltaics: Research and Applications,
10 cm-by-10 cm size black dye sensitized solar cells with 8.4%
efficiency,” in The 16th International Conference of Photo-
chemical Conversion and Solar Storage, Uppsala, Sweden, July 2006,
W4-P-10.
clar cell efficiency tables (version 20),” Progress in Photovoltaics:
13] Y. Chiba, A. Islam, K. Kakutani, R. Komiyama, N. Koide, and
L. Han, “High efficiency dye sensitized solar cells,” in Proceed-
ings of the 15th International Photovoltaic Science & Engineer-
ing Conference (PVSEC ’05), pp. 665–666, Shanghai, China,
October 2005.
from cell to module,” Solar Energy Society World Congress,
with efficiency more than 6%,” Solar Energy Materials and So-
position of nano-structured porous crystalline ZnO/Dye hybrid
thin films for plastic solar cells,” in The 16th International Con-
ference of Photochemical Conversion and Solar Storage, Uppsala,
17] T. Miyasaka, Y. Kijitori, and M. Ikegami, “Fabrication of
full-plastic dye-sensitized solar cell modules based on low-
temperature coating techniques,” in The 16th International
Conference of Photochemical Conversion and Solar Storage, Up-
nanoporous TiO2 photoelectrodes for dye-sensitized solar cell
trophoretically deposited TiO2 photo-electrodes for use in
flexible dye-sensitized solar cells,” Journal of Photochemistry
20] F. Pichot, J. R. Pitts, and B. A. Gregg, “Low-temperature sini-
tering of TiO2 colloids: application to flexible dye-sensitized
“Solid-state and flexible dye-sensitized TiO2 solar cells: a study
by electrochemical impedance spectroscopy,” Journal of Physi-
22] H. Lindström, A. Holmberg, E. Magnusson, S.-E. Lindquist,
L. Malmqvist, and A. Hagfeldt, “A new method for manufac-
turing nanostructured electrodes on plastic substrates,” Nano
23] H. Lindström, A. Holmberg, E. Magnusson, L. Malmqvist, and
A. Hagfeldt, “A new method to make dye-sensitized nanocrystal-
table solar cells at room temperature,” Journal of Photochem-
Uegusa, “Efficient nonsintering type dye-sensitized photocells
based on electrothermically deposited TiO2 layers,” Chemistry
dye-sensitized plastic electrodes by electrophoretic prepara-
tion of mesoporous TiO2 layers,” Journal of the Electrochemical
26] M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and
G. Nelles, “Low-temperature fabrication of dye-sensitized so-
lar cells by transfer of composite porous layers,” Nature Mate-
27] T. Miyasaka and Y. Kijitori, “High efficient plastic dye-
sensitized solar cell based on the low-temperature TiO2 coating
method,” in The 16th International Conference of Photo-
chemical Conversion and Solar Storage, Uppsala, Sweden, July
2006, W4-P-15.
(7.2%) flexible dye-sensitized solar cells with Ti-metal sub-
strate for nanocrystalline-TiO2 photoanode,” Chemical Com-
Shim, “Enhancement of the photoelectric performance of dye-
sensitized solar cells by using a CaCO3-coated TiO2 nanoparti-
cle film as an electrode,” Solar Energy Materials and Solar Cells,
nanoporous MgO-coated TiO2 nanoparticles and their appli-
cation to the electrode of dye-sensitized solar cells,” Langmuir,
performance in dye-sensitized solar cells employing TiO2 pho-
to-electrodes coated with metal hydroxides,” Journal of Physical
“One-step microwave calcination of ZrO2-coated TiO2 elec-
trodes for use in dye-sensitized solar cells,” Comptes Rendus

Submit your manuscripts at http://www.hindawi.com